JPS6025842B2 - Method for manufacturing compound superconducting wire - Google Patents

Method for manufacturing compound superconducting wire

Info

Publication number
JPS6025842B2
JPS6025842B2 JP51008200A JP820076A JPS6025842B2 JP S6025842 B2 JPS6025842 B2 JP S6025842B2 JP 51008200 A JP51008200 A JP 51008200A JP 820076 A JP820076 A JP 820076A JP S6025842 B2 JPS6025842 B2 JP S6025842B2
Authority
JP
Japan
Prior art keywords
wire
composite
compound
superconducting
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51008200A
Other languages
Japanese (ja)
Other versions
JPS5291395A (en
Inventor
肇 一柳
英夫 小北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP51008200A priority Critical patent/JPS6025842B2/en
Publication of JPS5291395A publication Critical patent/JPS5291395A/en
Publication of JPS6025842B2 publication Critical patent/JPS6025842B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 本発明は3一W型結晶構造を持つ金属間化合物の極細多
芯超電導線に関するのである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrafine multicore superconducting wire made of an intermetallic compound having a 31W type crystal structure.

8−W型結晶構造を持つ金属間化合物は、臨界度、臨界
磁場、臨界電流などの超電導特性がすぐれていることか
ら強磁界性発生用マグネット巻線としてはすでに実用化
されている。
Intermetallic compounds having an 8-W type crystal structure have excellent superconducting properties such as criticality, critical magnetic field, and critical current, and have already been put into practical use as magnet windings for generating strong magnetic fields.

その代表的な体構造は、Nb3Sn,V30a等で実施
されている第1図に示す如きテープ状のものである。第
1図において、1はNb又はVの芯で、その周囲にNは
Sn又はV3Ga化合物層2があり、便にその外側にC
u層3が被覆されている。このようなテープ状導体を用
いてマグネットを作製した場合、フラックスジャンプの
発生により材料の臨界電流値附近でマグネットを安定に
作動させることが困難となる為、これを防ぐ為に特別な
対策が必要となる。そこでこのフラックスジヤンプの起
らない本質的に安定な極細多芯線化の研究が進められて
いる。すなわち、超電導線の直径を細くしてゆくと、不
安定性がおきて発熱があっても、その部分だけの超電導
線の熱容量でこの熱を吸収してかつ常電導状態への転移
に至らしめないような直径が存在しうろことが明らかに
された。
Its typical body structure is a tape-like structure as shown in FIG. 1, which is made of Nb3Sn, V30a, etc. In Figure 1, 1 is a Nb or V core, around which is a N, Sn or V3 Ga compound layer 2, and outside of which is a C
Covered with u layer 3. If a magnet is made using such a tape-shaped conductor, it will be difficult to operate the magnet stably near the material's critical current value due to the occurrence of flux jumps, so special measures are required to prevent this. becomes. Therefore, research is underway to create ultra-fine multifilamentary wires that are essentially stable and do not cause flux jumps. In other words, as the diameter of the superconducting wire is made thinner, even if instability occurs and heat is generated, the heat capacity of the superconducting wire in that area absorbs this heat and does not lead to a transition to a normal conducting state. It was revealed that a similar diameter exists.

この技術につて質的な安定化が可能であると考えられて
いる。本質的安定がなされるための超電導体の直径は数
十一mといわれている。従って流の大きい線材を作る場
合には数百本〜数千本の超電導線を束ねる必要がある。
これを実現するために採られている例をあげるとCu−
2仇t%Ga合金と多数のV芯との複合体を紬線に線引
きしたのち、約625qoで熱処理すると、Cu−○a
合金マトリックスとVとの境界部分にV3Ga層が生成
される。
It is believed that qualitative stabilization is possible with this technology. It is said that the diameter of a superconductor to be essentially stable is several tens of meters. Therefore, in order to make a wire with a large flow, it is necessary to bundle hundreds to thousands of superconducting wires.
An example of what has been adopted to achieve this is Cu-
After drawing a composite of a 2t% Ga alloy and a large number of V cores into a pongee line and heat-treating it at about 625qo, Cu-○a
A V3Ga layer is generated at the interface between the alloy matrix and V.

