JPH04196346A - Thin resin-sealed semiconductor device - Google Patents

Thin resin-sealed semiconductor device

Info

Publication number
JPH04196346A
JPH04196346A JP32288990A JP32288990A JPH04196346A JP H04196346 A JPH04196346 A JP H04196346A JP 32288990 A JP32288990 A JP 32288990A JP 32288990 A JP32288990 A JP 32288990A JP H04196346 A JPH04196346 A JP H04196346A
Authority
JP
Japan
Prior art keywords
resin
semiconductor device
sealed semiconductor
sealed
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32288990A
Other languages
Japanese (ja)
Inventor
Masaji Ogata
正次 尾形
Hiroyuki Hozoji
裕之 宝蔵寺
Kuniyuki Eguchi
州志 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32288990A priority Critical patent/JPH04196346A/en
Publication of JPH04196346A publication Critical patent/JPH04196346A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to obtain a resin-sealed semiconductor device, whose package is thin in thickness, by a method wherein a material made by impregnating a thermosetting resin in an inorganic or organic fiber is used as a sealing resin. CONSTITUTION:A material made by impregnating inorganic or organic fibers with thermosetting resin is used as a sealing resin. The reason why a base material 4 made by impregnating the inorganic or organic fibers with the thermosetting resin is used is for improving a sealing workability and moreover, is that the wet spread of the resin at the time of heating and hardening of the resin and the thickness of a sealing layer are inhibited in a constant range and moreover, the mechanical strength of the hardened resin is increased and for other reasons. As such a fibrous substance, glass fibers, ceramic fibers, Kevlar fibers and the like are exemplified. As these materials, a material, whose thermal expansion coefficient is close to that of a silicon chip as much as possible, is preferable for improving the various reliabilities of a sealing product. Thereby, a resin-sealed semiconductor device, whose package is thin and which has various reliabilities superior to those of a TAB element, is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は樹脂封止型半導体装置に係り、特に、薄型パッ
ケージの半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a resin-sealed semiconductor device, and particularly to a thin package semiconductor device.

〔従来の技術〕[Conventional technology]

半導体素子を外部環境から保護し、プリント基板への実
装を容易にするためのパッケージ技術として、従来から
樹脂封止技術が広く用いられている。現在量も広く用い
られている封止法は、エポキシ樹脂に多量の充填域剤や
各種添加剤を配合した成形材料を用いてトランスファ成
形機で半導体素子を封止する方法である。近年、各種エ
レクトロニクス機器の小型薄型、軽量化、高機能化等の
ニーズから各種半導体部品は実装の高密度化が強く望ま
れており、このような樹脂封止型半導体のパッケージは
小型薄型化のすう勢にある。即ち、従来のパンケージは
ビンをプリント基板のスルーホールに差し込んで実装す
るD I P (Dual工n1ine旦1astic
 Package )で代表されるピン挿入型が主流で
あった。しかし、最近は実装密度を高めるためにS O
P (Small 0utline旦1astic P
ackage)、S OJ (Small Out 1
ine J−1ead PlasticPackage
) 、 Q F P (Quad Flat旦1ast
icPackage)等のような両面実装が可能で、し
かも、パッケージが小さい表面実装型パッケージの需要
が増加している。また、パッケージの厚さは特に装置や
部品の薄型化を図るうえで極めて重要であり、最近はT
 S OP (Thin Small 0ut−1in
e旦1astic Package) 、 T S O
J (工hin SmallOutline J−1e
ad Plastic Package) 、 T Q
 F P(Thin Quad Flat Plast
ic Package)と云った厚さが111I11前
後の超薄型パッケージも開発されてし)る。しかし、時
計、カメラ、電卓、ワープロ、パソコン等の分野では、
さらに、薄いパッケージが要求されており、このような
分野にはTAB(Tape Automated Bo
nding)素子、即ち、ポリイミドのフィルム上に形
成された銅リートに素子をボンディングしたものをポツ
ティングレジンやコーティングレジンで封止した厚さが
Q、7〜0.8m前後の製品が用いられている。
Resin encapsulation technology has been widely used as a packaging technology to protect semiconductor elements from the external environment and facilitate mounting on printed circuit boards. A currently widely used encapsulation method is to encapsulate semiconductor elements using a transfer molding machine using a molding material containing epoxy resin mixed with a large amount of filler and various additives. In recent years, there has been a strong demand for higher density mounting of various semiconductor components due to the need for smaller, thinner, lighter weight, and more sophisticated electronic devices. It is on the rise. In other words, the conventional pancage is a DIP (dual engineering, one-day, one-stick) system in which the bottle is inserted into a through hole on a printed circuit board.
The pin-insertion type, typified by Package), was the mainstream. However, recently, in order to increase the packaging density, SO
P (Small 0utline 1astic P
ackage), S OJ (Small Out 1
ine J-1ead Plastic Package
), Q F P (Quad Flat 1st
There is an increasing demand for surface mount packages such as icPackage, which can be mounted on both sides and are small in size. In addition, the thickness of the package is extremely important, especially when trying to make devices and parts thinner, and recently T
S OP (Thin Small 0ut-1in
eDan1astic Package), TSO
J (Engineering Small Outline J-1e
ad Plastic Package), TQ
F P (Thin Quad Flat Plast)
An ultra-thin package with a thickness of around 111I11 (IC Package) has also been developed. However, in fields such as watches, cameras, calculators, word processors, and personal computers,
Furthermore, thin packages are required, and TAB (Tape Automated Bodies) are used in such fields.
A product with a thickness of Q, approximately 7 to 0.8 m, is used, in which the element is bonded to a copper REIT formed on a polyimide film and sealed with potting resin or coating resin. There is.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

