JPH04198039A - Insulating paste for thick-film circuit - Google Patents

Insulating paste for thick-film circuit

Info

Publication number
JPH04198039A
JPH04198039A JP32743090A JP32743090A JPH04198039A JP H04198039 A JPH04198039 A JP H04198039A JP 32743090 A JP32743090 A JP 32743090A JP 32743090 A JP32743090 A JP 32743090A JP H04198039 A JPH04198039 A JP H04198039A
Authority
JP
Japan
Prior art keywords
insulating paste
glass
filler
mixture
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32743090A
Other languages
Japanese (ja)
Other versions
JP3017530B2 (en
Inventor
Nobuyuki Sugishita
杉下 信行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku International KK
Original Assignee
Tanaka Kikinzoku International KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku International KK filed Critical Tanaka Kikinzoku International KK
Priority to JP2327430A priority Critical patent/JP3017530B2/en
Publication of JPH04198039A publication Critical patent/JPH04198039A/en
Application granted granted Critical
Publication of JP3017530B2 publication Critical patent/JP3017530B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits

Landscapes

  • Glass Compositions (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain an insulating paste capable of forming thick-film multilayered circuits of high reliability by mixing a mixture-based insulating paste of conventional amorphous glass and a filler with crystallizable glass. CONSTITUTION:An insulating paste for thick-film circuits is formed by mixing an inorganic component containing amorphous glass powder and a filler of a crystalline substance as basic components with crystallizable glass powder capable of forming crystals in burning. If the thermal expansion coefficient of the mixture of the amorphous glass with the filler is regulated to a larger value than the thermal expansion coefficient of a ceramic substrate to be used, the warpage of the substrate can preferably be reduced. Any of anorthite (CaAl2 Si2O8), slawsonite (SrAl2Si2O8) and celsian (BaAl2Si2O8) or crystallizable glass forming crystals composed of a mixture of two or more thereof as main crystals in burning is used as the crystallizable glass.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は厚膜回路用絶縁ペーストに関するもので、さら
に詳細には、情報機器、コンピューター等の電子回路に
使用される厚膜回路の多層配線のための絶縁ペーストに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an insulating paste for thick film circuits, and more specifically to multilayer wiring for thick film circuits used in electronic circuits such as information equipment and computers. This relates to insulating paste for.

(従来技術) 厚膜回路はアルミナ等のセラミック基板表面にAu、A
g/Pd等の厚膜導体、RuO2などを導電成分とする
厚膜抵抗をスクリーン印刷と、高温での焼成プロセスに
よって形成される。
(Conventional technology) Thick film circuits are made of Au, A, etc. on the surface of a ceramic substrate such as alumina.
A thick film conductor such as g/Pd or a thick film resistor having a conductive component such as RuO2 is formed by screen printing and a firing process at a high temperature.

近年、厚膜回路の小形、高密度化の要求が高まり、配線
の多層化が進められている。厚膜多層配線の絶縁層材料
には、一般に結晶化ガラスまたは耐熱性酸化物等のフィ
ラーを含む非晶質ガラスよりなる絶縁ペーストが用いら
れる。結晶化ガラスは、セラミック基板上での焼成過程
で結晶化するものであって、その熱膨張係数は、厚膜回
路に最も普通に用いられる96%Al2Oを基板の熱膨
張係数より小さいのが普通である。そのため焼成後の基
板に大きな反りが生ずるので、局部的クロス配線や、導
体2層配線に主に用いられる。一方非晶質ガラスとフォ
ラ−の混合系は、ガラス組成やフィラーの種類の選定に
より、その熱膨張を基板に合致させることが容品なため
、多層配線の絶縁層用により適している。
In recent years, there has been an increasing demand for smaller and higher density thick film circuits, and wiring is becoming more multi-layered. As the insulating layer material for thick film multilayer wiring, an insulating paste made of crystallized glass or an amorphous glass containing a filler such as a heat-resistant oxide is generally used. Crystallized glass is crystallized during the firing process on a ceramic substrate, and its coefficient of thermal expansion is usually smaller than that of the substrate, which is 96% Al2O, which is most commonly used for thick film circuits. It is. As a result, large warpage occurs in the substrate after firing, so it is mainly used for local cross wiring and two-layer conductor wiring. On the other hand, a mixed system of amorphous glass and Forer is more suitable for the insulating layer of multilayer wiring because its thermal expansion can be matched to the substrate by selecting the glass composition and the type of filler.