又Nb3Snの場合には、Cu−Sn合金と多数のNb
芯との複合体を線引き加工たのち700つ○で熱処理す
ることにより、NらSn線が得られ、又V3Sjの場合
もCu−Si合金とV芯との複合体を線引き加工したの
ち800oo程度で熱処理することにより、V3Si線
が得られる。これらの方法は材料により異なるが、基本
的には常電導金属に化合物生成の為の元素を添加した固
溶体合金とNb又はV芯との複合体を600o 〜85
0qo程度で加熱して化合物を生成する方法であり、そ
の断面構造は第2図に示す如きものである。(この方法
を固体拡散法と名づける)。第2図において、4はNb
又はV芯、5は常電導金属に化合物生成の為の元素を添
加した合金、6は生成した化合物超電導層である。
In the case of Nb3Sn, Cu-Sn alloy and a large number of Nb
N et Sn wires are obtained by drawing the composite with the core and then heat-treating it at 700 ○, and in the case of V3Sj, after drawing the composite of the Cu-Si alloy and the V core, the wire is heated to about 800 ○. A V3Si wire can be obtained by heat treatment. These methods differ depending on the material, but basically, a composite of a solid solution alloy, which is a normal conductive metal with added elements for compound formation, and a Nb or V core is heated at 600° to 85°C.
This method generates a compound by heating at about 0 qo, and its cross-sectional structure is as shown in FIG. (This method is called the solid-state diffusion method). In Figure 2, 4 is Nb
or a V core, 5 is an alloy prepared by adding an element for compound generation to a normal conducting metal, and 6 is the generated compound superconducting layer.

このような方法は本質的に硬くて、脆い化合物超電導材
の緑材化としてはすぐれた方法といえる。しかし、この
ようなCu−Sn(又はCu−Ga)合金ストリックス
中にNb(又はV)挿入して線引加工していく方法では
、このマトリックスの加工硬化が激く、途中多数回の軟
化熱理を施す必要があり、工業的、経済的に有利な方法
は言えないという欠点がある。
Such a method can be said to be an excellent method for converting essentially hard and brittle compound superconducting materials into green materials. However, in this method of inserting Nb (or V) into a Cu-Sn (or Cu-Ga) alloy matrix and drawing it, the work hardening of this matrix is severe, and the matrix is softened many times during the process. It has the disadvantage that it requires heat treatment and cannot be said to be an industrially or economically advantageous method.

又この欠点を解消する方法として、NbをCuマトリッ
クス中に多数本挿入して伸線加工し(Nb及びC山単体
では加工性が良い)、所定のサイズに加工出来たものの
表面に溶融めつき等でSnを被覆し650o 〜800
00で熱処理を施すことにより、多芯NQSn線材を作
る方法が提唱されている(Appl.Phys.Let
t.Vol.20,Noll,1972)。
In addition, as a method to eliminate this drawback, a large number of Nb pieces are inserted into the Cu matrix and wire drawn (Nb and C strands alone have good processability), and even if the wire is processed to a specified size, the surface will be melted and bonded. Coated with Sn and heated to 650o ~ 800o
A method of making a multi-core NQSn wire by heat-treating with 00 is proposed (Appl. Phys. Let
t. Vol. 20, Noll, 1972).

(これを外部拡散法と名づける)。このような方法の欠
点は、Snの供給が外表面からしかなされない為、中心
部に配置されたNbと外周のNbではSnとの反応に於
て不均一が生じ、断面、径万向での品質のばらつきが大
きくなること、又数1000本から数万本の多数本のN
bに対して充分なSn量が供給出来ないこと、650〜
800oCの熱処理時間表面に被覆したSnが溶け落ち
やり、蒸発ロスになる等により工業的に均質な線材が出
来にくいという不都合を生じる。
(This is called the external diffusion method). The disadvantage of this method is that Sn is supplied only from the outer surface, so the reaction between the Nb placed in the center and the Nb on the outer periphery is non-uniform, and the reaction with Sn is uneven across the cross section and diameter. In addition, the quality of the N
Inability to supply a sufficient amount of Sn for b, 650~
During the heat treatment at 800oC, the Sn coated on the surface melts off, evaporation loss, etc., resulting in the inconvenience that it is difficult to produce a homogeneous wire on an industrial scale.