TAB素子は現在実用化されているパッケージの中では
その厚さは最も薄い部類に属するが、上述のようなエポ
キシ樹脂に多量の充填剤や各種添加剤を配合した成形材
料を用いてトランスファ成形した成形品に比へると、耐
湿信頼性や耐熱衝撃性等の信頼性が劣り、また、機械的
強度が弱しXために乱雑に扱うとり−トやチップが変形
、もしくは、破損し易いと云った問題がある。特に、機
械強度的な問題は素子の高集積化や高機能化が進みチッ
プが大型化するにつれて深刻な問題となってきている。
The TAB element is one of the thinnest among the packages currently in practical use, and it is made by transfer molding using a molding material made of epoxy resin mixed with a large amount of fillers and various additives. Compared to molded products, they have lower reliability in terms of moisture resistance and thermal shock resistance, and their mechanical strength is weaker, making them easier to deform or break when handled roughly. There is the problem mentioned above. In particular, mechanical strength problems are becoming more serious as devices become more highly integrated and functional, and chips become larger.

本発明の目的は、パッケージの厚さが薄し1樹脂封止型
半導体装置を提供することにある。
An object of the present invention is to provide a resin-sealed semiconductor device with a thin package.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため、本発明の樹脂封止型半導体装
置は (1)半導体素子の少なくとも回路形成面を樹脂封止し
た樹脂封止型半導体装置におし1て、封止樹脂が無機ま
たは有機繊維に熱硬化性樹脂を含浸した素材であること
を特徴とする。
In order to solve the above problems, the resin-sealed semiconductor device of the present invention includes (1) a resin-sealed semiconductor device in which at least the circuit forming surface of a semiconductor element is sealed with resin; It is characterized by being a material made of organic fibers impregnated with thermosetting resin.

(2)前記無機または有機繊維に含浸した熱硬化性樹脂
は半導体素子の少なくとも回路形成面を封止する際、加
熱硬化されることを特徴とする。
(2) The thermosetting resin impregnated into the inorganic or organic fiber is heat-cured when sealing at least the circuit forming surface of the semiconductor element.

(3) (1)または(2)で前記熱硬化性樹脂がエポ
キシ樹脂、シリコーン樹脂、ポリイミド樹脂、不飽和ポ
リエステル樹脂から選ばれる熱硬化性樹脂であることを
特徴とする。
(3) In (1) or (2), the thermosetting resin is a thermosetting resin selected from epoxy resins, silicone resins, polyimide resins, and unsaturated polyester resins.

(4)エポキシ樹脂が多官能エポキシ樹脂、フェノール
ノボラック樹脂及び硬化促進剤からなる(3)に記載の
樹脂封止型半導体装置。
(4) The resin-sealed semiconductor device according to (3), wherein the epoxy resin comprises a polyfunctional epoxy resin, a phenol novolak resin, and a curing accelerator.

(5)熱硬化性樹脂が無機または有機の粒状物質を含む
(1)、 (2)、 (3)または(4)の表面実装型
パンケージ構造を特徴とする。
(5) Features a surface-mounted pancage structure according to (1), (2), (3) or (4) in which the thermosetting resin contains inorganic or organic particulate matter.

(6)粒状物質が実質的に球形の溶融シリカまたはアル
ミナ粒子である(1)、 (2)、 (3)、 (4)
または(5)に記載の樹脂封止型半導体装置。
(6) The particulate material is substantially spherical fused silica or alumina particles (1), (2), (3), (4)
Or the resin-sealed semiconductor device according to (5).