(従来技術の問題点) 厚膜回路で最も多く使用されるAg/Pd。(Problems with conventional technology) Ag/Pd is most commonly used in thick film circuits.

Ag/Ptなど、Agを含有する導体で形成された多層
配線回路では、絶縁層を挟んで対向する導体間に、直流
電圧を印加して高温で保持すると、Agのイオンマイグ
レーションにより、絶縁層の絶縁破壊電圧が低下する現
象がある。同一試験条件でのAgのマイグレーション速
度は、結晶化ガラスでは小さいが、非晶質ガラスでは非
常に大きく、フィラーを混合しても結晶化ガラスに比べ
ると大きいことが判明した。このような材料を用いて高
密度な多層配線回路を製作しても、例えば自動車のエン
ジンルームのような高温にさらされる場所で使用する場
合や、高電圧で使用する場合には、回路の信頼性が大変
問題になる。
In a multilayer wiring circuit formed with a conductor containing Ag such as Ag/Pt, when a DC voltage is applied between conductors facing each other with an insulating layer in between and held at high temperature, ion migration of Ag causes damage to the insulating layer. There is a phenomenon in which the dielectric breakdown voltage decreases. It was found that the migration rate of Ag under the same test conditions was small in crystallized glass, but very high in amorphous glass, and even when a filler was mixed, it was higher than in crystallized glass. Even if high-density multilayer wiring circuits are manufactured using such materials, the reliability of the circuits may deteriorate when used in places exposed to high temperatures, such as the engine room of a car, or when used at high voltages. Gender becomes a big issue.

(発明の目的) 本発明は、上記した問題点を解決し、高信頼度の厚膜多
層回路を形成するための絶縁ペーストを提供するもので
ある。
(Object of the Invention) The present invention solves the above problems and provides an insulating paste for forming a highly reliable thick film multilayer circuit.

この目的を達成するために、従来の非晶質ガラスとフィ
ラーの混合系絶縁ペーストに、結晶性ガラスを混合した
絶縁ペーストを試作し、Ag/Pd系導体を用いて厚膜
コンデンサを形成して、200Vの直流電圧を負荷し、
150℃で長時間保ったのち絶縁破壊電圧を測定したと
ころ、絶縁破壊電圧の低下が著しく改善されることを見
出した。この絶縁ペーストの焼成膜をX線回折で調べた
ところ、明らかに結晶性ガラスから析出した結晶が認め
られ、これが絶縁破壊電圧の低下を抑制したものと考え
られる。
To achieve this objective, we prototyped an insulating paste that mixed crystalline glass with the conventional insulating paste of a mixture of amorphous glass and filler, and formed a thick film capacitor using Ag/Pd-based conductors. , load a DC voltage of 200V,
When the dielectric breakdown voltage was measured after being kept at 150° C. for a long time, it was found that the decrease in dielectric breakdown voltage was significantly improved. When the fired film of this insulating paste was examined by X-ray diffraction, crystals precipitated from the crystalline glass were clearly observed, and it is thought that this suppressed the decrease in dielectric breakdown voltage.

(実施例) 以下、実施例につき詳細に説明する。(Example) Examples will be described in detail below.

実施例1 重量比で、SiO□54.9%、B20゜5、0%、C
a07.4%、MgO2,5%、PbO17,6%、A
I□ ON  8. 4%、Na2O2,6%、K2O
1,6%の組成で、熱膨張係数が72X10−’/℃(
25〜300℃)の非晶質ガラス粉末55%に、フィラ
ーとしてAI。
Example 1 Weight ratio: SiO□54.9%, B20°5.0%, C
a07.4%, MgO2,5%, PbO17,6%, A
I□ ON 8. 4%, Na2O2, 6%, K2O
With a composition of 1.6%, the coefficient of thermal expansion is 72X10-'/℃ (
55% of amorphous glass powder (25-300°C) with AI as a filler.