本発明は、これらの外部拡散法の欠点を解消し芯本数の
多い極細多芯化合物線村を容易にかつ品質均一に製造す
る方法を提供せんとするのである。
The present invention aims to eliminate these drawbacks of the external diffusion method and provide a method for easily producing ultrafine multifilamentary compound wire having a large number of cores with uniform quality.

本発明の第1の判名は、Nb芯の周りにCu被覆し、さ
らにその上にSnを被覆した複合素線の複数本を束ねた
ものに、Cnテープを連続して沿わせ、パイプ状に成形
し、そのシーム部を連続的にシーム溶接して複合材を作
る工程談複合材を所定サイズの複合線に引伸加工する工
程、および上記複合線に超電導化合物を生成させる熱処
理を施す工程とよりなる極細多芯化合物超電導線の造方
法である。
The first name of the present invention is that a Cn tape is continuously placed along a bundle of multiple composite wires in which a Nb core is coated with Cu and further coated with Sn. A process of forming a composite material by continuously seam-welding the seam parts.A process of drawing the composite material into a composite wire of a predetermined size, and a process of heat-treating the composite wire to generate a superconducting compound. This is a method of manufacturing an ultrafine multicore compound superconducting wire.

本発明の第2の発明は、浄記第1の発明において上記引
伸加工した複合線の複数本を束ねたものに更にCuテー
プを連続して沿わせ、パイプ状に成形しながら多複合材
を作る工程と該多複合材を所定サイズに引伸加工する工
程および最終的に上記多複合線に超電導化合物を生成さ
せる熱処理を施す工程とよりなる極細多芯の化合物超電
鷺線の製造方法である。
The second invention of the present invention is that in the first invention of Joki, a Cu tape is further continuously placed along the bundle of the above-mentioned stretched composite wires, and the multi-composite material is formed while being formed into a pipe shape. This is a method for producing an ultra-fine multicore compound superconducting wire, which comprises a step of manufacturing, a step of stretching the multicomposite material to a predetermined size, and a step of finally subjecting the multicomposite wire to heat treatment to generate a superconducting compound. .

本発明において、Cuとは導電性が良く、加工性の良い
、例えば無酸素銅、脱酸銅、タフピッチ銅などの銅を意
味し、Nbとは、純Nb、又はZr,Si若くはTiを
含有するNb合金を、又Snは、純Sn、又はZr若く
はSiを含有するSn合金を意味する。又、上記秦線又
は上記複合線の複数本を束ねたものをパイプ状Cuでお
おう方法としては、束ねたものの刺囲に押出いこよりC
小fィプ被覆する方法、又は束ねたものにCuテープを
連続して沿わせ、パイプ状に成形ながら東をつみ、その
シース部を連続的に溶接する方法の何れを探用しても良
い。以下、発明を図面を用いて説明する。
In the present invention, Cu means copper with good conductivity and good workability, such as oxygen-free copper, deoxidized copper, tough pitch copper, etc., and Nb means pure Nb, or Zr, Si, or Ti. Sn means pure Sn or a Sn alloy containing Zr or Si. In addition, as a method of covering a bundle of the above-mentioned Qin wires or the above-mentioned compound wires with pipe-shaped Cu, extrusion C is applied around the slits of the bundle.
You may explore either a method of covering a small fip, or a method of continuously running a Cu tape along the bundle, forming it into a pipe shape, closing the east end, and continuously welding the sheath part. . The invention will be described below with reference to the drawings.

第3図は本発明に用いる素線の実施例を示す断面図で、
この素線を作製するには、先ずCuパイプ8にNb棒7
を挿入して、伸線加工により所定サイズに細線化した後
、表面に溶融めつき或いは鰭気めつきによりSn9を被
覆し、連続複合黍線を作製する。
FIG. 3 is a cross-sectional view showing an example of the wire used in the present invention.
To produce this wire, first place the Nb rod 7 into the Cu pipe 8.
is inserted and thinned to a predetermined size by wire drawing, and then the surface is coated with Sn9 by melt plating or fin plating to produce a continuous composite millet wire.