(7) (1)ないしく6)項に記載の樹脂封止型半導
体装置を搭載した電子機器または装置。
(7) Electronic equipment or equipment equipped with the resin-sealed semiconductor device described in (1) to 6).

この記載のうちパッケージ構造に係る部分を図によって
さらに詳しく説明すると次の通りである。
A more detailed explanation of the part related to the package structure in this description with reference to the drawings is as follows.

第1図は半導体素子1の回路形成面並びにハンプ2を介
して接続されたリート3を同時にガラス繊維に熱硬化性
樹脂を含浸した基材4て封止した例である。第2図は封
止部分の段差を無くすために素子1の回路形成面とハン
プ2を介して接続されたリード3をサイズが異なる二種
類の基材4を封止した例である。第3図はリード部3の
補強を目的にリードを上、下面方向から封止した例であ
る。
FIG. 1 shows an example in which the circuit-forming surface of a semiconductor element 1 and a reed 3 connected via a hump 2 are simultaneously sealed with a base material 4 made of glass fiber impregnated with a thermosetting resin. FIG. 2 shows an example in which the circuit forming surface of the element 1 and the lead 3 connected via the hump 2 are sealed with two types of base materials 4 of different sizes in order to eliminate the step difference in the sealed portion. FIG. 3 shows an example in which the leads are sealed from above and below for the purpose of reinforcing the lead portion 3.

第4図は素子1の各種信頼性の向上並びにリード3の補
強を目的に素子1並びにリード3をそれぞれ上下両方向
から封止した例である。
FIG. 4 shows an example in which the element 1 and the leads 3 are sealed from both the upper and lower directions for the purpose of improving various reliability of the element 1 and reinforcing the leads 3.

〔作用〕[Effect]

本発明で、無機または有機繊維に熱硬化性樹脂を含浸し
た基材を用いるのは封止作業性を良くするためであり、
また、樹脂を加熱硬化する際の樹脂の濡れ広がりや封止
層の厚さが一定の範囲に抑えられ、しかも、硬化した樹
脂の機械的強度が高められることなどによる。このよう
な繊維状物質はガラス繊維、セラミックス繊維、ケブラ
ー繊維などが挙げられる。これらの材料は封止品の各種
信頼性を高めるために熱膨張係数がなるべくシリコンチ
ップに近いものが好ましい。また、これらの繊維は厚さ
を一定にするためクロス状に織りあげられたもの、また
は、不織布のような形態に漉かれたものが望ましい。
In the present invention, a base material made of inorganic or organic fibers impregnated with a thermosetting resin is used to improve sealing workability.
In addition, the wetting and spreading of the resin and the thickness of the sealing layer when the resin is heated and cured are suppressed within a certain range, and the mechanical strength of the cured resin is increased. Examples of such fibrous materials include glass fibers, ceramic fibers, and Kevlar fibers. It is preferable that these materials have a coefficient of thermal expansion as close to that of a silicon chip as possible in order to improve various reliability of the sealed product. In addition, these fibers are preferably woven into a cross-like shape or woven into a non-woven fabric in order to maintain a constant thickness.

次に、このような繊維に含浸する熱硬化性樹脂にはエポ
キシ樹脂、シリコーン樹脂、ポリイミド樹脂、不飽和ポ
リエステル樹脂等を利用することができる。これらの樹
脂はそれぞれ一長一短があるが、その中で特にエポキシ
樹脂は成形性、硬化物物性、封止品の各種信頼性のバラ
ンスが優れており有用である。このエポキシ樹脂は硬化
剤としてフェノールノボラック樹脂、無水ポリカルボン
酸、アミン、イミダゾール、三フッ化ホウ素化合物等種
々の化合物を使用できるが、この中で特にフェノールノ
ボラック樹脂を硬化剤として用いた組成物が成形性、硬
化物物性、封止品の各種信頼性のバランスが優れている
。これらのエポキシ樹脂は比較的硬化反応が緩慢なため
、通常は硬化促進剤を配合して硬化反応を促進する必要
がある。
Next, as the thermosetting resin to be impregnated into such fibers, epoxy resin, silicone resin, polyimide resin, unsaturated polyester resin, etc. can be used. Each of these resins has advantages and disadvantages, but among them, epoxy resin is particularly useful because it has an excellent balance of moldability, physical properties of cured products, and reliability of sealed products. This epoxy resin can use various compounds such as phenol novolac resin, polycarboxylic anhydride, amine, imidazole, and boron trifluoride compounds as a curing agent, but among these, compositions using phenol novolak resin as a curing agent are particularly suitable. Excellent balance of moldability, physical properties of cured product, and reliability of sealed products. Since the curing reaction of these epoxy resins is relatively slow, it is usually necessary to add a curing accelerator to accelerate the curing reaction.

本発明のように用途に有用な硬化促進剤は含窒素塩基性
化合物、含りん塩基性化合物、又は、これら化合物のテ
トラ置換ボロン塩から選ばれる化合物が有用である。含
窒素塩基性化合物は具体的にはイミダゾール、及び、そ
の誘導体またはユ、8−ジアザビシクロ(D+4+ ○
)−ウンデセン及びその誘導体が挙げられる。また、含
りん塩基性化合物はトリフェニルホスフィン、トリエチ
ルホスフィン、トリブチルホスフィン、トリメチルホス
フィン、トリ(p−メチルフェニル)ホスフィン、トリ
(ノニルフェニル)ホスフィン等が挙げられる。さらに
、含窒素塩基性化合物及び含りん塩基性化合物のテトラ
置換ボロン塩はイミダゾール及びその誘導体、1,8−
ジアザビシクロ(5゜4.0)−ウンデセン及びその誘
導体あるいは有機ホスホニウム化合物のテトラ置換ボロ
ン塩があげられる。これらの硬化促進剤は二種類以上を
併用することもできる。
As curing accelerators useful in applications such as the present invention, compounds selected from nitrogen-containing basic compounds, phosphorus-containing basic compounds, or tetra-substituted boron salts of these compounds are useful. The nitrogen-containing basic compound is specifically imidazole and its derivatives or 8-diazabicyclo (D+4+ ○
)-undecene and its derivatives. Examples of the phosphorus-containing basic compound include triphenylphosphine, triethylphosphine, tributylphosphine, trimethylphosphine, tri(p-methylphenyl)phosphine, and tri(nonylphenyl)phosphine. Furthermore, tetra-substituted boron salts of nitrogen-containing basic compounds and phosphorus-containing basic compounds include imidazole and its derivatives, 1,8-
Examples include diazabicyclo(5°4.0)-undecene and its derivatives, and tetra-substituted boron salts of organic phosphonium compounds. Two or more types of these curing accelerators can also be used in combination.

一方、樹脂成分には充填剤として無機または有機の粒状
物質を使用することができる。このような充填剤は熱膨
張係数が小さく、剛性が高い溶融シリカ、結晶性シリカ
、アルミナ等の充填剤を始め、各種プラスチックの粉末
やビーズ等を用いても良い。
On the other hand, inorganic or organic particulate materials can be used as fillers in the resin component. Such fillers may include fillers such as fused silica, crystalline silica, and alumina, which have a small thermal expansion coefficient and high rigidity, as well as various plastic powders and beads.

次に、本発明の成形用樹脂組成物には、各種の可撓化剤
を添加することができる。特に、熱硬化性樹脂にこのよ
うな可撓化剤を配合すると封止品の耐熱衝撃性が改善さ
れるばかりでなく、弾性率の低下による熱応力の低減が
図れる。可撓化剤は、具体的にはシリコーン系化合物、
シリコーンゴムやポリブタジェンゴム、ポリエステルゴ
ムのような熱可塑性エラストマ、ポリエーテルスルフォ
ン、ポリエーテルイミドなどの熱可塑性樹脂等を用いる
ことができるがシリコーン系可撓化剤は樹脂組成物に撥
水性を付与するため、封止品の耐湿信頼性の向上も図る
ことができる。
Next, various flexibilizing agents can be added to the molding resin composition of the present invention. In particular, when such a flexibilizing agent is blended into a thermosetting resin, not only the thermal shock resistance of the sealed product is improved, but also thermal stress due to a decrease in elastic modulus can be reduced. Specifically, the flexibilizing agent is a silicone compound,
Thermoplastic elastomers such as silicone rubber, polybutadiene rubber, and polyester rubber, and thermoplastic resins such as polyether sulfone and polyetherimide can be used, but silicone-based flexibilizing agents impart water repellency to the resin composition. Because of this, it is also possible to improve the moisture resistance reliability of the sealed product.

なお、本発明は樹脂組成物には必要に応じ樹脂成分と繊
維状物質、あるいは、充填剤、チップ、リードフレーム
などとの接着性を高めるためのカンプリング剤、成形品
の金型からの離型を良くするための離型剤、難燃剤、着
色剤等を発明の目的を損なわない範囲で配合することが
できる。
In addition, the present invention may optionally contain a camping agent for improving the adhesion between the resin component and the fibrous substance, filler, chip, lead frame, etc., and a molding agent for releasing the molded product from the mold. A release agent, flame retardant, coloring agent, etc. for improving the moldability may be added within a range that does not impair the purpose of the invention.

このような樹脂成分を繊維状物質に含浸するには樹脂成
分を溶解または分散させた有機溶剤中に繊維状物質を浸
せきすることによって行われる。
The fibrous material is impregnated with such a resin component by immersing the fibrous material in an organic solvent in which the resin component is dissolved or dispersed.

その際、含浸する樹脂量は有機溶剤の濃度を変えること
によって調整することができる。樹脂成分を含浸した繊
維状物質は熱硬化性樹脂が硬化しないような温度範囲で
、必要に応して減圧乾燥を併用して有機溶剤を除去し、
必要な大きさに切断して封止に用いられる。半導体素子
の封止方法は種々のものが考えられるが、第5図にその
一例を示す。
At that time, the amount of resin to be impregnated can be adjusted by changing the concentration of the organic solvent. The fibrous material impregnated with the resin component is dried in a temperature range where the thermosetting resin will not harden, and the organic solvent is removed by drying under reduced pressure if necessary.
It is cut to the required size and used for sealing. Although various methods can be considered for sealing a semiconductor element, one example is shown in FIG.

〔実施例〕〔Example〕

[実施例1〜4] エポキシ樹脂として、0−クレゾールノボラック型エポ
キシ樹脂(エポキシ当量:198,150°C溶融粘度
:18ポアズ)85重量部及び臭素化ビスフェノールA
型エポキシ樹脂(エポキシ当量:400,150℃溶融
粘度:1.2 ポアズ)15重量部、硬化剤としてフェ
ノールノボラック樹脂(水酸基当量:10G、150℃
溶融粘度:0.8 ポアズ)52重量部、硬化促進剤と
してテトラフェニルホスホニウムテトラフェニルボレー
ト2重量部、可撓化剤として両末端アミン変性ポリジメ
チルシリコーン(重合度約100)10重量部、カップ
リング剤としてエポキシシラン2重量部、N燃化助剤と
して二酸化アクチモン5重量部、着色剤としてカーボン
ブランク2重量部をメチルエチルケトン2o○重量部と
混合した溶液を調整し、この中に厚さ100μmのガラ
スクロスを5秒間浸漬した。取りだしたガラスクロスを
80℃で15分間乾燥し封止用の基材を得た、次にこれ
らの基材を用い第1図ないし第4図に示す四種類の方法
で表面にアルミニウムのジグザグ配線を形成した半導体
素子(チツプサイス二8×8m)を封止した。樹脂の硬
化は第5図に示す装置で180°C9−分の加熱を行い
樹脂を予備硬化させた後封止品をこの装置から取りだし
、さらに恒温槽中で180’C,−時間の本硬化を行っ
た。
[Examples 1 to 4] As an epoxy resin, 85 parts by weight of 0-cresol novolac type epoxy resin (epoxy equivalent: 198,150°C melt viscosity: 18 poise) and brominated bisphenol A
15 parts by weight of type epoxy resin (epoxy equivalent: 400, melt viscosity at 150°C: 1.2 poise), phenol novolac resin (hydroxyl equivalent: 10G, 150°C) as a curing agent.
Melt viscosity: 0.8 poise) 52 parts by weight, 2 parts by weight of tetraphenylphosphonium tetraphenylborate as a curing accelerator, 10 parts by weight of polydimethyl silicone modified with amines at both ends (degree of polymerization of about 100) as a flexibilizing agent, coupling A solution was prepared by mixing 2 parts by weight of epoxy silane as an agent, 5 parts by weight of actimon dioxide as an N combustion aid, and 2 parts by weight of carbon blank as a coloring agent with 20 parts by weight of methyl ethyl ketone, and a glass with a thickness of 100 μm was mixed in this solution. The cloth was soaked for 5 seconds. The removed glass cloth was dried at 80°C for 15 minutes to obtain a base material for sealing. Next, using these base materials, aluminum zigzag wiring was formed on the surface using the four methods shown in Figures 1 to 4. The semiconductor element (chip size 2: 8 x 8 m) formed thereon was sealed. The resin was cured by heating at 180°C for 9 minutes using the equipment shown in Figure 5. After the resin was precured, the sealed product was removed from the equipment, and then main curing was performed at 180°C for 9 hours in a thermostatic oven. I did it.

[実施例5,6] エポキシ樹脂として、0−クレゾールノボラック型エポ
キシ樹脂(エポキシ当jLt:198,150℃溶融粘
度=18ポアズ)85重量部及び臭素化ビスフェノール
A型エポキシ梱脂(エポキシ当量:400,150℃溶
融粘度:1.2ポアズ)15重量部、硬化剤としてフェ
ノールノボラックm脂(水酸基当jL : 106 、
150 ″C7s融粘度:Q、8 ポアズ)52重量部
、硬化促進剤としてテトラフェニルホスホニウムテトラ
フェニルボレート2重量部、可撓化剤として両末端アミ
ン変性ポリジメチルシリコーン(重合度約100)10
重量部、充填剤として平均粒径6μmの球形溶融シリカ
を用い150重量部5カンプリング剤としてエポキシシ
ラン2重量部、難燃化助剤として二酸化アンチモン5重
量部、着色剤としてカーボンブランク2重量部をメチル
エチルケトン300重量部と混合した溶液を調整し、こ
の中に厚さ100μmのガラスクロスを5秒間浸漬した
。取りだしたガラスクロスを80℃で15分間乾燥し封
止用の基材を得た。次に、この基材を用い第2図及び第
4図に示す二種類の方法で半導体素子を封止した。樹脂
の硬化は上記と同様に第5図に示す装置で180°C1
−分の加熱を行い樹脂を予備硬化させた後、封止品をこ
の装置から取りだし、さらに、恒温槽中で180℃、−
時間の本硬化を行った。
[Examples 5 and 6] As epoxy resins, 85 parts by weight of 0-cresol novolac type epoxy resin (jLt per epoxy: 198, 150°C melt viscosity = 18 poise) and brominated bisphenol A type epoxy buffing fat (epoxy equivalent: 400 , 150°C melt viscosity: 1.2 poise) 15 parts by weight, phenol novolac m fat (jL per hydroxyl group: 106) as a curing agent,
150''C7s melt viscosity: Q, 8 poise) 52 parts by weight, 2 parts by weight of tetraphenylphosphonium tetraphenylborate as a curing accelerator, polydimethyl silicone modified with amines at both ends (degree of polymerization about 100) as a flexibilizing agent 10
150 parts by weight of spherical fused silica with an average particle diameter of 6 μm as a filler, 2 parts by weight of epoxy silane as a camping agent, 5 parts by weight of antimony dioxide as a flame retardant aid, and 2 parts by weight of carbon blank as a coloring agent. A solution was prepared by mixing this with 300 parts by weight of methyl ethyl ketone, and a glass cloth with a thickness of 100 μm was immersed in the solution for 5 seconds. The glass cloth taken out was dried at 80° C. for 15 minutes to obtain a base material for sealing. Next, using this base material, semiconductor elements were sealed using two methods shown in FIGS. 2 and 4. The resin was cured at 180°C in the same way as above using the equipment shown in Figure 5.
After pre-curing the resin by heating for - minutes, the sealed product was taken out from this device and further heated at 180°C in a thermostatic oven.
The main curing was carried out for an hour.

[比較例1コ エポキシ樹脂として、0−クレゾールノボラック型エポ
キシ樹脂(エポキシ当量:198,150・C溶融粘度
:18ポアズ)85重量部及び臭素化ビスフェノールA
型エポキシ樹脂(エポキシ当量:400,150’C溶
融粘度:1.2ポアズ)15重量部、硬化剤としてフェ
ノールノボラック樹脂(水酸基当量:l○6,150°
C溶融粘度=0.8 ポアズ)52重量部、硬化促進剤
としてテトラフェニルホスホニウムテトラフェニルポレ
ート2重量部、可撓化剤として両末端アミン変性ポリジ
メチルシリコーン(重合度約100)10重量部、充填
剤として平均粒径6μmの球形熔融シリカを用い400
重量部、カップリング剤としてエポキシシラン2重量部
、ili化助剤として二酸化アンチモン5重量部、着色
剤としてカーボンブラック2重量部をメチルエチルケト
ン300重量部と混合した溶液を調整した。次に、この
溶液を実施例に用いた半導体の回路形成面及びリート上
に塗布、80℃/30分+1.20℃/30分+150
°C/30分+180℃/−時間の加熱硬化を行い、厚
さ約100μmの塗膜を形成した。 こうして得られた
各半導体装置について、チップの機械強度、耐温度サイ
クル性並びに耐湿性を評価した。
[Comparative Example 1 As a coepoxy resin, 85 parts by weight of 0-cresol novolac type epoxy resin (epoxy equivalent: 198,150·C melt viscosity: 18 poise) and brominated bisphenol A
15 parts by weight of type epoxy resin (epoxy equivalent: 400,150'C melt viscosity: 1.2 poise), phenol novolac resin (hydroxyl equivalent: l○6,150°) as a curing agent
C melt viscosity = 0.8 poise) 52 parts by weight, 2 parts by weight of tetraphenylphosphonium tetraphenylporate as a curing accelerator, 10 parts by weight of polydimethyl silicone modified with amines at both ends (degree of polymerization of about 100) as a flexibilizing agent, filling Using spherical fused silica with an average particle size of 6 μm as the agent,
A solution was prepared by mixing 300 parts by weight of methyl ethyl ketone with 2 parts by weight of epoxysilane as a coupling agent, 5 parts by weight of antimony dioxide as an iliization aid, and 2 parts by weight of carbon black as a coloring agent. Next, this solution was applied to the circuit forming surface and the lead of the semiconductor used in the example, and the temperature was increased to 80°C/30 minutes + 1.20°C/30 minutes + 150°C.
C./30 minutes + 180.degree. C./- hour heat curing was performed to form a coating film with a thickness of about 100 .mu.m. For each semiconductor device thus obtained, the mechanical strength, temperature cycle resistance, and moisture resistance of the chip were evaluated.

その結果、第1表に示すように本発明の樹脂封止型半導
体は各種信頼性が極めて優れていることが確認された。
As a result, as shown in Table 1, it was confirmed that the resin-sealed semiconductor of the present invention was extremely excellent in various reliability.

〔発明の効果〕〔Effect of the invention〕

本願発明の樹脂封止型半導体はパッケージの厚さが従来
のTAB素子同様極めて薄く、しかも各種信頼性はTA
B素子よりも優れている。従って、本願発明の樹脂封止
型半導体装置は高度な信頼性が要求される電子部品や電
子機器の小型薄型化を図るうえで有効である。
The resin-sealed semiconductor of the present invention has an extremely thin package like the conventional TAB element, and has various reliability levels of TA.
Superior to B element. Therefore, the resin-sealed semiconductor device of the present invention is effective in reducing the size and thickness of electronic components and electronic devices that require a high degree of reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は半導体素子の回路形成面並びにバンプ2を介し
て接続されたり一ド3をガラス繊維に熱硬化性樹脂を含
浸した基材4で封止した断面図、第2図は封止部分の段
差を無くすために素子lの回路形成面とバンプ2を介し
て接続されたリート3をサイズが異なる二種類の基材4
で封止した例の断面図、第3図はリード部3の補強を目
的に半導体素子1の回路形成面、並びに、リート3を上
下両方向から封止した例の断面図、第4図は素子1の各
種信頼性の向上並びにリート3の補強を目的に素子1、
並びに、リード3をそれぞれ上下両方向から封止した例
の断面図、第5図は本発明の半導体装置の封止方法を示
す断面図である。 1・・・半導体素子、2・・・バンプ、3・・リード、
4・・・封止用基材、5 =−上金型、6・・下金型。 代理人 弁理士 小川勝馬−−。 第1図 第2図 第3図 第4図
Fig. 1 is a cross-sectional view of the circuit forming surface of a semiconductor element and the contacts 3 connected via bumps 2 and sealed with a base material 4 made of glass fiber impregnated with thermosetting resin, and Fig. 2 is a sectional view of the sealed portion. In order to eliminate the difference in level, the circuit forming surface of the element l and the lead 3 connected via the bumps 2 are made of two types of base materials 4 of different sizes.
3 is a cross-sectional view of an example in which the circuit formation surface of the semiconductor element 1 and the REIT 3 are sealed from both the upper and lower sides for the purpose of reinforcing the lead portion 3, and FIG. Element 1, for the purpose of improving various reliability of 1 and reinforcing REET 3.
Further, FIG. 5 is a cross-sectional view of an example in which the leads 3 are sealed from both the upper and lower directions, and FIG. 5 is a cross-sectional view showing the method for sealing a semiconductor device of the present invention. 1... Semiconductor element, 2... Bump, 3... Lead,
4...Base material for sealing, 5=-upper mold, 6...Lower mold. Agent: Patent attorney Katsuma Ogawa. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1、半導体素子の少なくとも回路形成面を樹脂封止した
樹脂封止型半導体装置において、封止樹脂が無機または
有機繊維に熱硬化性樹脂を含浸した素材であることを特
徴とする樹脂封止型半導体装置。 2、請求項1において、前記無機または有機繊維に含浸
した熱硬化性樹脂は半導体素子の少なくとも回路形成面
を封止する際、加熱硬化される樹脂封止型半導体装置。 3、請求項1または2において、前記熱硬化性樹脂がエ
ポキシ樹脂、シリコーン樹脂、ポリイミド樹脂、不飽和
ポリエステル樹脂から選ばれる熱硬化性樹脂である樹脂
封止型半導体装置。 4、請求項3において、エポキシ樹脂が多官能エポキシ
樹脂、フェノールノボラック樹脂及び硬化促進剤からな
る樹脂封止型半導体装置。 5、請求項1、2、3または4において、前記熱硬化性
樹脂が無機または有機の粒状物質を含む表面実装型パッ
ケージ構造の樹脂封止型半導体装置。 6、請求項5において、前記粒状物質が実質的に球形の
溶融シリカまたはアルミナ粒子である樹脂封止型半導体
装置。 7、請求項1、2、3、4、5または6において、前記
樹脂封止型半導体装置を搭載した電子機器または装置。
[Claims] 1. A resin-sealed semiconductor device in which at least the circuit forming surface of a semiconductor element is sealed with resin, characterized in that the sealing resin is a material made of inorganic or organic fibers impregnated with a thermosetting resin. A resin-sealed semiconductor device. 2. The resin-sealed semiconductor device according to claim 1, wherein the thermosetting resin impregnated into the inorganic or organic fiber is heated and cured when sealing at least the circuit forming surface of the semiconductor element. 3. The resin-sealed semiconductor device according to claim 1 or 2, wherein the thermosetting resin is a thermosetting resin selected from epoxy resin, silicone resin, polyimide resin, and unsaturated polyester resin. 4. The resin-sealed semiconductor device according to claim 3, wherein the epoxy resin comprises a polyfunctional epoxy resin, a phenol novolak resin, and a curing accelerator. 5. The resin-sealed semiconductor device of claim 1, 2, 3, or 4 having a surface-mounted package structure, wherein the thermosetting resin contains inorganic or organic particulate matter. 6. The resin-sealed semiconductor device according to claim 5, wherein the particulate material is substantially spherical fused silica or alumina particles. 7. The electronic device or device according to claim 1, 2, 3, 4, 5 or 6, equipped with the resin-sealed semiconductor device.
JP32288990A 1990-11-28 1990-11-28 Thin resin-sealed semiconductor device Pending JPH04196346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32288990A JPH04196346A (en) 1990-11-28 1990-11-28 Thin resin-sealed semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32288990A JPH04196346A (en) 1990-11-28 1990-11-28 Thin resin-sealed semiconductor device