oq 22.5%、CaZrO322,5%を混合し、
エチルセルロースのα−ターピネオール溶液に分散、混
練して作成した絶縁ペーストに、重量比で、5iO23
5,6%、B2033.1%、CaO16,9%、Zn
O19,2%、A120311.3%、T r 021
3. 9%の組成で、焼成中にアノーサイトの結晶を析
出する結晶性ガラス粉末(ガラスA)を無機固形分全量
に対して10.20.30.50%になるように混合し
た絶縁ペーストを作成した。
Mix 22.5% oq and 222.5% CaZrO,
Insulating paste prepared by dispersing and kneading ethylcellulose in α-terpineol solution, 5iO23
5.6%, B2033.1%, CaO16.9%, Zn
O19.2%, A120311.3%, T r 021
3. Create an insulating paste with a composition of 9% and a mixture of crystalline glass powder (glass A) that precipitates anorthite crystals during firing to a ratio of 10.20.30.50% to the total inorganic solid content. did.

実施例2 実施例1と同じ非晶質ガラスとフィラーの混合系絶縁ペ
ーストに、重量比で、5in235.6%、B20,3
.1%、5rO16,9%、Zn019.2%、Al2
O,11,3%、T i 0213.9%、の組成で、
焼成中スローツナイトの結晶を析出する結晶性ガラス粉
末(ガラスB)、重量比で、SiO:、31.5%、8
2033.9%、MgO2,5%、CaO3,7%、B
aO25,1%、ZnO11,8%、Al20310.
5%、T + 0211. 0%の組成で、焼成中セル
シアンの結晶を析出する結晶性ガラス粉末(ガラスC)
及び重量比で5in233.6%、B20.3.4%、
MgO1,3%、5rO11,4%、BaO11,4%
、ZnO15,5%、AI20310.9%、Tie2
12.5%の組成で、焼成中スローツナイトとセルシア
ンの結晶を析出する結晶性ガラス粉末(ガラスD)をそ
れぞれ無機固形分全量に対して10%になるように混合
した絶縁ペーストを作成した。
Example 2 To the same amorphous glass and filler mixed insulating paste as in Example 1, 5in235.6%, B20.3 by weight ratio was added.
.. 1%, 5rO16.9%, Zn019.2%, Al2
With a composition of O, 11.3%, Ti 0213.9%,
Crystalline glass powder (glass B) that precipitates sloetonite crystals during firing, weight ratio: SiO:, 31.5%, 8
2033.9%, MgO2,5%, CaO3,7%, B
aO25.1%, ZnO11.8%, Al20310.
5%, T+0211. Crystalline glass powder (Glass C) that has a composition of 0% and precipitates Celsian crystals during firing.
and weight ratio 5in233.6%, B20.3.4%,
MgO1.3%, 5rO11.4%, BaO11.4%
, ZnO15.5%, AI20310.9%, Tie2
An insulating paste was prepared by mixing crystalline glass powder (glass D), which precipitates sloetonite and celsian crystals during firing, with a composition of 12.5%, each at a concentration of 10% based on the total inorganic solid content. .

実施例3 重量比で、5io25!5.43%、B20m4.8%
、Ca07.5%、MgO2,5%、BaO4,1%、
PbO17,0%、A I 20 。
Example 3 Weight ratio: 5io25!5.43%, B20m4.8%
, Ca07.5%, MgO2,5%, BaO4,1%,
PbO 17.0%, A I 20 .

8.5%の組成で、熱膨張係数が63X10−7/℃(
25〜300℃)の非晶質ガラス粉末55%にフィラー
としてAl20310.5%、SiO2(α−石英)1
2.0%、CaZr0t22.5%を混合し、エチルセ
ルロースのα−テルピネオール溶液に分散、混練して作
成した絶縁ペーストに、実施例1の結晶性ガラス粉末(
ガラスA)を無機固形分全量に対して10%になるよう
に混合した絶縁ペーストを作成した。
With a composition of 8.5%, the coefficient of thermal expansion is 63X10-7/℃ (
55% amorphous glass powder (25~300℃), 10.5% Al203 and 1 SiO2 (α-quartz) as fillers.
The crystalline glass powder of Example 1 (
An insulating paste was prepared by mixing glass A) in an amount of 10% based on the total inorganic solid content.

以上の実施例で作成した各々の絶縁ペーストについて以
下の実験を行なった。
The following experiments were conducted on each of the insulating pastes prepared in the above examples.