然る后、この複合秦線の複数本を束ねたものにCuテー
プを連続的に沿わせ、パイプ状に形成しながら上記東を
つつみ、そのシーム部を連続的に溶接する。この複合材
を冷間で引伸加工することにより所定のサイズに仕上げ
る。更に多芯が必要な場合にはこの複合線の複数本の束
ね、Cu被覆引伸加工を1回以上繰返す。然る後最終的
にN広Snを形成する為の熱処理を施すことにより、例
えば第2図に示すと同様な構造の極細多芯NらSn超電
導線が製造出来る。
After that, a Cu tape is continuously placed along the bundle of a plurality of composite Qin wires to form a pipe shape, enclosing the above-mentioned east side, and the seam portion is continuously welded. This composite material is finished into a predetermined size by cold stretching. If more cores are required, the process of bundling a plurality of composite wires and enlarging them with Cu coating is repeated one or more times. Thereafter, by finally performing a heat treatment to form N-wide Sn, an ultrafine multicore N-Sn superconducting wire having a structure similar to that shown in FIG. 2, for example, can be manufactured.

次に本発明の実施例を述べる。実施例 1 5側0のN材率を内径5.3側、肉厚0.5肋のCuパ
イプに挿入して、0.77肌0迄途中軟化熱処理を施す
ことなく伸縮加工を実施した。
Next, examples of the present invention will be described. Example 1 A N material ratio of 0 on the 5 side was inserted into a Cu pipe with an inner diameter of 5.3 and a wall thickness of 0.5 ribs, and expanded and contracted to 0.77 skin 0 without performing any intermediate softening heat treatment.

350q030分間の軟化処理を施した後、350qo
のSn格通して表面に30ム弐Snを被覆した。
350q0 After 30 minutes of softening treatment, 350qo
The surface was coated with 30 μm of Sn.

この素線61本を第4図の如き装置に供給し、パイプ状
Cuを連続的に競合した。第4図は本発明において複合
素線の複数本を束ねたものをパイプ状Cuでおおう装置
の一例を示す説明図である。
61 of these strands were supplied to an apparatus as shown in FIG. 4, and pipe-shaped Cu was continuously competed. FIG. 4 is an explanatory diagram showing an example of an apparatus for covering a plurality of composite wires bundled with pipe-shaped Cu in the present invention.

図において、所要本数の複合秦線12は線サプライ11
から繰り出され、集合整列孔を有するガイド板13を経
て、東状態でパイプ成型装置16に入る。
In the figure, the required number of composite Qin wires 12 is the wire supply 11
The pipe is fed out from the pipe, passes through a guide plate 13 having a collection and alignment hole, and enters a pipe forming device 16 in an easterly state.

これと併行してCuテープ15はテープサプラィト14
より繰り出され、秦線12群と同時にパイプ成型装置1
6に導かれる。ここでCuテープ15は素線群12をつ
つかむようにパイプ状に連続的に成型される。次いでパ
イプ状Cuテープ15でつつまれた線群12は形状保持
又は調整用ダイス18に取りつけたトーチ20によって
金属テープ15のシーム部が溶接される。パイプ成型装
置から溶接部までの素線群12およびCuテープ15は
ガスパイプ17およびトーチ20より供給される不活性
ガスにより酸化等が防される。溶接された後複合材22
は、一個又はそれ以上のダイス21を経て成型されなが
ら、キヤタピラ、キャプスタン24等によって引出され
、更に必要に応じてダイス25によって所望の径まで加
工され、巻取機23に巻取られる。次にこの複合体12
を更に冷間にて0.12帆◇迄伸線加工した。
At the same time, the Cu tape 15 is connected to the tape supply 14.
Pipe forming equipment 1 is brought out at the same time as Qin wire 12 group.
6. Here, the Cu tape 15 is continuously formed into a pipe shape so as to grip the wire group 12. Next, the wire group 12 wrapped in the pipe-shaped Cu tape 15 is welded at the seam portion of the metal tape 15 by a torch 20 attached to a die 18 for shape retention or adjustment. The wire group 12 and the Cu tape 15 from the pipe forming device to the welding part are prevented from oxidation etc. by the inert gas supplied from the gas pipe 17 and the torch 20. Composite material 22 after welding
While being molded through one or more dies 21, it is drawn out by a caterpillar, capstan 24, etc., and further processed to a desired diameter by a die 25 as necessary, and wound up by a winder 23. Next, this complex 12
The wire was further drawn in the cold to a diameter of 0.12 ◇.