Publications (1)

Publication Number Publication Date
JPH04196346A true JPH04196346A (en) 1992-07-16

Family

ID=18148752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32288990A Pending JPH04196346A (en) 1990-11-28 1990-11-28 Thin resin-sealed semiconductor device

Country Status (1)

Country Link
JP (1) JPH04196346A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270762A (en) * 2007-03-26 2008-11-06 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270762A (en) * 2007-03-26 2008-11-06 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US7179689B2 (en) Package stress management
JP2006505675A (en) Reinforced epoxy anhydride no-flow underfill encapsulant
JPH10289969A (en) Semiconductor device and sealing resin sheet for use therefor
US7479449B2 (en) Underfill and mold compounds including siloxane-based aromatic diamines
JP2825332B2 (en) Resin-sealed semiconductor device, method for manufacturing the device, and resin composition for semiconductor encapsulation
JP3406073B2 (en) Resin-sealed semiconductor device
JP3397176B2 (en) Liquid epoxy resin composition and semiconductor device
JPH04196346A (en) Thin resin-sealed semiconductor device
JPH04275325A (en) Resin composition for sealing semiconductor
JPH1171444A (en) Epoxy resin composition and semiconductor device sealed therewith
US20020111420A1 (en) Underfill compositions
US6096808A (en) Snap cure adhesive based on anhydride/epoxy resins
JP3608930B2 (en) Epoxy resin composition and semiconductor device
JP2660631B2 (en) Resin-sealed semiconductor device
JP2000169677A (en) Epoxy resin composition and semiconductor apparatus
JPH11130937A (en) Epoxy resin composition and semiconductor device
JPH09199523A (en) Resin-sealed semiconductor device
JP4491884B2 (en) Epoxy resin composition and semiconductor device
Kan et al. The Role of Liquid Molding Compounds in the Success of Fan‐Out Wafer‐Level Packaging Technology
JPH1160901A (en) Epoxy resin composition and semiconductor device
JPH02124927A (en) Epoxy resin molding material
JPH04275324A (en) Resin composition for sealing semiconductor
JPH02124923A (en) Epoxy resin molding material
JPH02257662A (en) Resin-sealed type semiconductor device
JPH02124922A (en) Epoxy resin molding material