実験例1 25.4mmx25.4mmX0.625mmtの96
%A1□03基板上にAg/Pd=80/20の導体ペ
ーストを印刷、焼成してコンデンサの下部電極を形成、
この上に前記絶縁ペーストを印刷し、ピーク温度850
℃、r−0分の条件で焼成した後、さらに絶縁ペースト
を印刷、乾燥しその上に前記導体ペーストを印刷して、
同じ条件で焼成して厚膜コンデンサを作成した。このコ
ンデンサの上部電極の面積は60mm’であった。
Experimental example 1 25.4mm x 25.4mm x 0.625mmt 96
%A1□03 Print a conductive paste of Ag/Pd=80/20 on the board and bake it to form the lower electrode of the capacitor.
The insulating paste was printed on top of this, and the peak temperature was 850.
After baking under the conditions of ℃ and r-0 minutes, an insulating paste is further printed and dried, and the conductive paste is printed on it,
Thick film capacitors were created by firing under the same conditions. The area of the upper electrode of this capacitor was 60 mm'.

厚膜コンデンサは各々の絶縁ペーストで60個ずつ作成
し、うち30個ずつとり出し並列に接続して上、下電極
間に直流電圧200■を印加、150℃で500h保持
した。残りの30個ずつと共に個々のコンデンサの絶縁
破壊電圧を測定し、高温負荷試験における絶縁破壊電圧
の低下率を求めた。結果を比較例の場合を含めて表1に
示した。
Sixty thick film capacitors were made from each type of insulating paste, and 30 of them were taken out and connected in parallel, a DC voltage of 200 cm was applied between the upper and lower electrodes, and the capacitors were maintained at 150° C. for 500 hours. The dielectric breakdown voltage of each of the remaining 30 capacitors was measured, and the rate of decrease in dielectric breakdown voltage in the high temperature load test was determined. The results are shown in Table 1 including the comparative example.

また、実施例1の結晶性ガラスを20%混合した場合の
、高温負荷試験前後の絶縁破壊電圧の分布を例として図
1に示す。
Further, FIG. 1 shows an example of the distribution of dielectric breakdown voltage before and after the high temperature load test when 20% of the crystalline glass of Example 1 is mixed.

実験例2 80mmx80mmX0.625mmtの96%Al2
O3基板に絶縁ペーストをドクターブレード法で塗布し
、ピーク温度850℃、10分の条件で焼成し、その上
に再度同様に塗布、焼成した。この絶縁ペースト塗布面
を、表面粗さ計を用いて基板中心を通るx、y方向にス
キャンして、図2に示すような図形から基板の反りを測
定した。
Experimental example 2 96% Al2 of 80mm x 80mm x 0.625mmt
An insulating paste was applied to the O3 substrate using a doctor blade method, and fired at a peak temperature of 850°C for 10 minutes, and then applied and fired again in the same manner. The surface to which the insulating paste was applied was scanned in the x and y directions passing through the center of the substrate using a surface roughness meter, and the warpage of the substrate was measured from a pattern as shown in FIG.

結果を基板の長さ1cm当たりに換算して比較例の場合
を含めて表1に示した。
The results were calculated per 1 cm of substrate length and are shown in Table 1, including the comparative example.

比較例1 実施例1の非晶質ガラスとフィラー混合ペースト。Comparative example 1 Amorphous glass and filler mixed paste of Example 1.

比較例2 実施例1の非晶質ガラスのみのペースト。Comparative example 2 A paste containing only amorphous glass of Example 1.

比較例3 実施例3の非晶質ガラスとフィラー混合ペースト。Comparative example 3 Amorphous glass and filler mixed paste of Example 3.

比較例4 実施例3の非晶質ガラスのみのペースト。Comparative example 4 Paste of Example 3 containing only amorphous glass.

比較例5 実施例1及び実施例3の結晶性ガラスのみのペーストで
、結晶化後の熱膨張係数は52X10−7/TI:(2
5〜300℃)である。
Comparative Example 5 The paste of only the crystalline glass of Examples 1 and 3 had a coefficient of thermal expansion after crystallization of 52X10-7/TI: (2
5-300°C).

比較例1の絶縁ペーストを用いた厚膜コンデンサの高温
負荷試験前後の絶縁破壊電圧の分布を図3に示した。
FIG. 3 shows the distribution of dielectric breakdown voltage before and after the high temperature load test of the thick film capacitor using the insulation paste of Comparative Example 1.