この時のNb芯は平均12り程度であった。これを75
000、40時陥真空中で加熱処理を施すことにより、
Nb芯の表面に約1山のN広Sn超電導層を均一に形成
することが出来た。得られた極細多芯N広Sn超電導層
線は、42K,5腿G磁場中での臨界電流値が21Aで
あり、健全なN広Sn化合物層が生成されていることが
確認された。実施例 2 実施例1と同様の工程で、パイプ状cu内に61本の複
合素線を挿入したものを0.77収め迄伸線し更にその
複合線61本を第4図に示す装置と同様の装置によりパ
イプ状Cuテープ内に連続して鉄合することにより、合
計3721本のNb芯が埋め込まれた材料を作製し、0
.95側少迄伸線した。
The Nb core at this time was about 12 mm on average. This is 75
By applying heat treatment in a vacuum at 0.000, 40 o'clock,
Approximately one mountain of N-wide Sn superconducting layer could be uniformly formed on the surface of the Nb core. The obtained ultrafine multicore N-wide Sn superconducting layer wire had a critical current value of 21 A in a 42 K, 5-thigh G magnetic field, and it was confirmed that a healthy N-wide Sn compound layer was generated. Example 2 In the same process as in Example 1, 61 composite wires inserted into a pipe-shaped cu were drawn to a size of 0.77 mm, and the 61 composite wires were then drawn with the apparatus shown in FIG. A material in which a total of 3,721 Nb cores were embedded was fabricated by continuous iron bonding in a pipe-shaped Cu tape using a similar device.
.. The wire was drawn to the 95th side.

この時のNb芯は約10山であり、これを750oo、
4餌時間真空中で加熱処理施し、断面を顕微鏡観察した
結果、実施例1と同様の厚さ1仏弱のNbぶn化合物層
が生成されていることが確認された。実施例からも明ら
かなように、多数本のNb芯が埋め込まれた複合材が、
熱処理なしで容易に引伸加工出来、更にその複合材に予
め均一に分布したSnが高温度での熱処理に有効に作用
して、極細多芯N広Sn超電導線が経済的に製造出釆る
The Nb core at this time has about 10 peaks, which are 750oo,
As a result of performing heat treatment in a vacuum for 4 feeding hours and observing the cross section under a microscope, it was confirmed that an Nbbn compound layer with a thickness of less than 1 French similar to that in Example 1 had been formed. As is clear from the examples, the composite material in which many Nb cores are embedded is
It can be easily stretched without heat treatment, and furthermore, Sn uniformly distributed in advance in the composite material acts effectively on heat treatment at high temperatures, making it possible to economically produce ultrafine multifilamentary N-wide Sn superconducting wires.

又熱処理時にSnが溶落、或いは蒸発ロスを生ずる不都
合も解消出釆る。又、上述のように細い超電導層を多数
本入れることにより、本質的安定化を期待しているわけ
であるが、更にこの超電導層にツイストをかけて変化磁
界や交流電流に安定な線材とすることも要求される場合
には、本発明の造法において、必要により高温でのNは
Sn化熱処理前にツイストをかけておくことにつて、こ
のような要求に答えることが出来る。
Also, the inconvenience of Sn melting off or evaporation loss during heat treatment can be eliminated. In addition, as mentioned above, by inserting a large number of thin superconducting layers, we expect essential stability, but we also twist these superconducting layers to make the wire stable against changing magnetic fields and alternating current. If this is also required, in the manufacturing method of the present invention, such a request can be met by twisting N at high temperature before the Sn-forming heat treatment, if necessary.

以上述べたように、本発明方法は、引伸加工時材料は加
工容易なCuとNbとSnが相互に固溶又は化合物の状
態になっていないので、本質的に硬くて脆い化合物超電
導材料を作るにもかかわらず、通常の引伸加工の技術で
容易に長尺物が製造しうる特長がある。
As described above, the method of the present invention creates a compound superconducting material that is essentially hard and brittle because Cu, Nb, and Sn, which are easy to process, are not mutually in a solid solution or compound state during stretching processing. Nevertheless, it has the advantage that long objects can be easily manufactured using normal enlarging techniques.

又多数本の線を束ねてパイプでつつみ、引伸する工程を
繰返すことにより、数百〜数万本の多数本の芯を埋め込
んだ線を製造することができる。又本発明方法は、素線
1本毎にSnを被覆するから多数本のNb芯に充分なS
nを均等に供給することができ、又Snは熱処理時には
Cuにつつまれ、線表面に露出していないので、Snの
溶落、或し、か蒸発ロスがないので、経済的に品質均一
なNなSn層を生成することができる利点がある。
Moreover, by repeating the process of bundling a large number of wires, wrapping them with a pipe, and stretching them, it is possible to manufacture a wire in which hundreds to tens of thousands of cores are embedded. In addition, in the method of the present invention, since each strand is coated with Sn, sufficient S is coated on a large number of Nb cores.
Sn can be supplied evenly, and since Sn is surrounded by Cu during heat treatment and is not exposed on the wire surface, there is no melting of Sn or evaporation loss, making it possible to economically achieve uniform quality. There is an advantage that an N Sn layer can be generated.

以上総合して、本発明方法は、極細多芯化合物超電導線
の均質な最尺品を容易経済的に製造し得る利点がある。
上述の本発明の説明では、多芯Nbぶn化合物超電導体
にいて述べたが、多芯V3Ga化合物超電導体について
も同様の方法で製造し得ることは明らかである。
In summary, the method of the present invention has the advantage of being able to easily and economically produce the longest homogeneous ultrafine multifilamentary compound superconducting wire.
In the above description of the present invention, a multi-core Nbn compound superconductor has been described, but it is clear that a multi-core V3Ga compound superconductor can also be manufactured by the same method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は化合物超電導材料の導体構造を示す断面図であ
る。 第2図は多芯化合物超電導線の断面構造を示す図である
。第3図は本発明に用いる素綾の実施例を示す断面図で
ある。第4図は本発明において複合素線の東をパイプ状
Cuでおおう装置の一例を示す説明図である。1,4…
…Nb又はVの芯、2・・・・・・NGSn又はV3G
a化合物層、3・・・・・・Cu層、5・・・・・・常
電導金属に化合物生成の為の元素を添加した合金、6・
・・・・・化合物超電層、7…・・・Nb棒、8…・・
・Cuパイプ、9……Sn、11……線サプライ、12
……複合素線、13・・・・・・ガイド板、14・・・
・・・テープサプライ、15・・…・Cuテープ、16
・・・・・・パイプ成型装置、17・・・・・・ガスパ
イプ、18・・・・・・形状保持又は調整用ダイス、1
9・・・・・・溶接機、20・・・・・・トーチ、21
・・・・・・ダイス、22・・・・・・複合材、23・
…・・巻敬機。 ガー図 ガ2図 矛3図 図 寸 女
FIG. 1 is a sectional view showing a conductor structure of a compound superconducting material. FIG. 2 is a diagram showing a cross-sectional structure of a multicore compound superconducting wire. FIG. 3 is a sectional view showing an embodiment of the plain twill used in the present invention. FIG. 4 is an explanatory diagram showing an example of a device for covering the east of a composite strand with pipe-shaped Cu in the present invention. 1,4...
...Nb or V core, 2...NGSn or V3G
a Compound layer, 3... Cu layer, 5... Alloy in which an element for compound generation is added to a normal conducting metal, 6.
...Compound superelectric layer, 7...Nb rod, 8...
・Cu pipe, 9...Sn, 11...Wire supply, 12
...Composite wire, 13...Guide plate, 14...
...Tape supply, 15...Cu tape, 16
... Pipe forming device, 17 ... Gas pipe, 18 ... Shape retention or adjustment die, 1
9...Welding machine, 20...Torch, 21
... Dice, 22 ... Composite material, 23.
...Maki Keiki. Gar figure 2 figure spear 3 figure figure size woman

Claims (1)

【特許請求の範囲】 1 Nb芯の周りにCuを被覆し、さらにその上にSn
を被覆した複合線の複数本を束ねたものにCuテープを
連続して沿わせ、パイプ状に成形ながら上記束をつつむ
工程、そのシーム部を連続的に溶接し、該複合材を所定
サイズの複合線に引伸加工する程、および上記複合線に
超電導化合物を生成させる熱処理を施す工程とよりなる
極細多芯化合物超電導線の製造方法。 2 Nb芯の周りにCuを被覆ち、さらにその上にSn
を被覆した複合素線の複数本束ねたものをパイプ状Cu
でああつて複合材を作る工程、該複合材を所定サイズの
複合線に引伸加工する工程、上記引伸加工した複合線の
複数本を束ねたものにCuテープを連続して沿わせ、パ
イプ状に成形しながら上記束をつかみ、そのシーム部を
連続的に溶接し、該複合材を所定サイズの合線に引伸加
工する工程および上記複合線に超電導化合物を生形させ
る熱処理を施す工程とよりなる極細多芯化合物超電導線
の製造方法。
[Claims] 1. Cu is coated around the Nb core, and Sn is further coated on top of it.
A process of continuously wrapping a Cu tape around a bundle of multiple composite wires coated with copper and wrapping the bundle while forming it into a pipe shape. A method for producing an ultrafine multifilamentary compound superconducting wire, which comprises the steps of drawing a composite wire and subjecting the composite wire to heat treatment to produce a superconducting compound. 2 Coating Cu around the Nb core, and then coating Sn on top of it.
A pipe-shaped Cu
A step of stretching the composite material into a composite wire of a predetermined size, a step of stretching the composite wire into a composite wire of a predetermined size, and continuously running a Cu tape along the bundle of the stretched composite wires to form a pipe shape. The method consists of the following steps: grasping the bundle while forming it, continuously welding the seam portion, stretching the composite material into a composite wire of a predetermined size, and heat-treating the composite wire to form a superconducting compound. A method for manufacturing ultrafine multicore compound superconducting wire.
JP51008200A 1976-01-27 1976-01-27 Method for manufacturing compound superconducting wire Expired JPS6025842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51008200A JPS6025842B2 (en) 1976-01-27 1976-01-27 Method for manufacturing compound superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51008200A JPS6025842B2 (en) 1976-01-27 1976-01-27 Method for manufacturing compound superconducting wire

Publications (2)

Publication Number Publication Date
JPS5291395A JPS5291395A (en) 1977-08-01
JPS6025842B2 true JPS6025842B2 (en) 1985-06-20

Family

ID=11686614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51008200A Expired JPS6025842B2 (en) 1976-01-27 1976-01-27 Method for manufacturing compound superconducting wire

Country Status (1)

Country Link
JP (1) JPS6025842B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50144398A (en) * 1974-05-10 1975-11-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50144398A (en) * 1974-05-10 1975-11-20

Also Published As

Publication number Publication date
JPS5291395A (en) 1977-08-01

Similar Documents

Publication Publication Date Title
US4195199A (en) Superconducting composite conductor and method of manufacturing same
US3838503A (en) Method of fabricating a composite multifilament intermetallic type superconducting wire
US4043028A (en) Method of fabricating composite superconductors
US3778894A (en) PROCESS FOR MAKING A V{11 Ga SUPERCONDUCTIVE COMPOSITE STRUCTURE
JPS61194155A (en) Production of nb3sn superconductive wire
US3836404A (en) Method of fabricating composite superconductive electrical conductors
US7089647B2 (en) Increasing the copper to superconductor ratio of a superconductor wire by cladding with copper-based strip
JPS6025842B2 (en) Method for manufacturing compound superconducting wire
JPH11102617A (en) Nb3al compound superconductor and manufacture therefor
US5628836A (en) Method of preparing Nb3 Al superconducting wire
JP2878390B2 (en) Method of manufacturing Nb (3) Sn superconducting wire for superconducting generator
JP3948291B2 (en) Nb3Al compound superconducting wire and method for producing the same
JP3045517B2 (en) Compound based superconducting stranded wire and method for producing the same
JP2874955B2 (en) Method of manufacturing Nb (3) Sn superconducting wire for superconducting generator
JP2573942B2 (en) Superconducting wire twist processing method
JP2742437B2 (en) Method for producing compound superconducting stranded wire
JP3489313B2 (en) Method for producing Nb3Al-based superconducting wire
Agatsuma et al. The forced cooled Nb 3 Sn superconductor and its magnet
JPH09147635A (en) Type a15 superconducting wire and its manufacture
JPH024931A (en) Manufacture of nb3x super conducting material
JPS596004B2 (en) V3SI
JPS604573B2 (en) Manufacturing method of compound hollow superconducting magnet
Spencer et al. Development and fabrication of 12 tesla Nb 3 Sn superconductors
JPS62243745A (en) Manufacture of superconductive electric wire containing dispersed fiber
JPS63276827A (en) Manufacturing of fiber-dispersion-type superconducting wire