(以下余白) 表1よりわかるように、高温負荷試験における絶縁破壊
電圧の低下は非晶質ガラス系の比較例に比べて著しく改
善され、比較例5の結晶化ガラスの場合と同様である。
(The following is a blank space) As can be seen from Table 1, the reduction in dielectric breakdown voltage in the high-temperature load test was significantly improved compared to the amorphous glass-based comparative example, and was similar to that of the crystallized glass of comparative example 5.

また、基板の反りは、非晶質ガラスとフィラーの混合物
の熱膨張係数が基板のそれより大きい(基板の反りが負
になる)ものを使用すれば、結晶性ガラスの混合により
、絶縁層被覆側がわずかに凸になる好ましい値が得られ
ている。
In addition, if you use a mixture of amorphous glass and filler whose thermal expansion coefficient is larger than that of the substrate (the substrate warpage becomes negative), the warpage of the substrate can be reduced by mixing the crystalline glass. A desirable value with slightly convex sides has been obtained.

(発明の効果) 以上詳述したように、本発明によれば高温、高電圧負荷
の厳しい条件で使用してもAgマイグレーションによる
絶縁特性の劣化がなく、且つ熱膨張をセラミック基板に
容易に適合できるので、安価で高信顆度の高密度厚膜多
層回路が得られる。
(Effects of the Invention) As detailed above, according to the present invention, there is no deterioration of insulation properties due to Ag migration even when used under severe conditions of high temperature and high voltage loads, and thermal expansion can be easily adapted to ceramic substrates. As a result, a high-density thick film multilayer circuit with high reliability can be obtained at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明実施例の絶縁ペーストを用いた厚膜コンデ
ンサの高温負荷試験前後における絶縁破壊電圧の分布図
、図2は絶縁ペーストをセラミック基板に被覆した場合
の基板の反りを測定するため、表面粗さ計でスキャンし
た実例図、図3は比較例の絶縁ペーストを用いた厚膜コ
ンデンサの高温負荷試験前後における絶縁破壊電圧の分
布図である。 出願人  田中マッセイ株式会社
Figure 1 is a distribution diagram of dielectric breakdown voltage before and after a high temperature load test of a thick film capacitor using an insulating paste according to an example of the present invention, and Figure 2 is a diagram showing the distribution of dielectric breakdown voltage before and after a high temperature load test using an insulating paste according to an example of the present invention. FIG. 3 is an actual diagram scanned with a surface roughness meter, and is a distribution diagram of dielectric breakdown voltage before and after a high-temperature load test of a thick film capacitor using an insulating paste of a comparative example. Applicant Tanaka Massey Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)無機成分が非晶質ガラス粉末と結晶性物質のフィ
ラーを基本成分とし、これに、焼成時に結晶が析出する
結晶性ガラス粉末を混合したものよりなることを特徴と
した厚膜回路用絶縁ペースト。
(1) For thick film circuits characterized by having an inorganic component consisting of an amorphous glass powder and a crystalline filler as basic components, mixed with a crystalline glass powder that precipitates crystals during firing. insulation paste.
(2)非晶質ガラスとフィラーの混合物の熱膨張係数が
使用するセラミック基板の熱膨張係数より大きい値を有
することを特徴とする特許請求の範囲第1項の絶縁ペー
スト。
(2) The insulating paste according to claim 1, wherein the thermal expansion coefficient of the mixture of the amorphous glass and the filler is larger than the thermal expansion coefficient of the ceramic substrate used.
(3)結晶性ガラスは、焼成時に主結晶としてアノーサ
イト(CaAl_2Si_2O_8)、スローソナイト
(SrAl_2Si_2O_8)及びセルシアン(Ba
Al_2Si_2O_8)のいずれか、またはこれらの
2種以上の混合物からなる結晶を析出することを特徴と
する特許請求の範囲第1項記載の絶縁ペースト。
(3) Crystalline glass has anorthite (CaAl_2Si_2O_8), slowsonite (SrAl_2Si_2O_8) and celsian (Ba
The insulating paste according to claim 1, characterized in that crystals consisting of either Al_2Si_2O_8) or a mixture of two or more thereof are precipitated.
JP2327430A 1990-11-28 1990-11-28 Insulating paste for thick film circuits Expired - Fee Related JP3017530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2327430A JP3017530B2 (en) 1990-11-28 1990-11-28 Insulating paste for thick film circuits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2327430A JP3017530B2 (en) 1990-11-28 1990-11-28 Insulating paste for thick film circuits

Publications (2)

Publication Number Publication Date
JPH04198039A true JPH04198039A (en) 1992-07-17
JP3017530B2 JP3017530B2 (en) 2000-03-13

Family

ID=18199085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2327430A Expired - Fee Related JP3017530B2 (en) 1990-11-28 1990-11-28 Insulating paste for thick film circuits

Country Status (1)

Country Link
JP (1) JP3017530B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0621245A1 (en) * 1993-04-22 1994-10-26 Nec Corporation Multilayer glass ceramic substrate and method of fabricating the same
WO1997008773A1 (en) * 1995-08-25 1997-03-06 Matsushita Electric Industrial Co., Ltd. Dielectric filter, production method therefor and package member obtained by packaging the filter
WO1999013270A1 (en) 1997-09-08 1999-03-18 Tanaka Kikinzoku Kogyo K.K. Deodorizing apparatus and deodorizing method
JP2007294862A (en) * 2006-03-28 2007-11-08 Kyocera Corp Substrate and circuit board using the same
JP2008060230A (en) * 2006-08-30 2008-03-13 Denso Corp Hybrid integrated circuit device and its manufacturing method
JP2018199599A (en) * 2017-05-27 2018-12-20 日本山村硝子株式会社 Glass composition for encapsulation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0621245A1 (en) * 1993-04-22 1994-10-26 Nec Corporation Multilayer glass ceramic substrate and method of fabricating the same
US5506058A (en) * 1993-04-22 1996-04-09 Nec Corporation Mutlilayer glass ceramic substrate and method of fabricating the same
WO1997008773A1 (en) * 1995-08-25 1997-03-06 Matsushita Electric Industrial Co., Ltd. Dielectric filter, production method therefor and package member obtained by packaging the filter
JPH0964612A (en) * 1995-08-25 1997-03-07 Matsushita Electric Ind Co Ltd Dielectric filter, its production and package body packaging the filter
US5864263A (en) * 1995-08-25 1999-01-26 Matsushita Electric Industrial Co., Ltd. Dielectric filter with protective film covering the edges of the input/output electrodes and external electrode
WO1999013270A1 (en) 1997-09-08 1999-03-18 Tanaka Kikinzoku Kogyo K.K. Deodorizing apparatus and deodorizing method
JP2007294862A (en) * 2006-03-28 2007-11-08 Kyocera Corp Substrate and circuit board using the same
JP2008060230A (en) * 2006-08-30 2008-03-13 Denso Corp Hybrid integrated circuit device and its manufacturing method
JP2018199599A (en) * 2017-05-27 2018-12-20 日本山村硝子株式会社 Glass composition for encapsulation

Also Published As

Publication number Publication date
JP3017530B2 (en) 2000-03-13

Similar Documents

Publication Publication Date Title
JPH0343786B2 (en)
JPH04198039A (en) Insulating paste for thick-film circuit
JPS6325268A (en) Glass ceramic dielectric composition
JP3387458B2 (en) Insulator composition, insulator paste and laminated electronic component
US5763339A (en) Insulating glass composition
US4927711A (en) Hybrid circuits and thick film dielectrics used therein
JP2713376B2 (en) Glass composition for insulating layer
JPS62137897A (en) Insulating layer compound
JPH0452561B2 (en)
JP2004075534A (en) Insulating composition
US6335298B1 (en) Insulating glass paste and thick-film circuit component
JPS62109390A (en) Printed circuit substrate
JPH0768065B2 (en) Glass-coated aluminum nitride sintered body and method for producing the same
JPH0585497B2 (en)
JPH029473B2 (en)
JPS6243937B2 (en)
JPS623039A (en) Material for insulation layer
JP3042180B2 (en) Thick film resistor and method of manufacturing the same
JPH04354101A (en) Glass frit, resistor paste and wiring board
JPH04328207A (en) Conductor compound and wiring board
JP3315182B2 (en) Composition for ceramic substrate
JPH0558201B2 (en)
JPH0585496B2 (en)
JPS59137343A (en) Composition for insulating layer
JPS63283192A (en) Multilayer interconnection board

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees