JPH04193469A - Method and device for polishing - Google Patents

Method and device for polishing

Info

Publication number
JPH04193469A
JPH04193469A JP2321740A JP32174090A JPH04193469A JP H04193469 A JPH04193469 A JP H04193469A JP 2321740 A JP2321740 A JP 2321740A JP 32174090 A JP32174090 A JP 32174090A JP H04193469 A JPH04193469 A JP H04193469A
Authority
JP
Japan
Prior art keywords
workpiece
polishing
polishing tool
liquid
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2321740A
Other languages
Japanese (ja)
Inventor
Kazuo Ushiyama
一雄 牛山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2321740A priority Critical patent/JPH04193469A/en
Publication of JPH04193469A publication Critical patent/JPH04193469A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To execute polishing in an atomic order, by feeding a work liquid continuously from the liquid hole of a polishing tool. CONSTITUTION:A work 1 is polished by flowing a work liquid A mixed with fine polishing particles between the work 1 and a polishing tool 3. In this case, the liquid layer of the work liquid A is formed between the work 1 and polishing tool 3, by continuously feeding the work liquid A from the liquid hole 9 of the polishing tool 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光学素子などのワークに対して加工液を流動さ
せることにより研磨する方法およびその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and an apparatus for polishing a workpiece such as an optical element by flowing a working fluid therethrough.

〔従来の技術〕[Conventional technology]

ガラスレンズなとの光学素子の研磨手段としては、研磨
液中でワークを研磨する液中研磨法が知られている(実
開昭55−41295号公報および「結晶の加工と表面
J  (1970年11月30日社団法人日本物理学会
発行)154〜156頁)。第7図はこの液中研磨に用
いられる装置を示し、ガラスレンズ等のワーク71か貼
付皿72に貼付けられていると共に、貼付皿72が揺動
機構73に連結されたカンザシ74に取付けられている
。研磨を行う研磨工具75は回転軸76に支持されてお
り、その研磨面75aがワーク71下面に接触している
As a means of polishing optical elements such as glass lenses, a submerged polishing method is known in which a workpiece is polished in a polishing solution (see Utility Model Application Publication No. 55-41295 and "Crystal Processing and Surface J (1970) (Published by the Physical Society of Japan on November 30th, pp. 154-156). Figure 7 shows the device used for this submerged polishing. A plate 72 is attached to a knife 74 connected to a swinging mechanism 73. A polishing tool 75 for polishing is supported by a rotating shaft 76, and its polishing surface 75a is in contact with the lower surface of the workpiece 71.

また、回転軸76には研磨液77か充填された液槽78
が装着されており、この研磨液77にワーク71および
研磨工具75が浸漬されている。
Further, the rotating shaft 76 is provided with a liquid tank 78 filled with polishing liquid 77.
A workpiece 71 and a polishing tool 75 are immersed in this polishing liquid 77.

このような構成において、回転軸76により研磨工具7
5を回転させると共に、揺動機構73によりカンザシ7
4を揺動させてワーク71を従属回転させると、研磨液
77てワーク7Iか研磨加工されるため、数10人レベ
ルの面粗さの平滑面を加工することかてきる。
In such a configuration, the polishing tool 7 is rotated by the rotating shaft 76.
At the same time, the swing mechanism 73 rotates the kanzashi 7.
When the workpiece 71 is rotated by swinging the workpiece 71, the workpiece 7I is polished by the polishing liquid 77, so that it is possible to process a smooth surface with a surface roughness equivalent to that of several dozen workers.

このような液中研磨は面粗さの加工限界か数10人であ
り、10Å以下の面粗さの加工かできない。このため面
粗さ10Å以下の鏡面を加工する方法として、EEM(
Elastic  Emission  Machin
ing)法か開発されている。第8図は文献「変質層の
ない原子オーダの極限加工J  (NIKKEI  M
ECHANTCAL、1982年1月4日発行)に紹介
されたEEM法の原理を示す。純水中に微細な研磨粒子
81か懸濁された加工液82をワーク83の被研削面に
接触させると共に、加工液82中にポリウレタンなとの
回転球84を浸漬させである。そして回転球84を加工
液82中て回転させて加工液82に流れを生じさせるこ
とにより、研磨粒子81をワーク83の被研削面に衝突
させて原子結合を弾性剪断破壊して研磨する。この研磨
により数人の原子オーダーでの加工か可能となるもので
ある。
Such submerged polishing requires only a few dozen people to process the surface roughness, and it is only possible to process the surface roughness of 10 Å or less. For this reason, EEM (
Elastic Emission Machine
ing) method has been developed. Figure 8 shows the literature “Ultimate machining of atomic order without altered layer J (NIKKEI M
This section describes the principles of the EEM method introduced in ECHANTCAL, published January 4, 1982). A machining liquid 82 in which fine abrasive particles 81 are suspended in pure water is brought into contact with the surface to be ground of a workpiece 83, and a rotating ball 84 made of polyurethane is immersed in the machining liquid 82. Then, by rotating the rotating ball 84 in the machining fluid 82 to generate a flow in the machining fluid 82, the abrasive particles 81 collide with the surface to be ground of the workpiece 83, thereby breaking atomic bonds by elastic shearing and polishing. This polishing makes it possible for several people to perform processing on the order of atoms.

第9図は二〇EE〜1法の原理を応用する1こめ上記文
献に記載された従来の研磨装置を示す。この研磨装置は
、ワーク83を対向する研磨工具のランプ面85の上に
浮かせた状態で加工するF P(Float  Pol
ishing)法としての装置であり、ワーク83か回
転作動する保持部材86下面に保持されると共に、ワー
ク83に対向するラップ面85か回転軸87に連結され
ている。
FIG. 9 shows a conventional polishing apparatus which applies the principle of the 20EE-1 method and is described in the above-mentioned document. This polishing device processes a workpiece 83 while floating it above a ramp surface 85 of an opposing polishing tool.
A workpiece 83 is held on the lower surface of a holding member 86 that rotates, and a wrap surface 85 facing the workpiece 83 is connected to a rotating shaft 87.

そして、これらワーク83およびラップ面85か液槽8
8内の加工液82に浸漬されている。ワーク83および
ラップ面85の間には流体軸受作用により加工液82か
常に介在しており、保持部材86および回転軸87を回
転してワーク83およびラップ面を相対回転させると加
工液82かこれらの間を流動する。この流動により加工
液82中の微細な研磨粒子81かワーク83と衝突する
ため、原子オーダての加工か行われ、高精度、高品質の
平面を加工することかできる。
Then, these works 83 and the lap surface 85 or the liquid tank 8
8 is immersed in machining liquid 82. A machining fluid 82 is always present between the workpiece 83 and the lapped surface 85 due to a fluid bearing action, and when the holding member 86 and the rotating shaft 87 are rotated to relatively rotate the workpiece 83 and the lapped surface, the machining fluid 82 or these fluids are interposed between the workpiece 83 and the lapped surface 85. It flows between. This flow causes the fine abrasive particles 81 in the machining liquid 82 to collide with the workpiece 83, so that machining on the atomic order is performed, making it possible to machine a flat surface with high precision and quality.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

しかしながら従来の研磨装置では、液槽88に充填され
ている加工液82をワーク83とラック面85との間に
強制的に流動させて研磨するため、回転軸87に対する
ラップ面85の直角間やラップ面85に対するワーク8
3の被研削面の平行度、さらにはラップ面85とワーク
83との隙間間隔を精度良く制御して加工液の良好な流
動を確保する必要かあった。特に、ワークに球面加工を
行う場合には、上述した精度をさらに高める必要かあり
、構造か複雑で、制御も難しい問題を有していた。
However, in the conventional polishing apparatus, polishing is performed by forcibly flowing the machining liquid 82 filled in the liquid tank 88 between the workpiece 83 and the rack surface 85. Work 8 against lap surface 85
It was necessary to accurately control the parallelism of the surface to be ground No. 3 and the gap between the lap surface 85 and the workpiece 83 to ensure good flow of the machining fluid. In particular, when machining a workpiece into a spherical surface, it is necessary to further improve the accuracy described above, resulting in a complicated structure and difficult control.

本発明はこのような問題点に鑑みてなされたものであり
、EP法による研磨を簡単な制御および構造によって可
能とした研磨方法およびその方法に適用される研磨方法
を提供することを目的する。
The present invention has been made in view of these problems, and it is an object of the present invention to provide a polishing method that enables EP polishing with simple control and structure, and a polishing method that can be applied to the method.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため本発明の研磨方法(ま微細な研
磨粒子か混合された加工液をワークと研磨工具との間に
流動させてワークを研磨する方法において、前記加工液
を研磨工具の液穴から連続的に供給して、ワークと研磨
工具との間に加工液の液層を形成することとした。
In order to achieve the above object, in the polishing method of the present invention (a method of polishing a workpiece by flowing a machining liquid mixed with fine abrasive particles between the workpiece and a polishing tool, The machining fluid was continuously supplied through the hole to form a liquid layer between the workpiece and the polishing tool.

また、この研磨方法を実施するための本発明の研磨装置
はワークと対向する加工面に加工液か流出する液穴を葺
した研磨工具と、微細な研磨粒子か混合された加工液を
研磨工具に連続的に供給する手段と、ワークを保持する
と共に、ワークと前記加工面との間に加工液の液層を形
成するため加工面番覆う力・・一部を有したワーク保持
部材と、前記研磨工具およびワーク保持部材を相対的に
回転して加工液に流動を生じさせる手段とを備えること
とした。
In addition, the polishing apparatus of the present invention for carrying out this polishing method includes a polishing tool that has a hole for the machining fluid to flow out on the machining surface facing the workpiece, and a polishing tool that uses the machining fluid mixed with fine abrasive particles. a workpiece holding member having a force for holding the workpiece and covering the machining surface to form a liquid layer of machining liquid between the workpiece and the machining surface; A means for relatively rotating the polishing tool and the workpiece holding member to cause the machining fluid to flow is provided.

第1図は本発明の研磨装置の基本構成を示し、ワーク1
を保持するワーク保持部材2と、所定寸法の間隙lを有
してワーク1に対向する研磨工具3とを有している。ワ
ーク保持部材2はワーク1か嵌め込まれて貼付けられる
ホルダ4と、ホルダ4を取り付けるカンサノ5とを存し
、カンサン5か揺動機構(図示省略)に連結されており
、ホルダ4はワーク1を保持した状態で揺動する。この
ホルダ4はワークlの保持部分から外側に広がるカバー
部6を有している。カバー部6はその下面かワーク1の
下面と同一面となるように形成される。
FIG. 1 shows the basic configuration of the polishing apparatus of the present invention, in which a workpiece 1
The polishing tool 3 has a workpiece holding member 2 that holds the workpiece 1, and a polishing tool 3 that faces the workpiece 1 with a gap l of a predetermined size. The work holding member 2 includes a holder 4 into which the work 1 is fitted and pasted, and a handle 5 to which the holder 4 is attached.The handle 5 is connected to a swinging mechanism (not shown), and the holder 4 holds the work 1. It swings while being held. This holder 4 has a cover part 6 that extends outward from the part holding the work l. The cover portion 6 is formed so that its lower surface is flush with the lower surface of the workpiece 1.

研磨工具3は回転軸7に取り付けられ、回転軸7と一体
的に回転する。この研磨工具3はワーク1との対向部分
か加工面8となっており、この加工面8に複数の液穴9
か貫通形成されている。また研磨工具3の内部には液穴
9か連通ずる液室10か形成されると共に、回転軸7内
には液室lOに連通ずる流路11か形成されている。回
転軸7の流路11は回転継手(図示省略)を介してポン
プ(図示省略)に接続され、ポンプの駆動により流路1
1から液室10内に加工液Aか供給され、液穴9から加
工液Aか連続的に流出する。従って、ポンプ、回転軸7
の流路11および研磨工具3の液室lOは加工液を連続
的に供給する手段を構成する。
The polishing tool 3 is attached to the rotating shaft 7 and rotates integrally with the rotating shaft 7. This polishing tool 3 has a processing surface 8 that faces the workpiece 1, and a plurality of liquid holes 9 are formed in this processing surface 8.
or is formed through. Further, a liquid chamber 10 communicating with the liquid hole 9 is formed inside the polishing tool 3, and a flow path 11 communicating with the liquid chamber 1O is formed inside the rotary shaft 7. The flow path 11 of the rotating shaft 7 is connected to a pump (not shown) via a rotary joint (not shown), and the flow path 11 is connected to a pump (not shown) by driving the pump.
The machining fluid A is supplied into the fluid chamber 10 from the fluid hole 9, and the machining fluid A continuously flows out from the fluid hole 9. Therefore, the pump, rotating shaft 7
The flow path 11 and the liquid chamber 10 of the polishing tool 3 constitute means for continuously supplying the machining liquid.

一方、回転軸7はワーク保持部材2に対して研磨工具3
を相対的に回転させて、液穴9から流出した加工液に流
動力を付与する手段となっている。
On the other hand, the rotating shaft 7 is connected to the polishing tool 3 relative to the workpiece holding member 2.
This is a means for applying fluidity to the machining fluid flowing out from the fluid hole 9 by rotating the fluid holes 9 relative to each other.

この場合、ワーク保持部材2のカバー部6は研磨工具3
の液穴形成部位を覆うように設けられ、これにより加工
後人をワークlと研磨工具3の加工面8との間に保持す
る。また、加工液Aな微細な研磨粒子か懸濁された状態
で供給される。
In this case, the cover portion 6 of the workpiece holding member 2 is attached to the polishing tool 3.
is provided so as to cover the liquid hole formation site, thereby holding the person between the work l and the machining surface 8 of the polishing tool 3 after machining. Further, the processing liquid A is supplied with fine abrasive particles suspended therein.

〔作 用〕      ・ 回転軸7から加工液Aを連続的に供給すると、加工液は
加工面8の液穴9から流出するか、カバー部9に覆われ
ているため、圧力損失か少ない液層状態で研磨工具3と
ワーク保持部材2との隙間に充填する。これによりワー
ク1およびワーク保持部材2は加工液Aの液圧てフロー
ティング状態となる。この状態で回転軸7を回転すると
共に、カンサシ4を揺動させると、研磨工具3とワーク
保持部材2とか相対回転し、この相対回転で加工液の流
動か加速され、加工液内の研磨粒子かワークlの表面に
衝突する。従って、EEM法による原子オーダの研磨加
工をワーク1に施すことかてきる。この加工時において
、加工液か研磨工具3の液穴9から連続的に供給される
と共に、ワーク保持部材2と研磨工具3との相対回転に
より流動性か付与されるため、確実な研磨かでき、制御
も容易となる。
[Function] - When the machining fluid A is continuously supplied from the rotary shaft 7, the machining fluid either flows out from the fluid hole 9 on the machining surface 8 or is covered by the cover part 9, so there is no pressure loss or a liquid layer. In this state, the gap between the polishing tool 3 and the workpiece holding member 2 is filled. As a result, the workpiece 1 and the workpiece holding member 2 are placed in a floating state due to the hydraulic pressure of the machining fluid A. In this state, when the rotary shaft 7 is rotated and the cover 4 is swung, the polishing tool 3 and the workpiece holding member 2 rotate relative to each other, and this relative rotation accelerates the flow of the machining fluid, causing abrasive particles in the machining fluid. or collides with the surface of the workpiece l. Therefore, it is possible to perform a polishing process on the atomic order on the workpiece 1 using the EEM method. During this machining, the machining fluid is continuously supplied from the liquid hole 9 of the polishing tool 3, and fluidity is imparted by the relative rotation between the workpiece holding member 2 and the polishing tool 3, so that reliable polishing is possible. , control becomes easier.

〔実 施 例〕〔Example〕

以下、本発明を実施例に基づいて具体的に説明する。な
お、各実施例において、第1図と同一の要素は同一の符
号を付して対応させである。
Hereinafter, the present invention will be specifically explained based on Examples. In each embodiment, the same elements as in FIG. 1 are denoted by the same reference numerals and correspond to each other.

(第1実施例) 第2図は本発明の第1実施例を示し、加工面8に液穴9
か形成された研磨工具3か加工槽21内に回転自在に挿
入されている。この研磨工具3を回転させる回転軸7は
加工槽21を支持するか、加工槽21との間にはパツキ
ン22か設けられて水密性か保持されている。また、こ
の回転軸7の流路11か研磨工具3の液室lOに連通し
、回転軸7に供給された加工液Aは液室lOに充満した
後、液穴9から研磨工具3とワーク保持部材2との間に
流出する。なお、加工後人としては、例えばノリ力等の
微粉粒を純水に懸濁させたものを使用することかできる
(First Embodiment) FIG. 2 shows a first embodiment of the present invention, in which liquid holes 9 are formed on the machined surface 8.
The polishing tool 3, which has been formed with a polishing tool 3, is rotatably inserted into the processing tank 21. The rotating shaft 7 for rotating the polishing tool 3 supports a machining tank 21, or a gasket 22 is provided between it and the machining tank 21 to maintain watertightness. The flow path 11 of the rotary shaft 7 communicates with the liquid chamber lO of the polishing tool 3, and after the machining liquid A supplied to the rotary shaft 7 fills the liquid chamber lO, it passes through the liquid hole 9 to the polishing tool 3 and the workpiece. It flows out between the holding member 2 and the holding member 2. In addition, as the processed material, for example, fine powder particles such as Noriyoku suspended in pure water can be used.

加工槽21は上面か開放されていると共に、加工槽21
よりも大径て崇高の受槽22内に収納されている。受槽
22は加工槽21の回転による遠心力で溢れ出る加工液
Aを受は取って回収するものであり、底部には回収のた
めの排出口23か形成されている。回転軸7はこの受槽
22を貫通するか、その貫通部位には回転軸7の軸受部
24か筒状に形成されている。そして、この軸受部24
を覆う水密フード25か回転軸7に取り付けられている
The upper surface of the processing tank 21 is open, and the processing tank 21
It is housed in a receiving tank 22 that has a larger diameter and is nobler than the original one. The receiving tank 22 receives and collects the machining fluid A overflowing due to the centrifugal force caused by the rotation of the machining tank 21, and has a discharge port 23 formed at the bottom for collection. The rotating shaft 7 passes through this receiving tank 22, or a bearing portion 24 of the rotating shaft 7 is formed in a cylindrical shape at the penetrating portion. And this bearing part 24
A watertight hood 25 covering the rotary shaft 7 is attached to the rotary shaft 7.

ワーク保持部材2は研磨工具3の加工面8を覆う径のカ
バー部6かワークlと同一面となるように設けられてお
り、このカバー部6によりワーク保持部材2と研磨工具
3との間に加工液Aを液層状態て保持する。このワーク
保持部材2におけるホルダ4はカンサシ5により揺動す
る。
The workpiece holding member 2 is provided so that a cover portion 6 having a diameter that covers the machining surface 8 of the polishing tool 3 is flush with the workpiece l, and this cover portion 6 provides a space between the workpiece holding member 2 and the polishing tool 3. Processing fluid A is held in a liquid layer state. The holder 4 in this work holding member 2 is swung by a cover 5.

このような構成の本実施例は、ポンプ(図示省略)の駆
動により回転軸7から研磨工具3の液室lOに加工液入
を連続的に供給すると、加工液Aは研磨工具3の液穴9
から流出する。そしてワーク保持部材2のカバー部6に
より、圧力損失か少ない液層状態でワーク保持部材2と
研磨工具3との間に充満するため、ワークlおよびワー
ク保持部材2をフローティング状態とする。このとき回
転軸7を回転させると共に、カンサシ5を揺動させると
、研磨工具3とワーク保持部材2とか相対回転して加工
液に流動性を付与されるため、この研磨粒子かワークl
に衝突して、原子オーダの研磨加工が行われ、高精度、
高品質の研磨を行うことができる。一方、ワークlと研
磨工具3との間から流出した加工液Aは、加工槽21の
上面開口部から受槽22内に溢出し、受槽22の排出口
23から回収される。従って、回収した加工液を再使用
することかできる。
In this embodiment having such a configuration, when machining liquid is continuously supplied from the rotary shaft 7 to the liquid chamber lO of the polishing tool 3 by driving a pump (not shown), the machining liquid A flows into the liquid hole of the polishing tool 3. 9
flows out from The cover portion 6 of the workpiece holding member 2 fills the space between the workpiece holding member 2 and the polishing tool 3 in a liquid layer state with little pressure loss, so that the workpiece l and the workpiece holding member 2 are placed in a floating state. At this time, when the rotary shaft 7 is rotated and the cover 5 is swung, the polishing tool 3 and the workpiece holding member 2 rotate relative to each other, and fluidity is imparted to the machining fluid.
Collision with the atomic order polishing process is performed, resulting in high precision,
Able to perform high quality polishing. On the other hand, the machining fluid A that has flowed out between the work l and the polishing tool 3 overflows into the receiving tank 22 from the upper opening of the processing tank 21 and is recovered from the discharge port 23 of the receiving tank 22 . Therefore, the collected machining fluid can be reused.

(第2実施例) 第3図は本発明の第2実施例を示す。この第2実施例は
ワークlに球面加工を行うものであり、研磨工具3の加
工面8か所定の球面形状に成形されている。また、研磨
工具3を回転させる回転軸7は、研磨工具3の球心θ、
を旋回中心として揺動可能となっており、図示しない揺
動伝達機構によってあらかしめ設定された角度範囲内で
揺動する。
(Second Embodiment) FIG. 3 shows a second embodiment of the present invention. In this second embodiment, a work l is processed into a spherical surface, and the processing surface 8 of the polishing tool 3 is formed into a predetermined spherical shape. Further, the rotating shaft 7 for rotating the polishing tool 3 has a spherical center θ of the polishing tool 3,
It is capable of swinging around the center of rotation, and swings within an angular range preset by a swing transmission mechanism (not shown).

一方、加工面8に対向するワーク保持部材2のカバー部
6はその下面かワーク1の研削面と路間等の曲率の球面
に形成されると共に、回転軸7の揺動に伴う揺動範囲を
覆う径を存している。
On the other hand, the cover portion 6 of the workpiece holding member 2 facing the machining surface 8 is formed into a spherical surface with a curvature between the lower surface and the grinding surface of the workpiece 1, and has a swinging range due to the swinging of the rotating shaft 7. It has a diameter that covers the

このような本実施例は、加工液の連続供給と、研磨工具
3およびワーク保持部材2の相対回転とにより、原子オ
ーダの研磨をワークlに施すことかてきるか、この研磨
と共にワークを球面加工することかできるメリットを有
する。従って、球面加工に対しても、簡単な構成で、且
つ容易な制御を行うことかできる。
In this embodiment, by continuously supplying machining liquid and relative rotation of the polishing tool 3 and the workpiece holding member 2, it is possible to perform polishing on the atomic order on the workpiece l, or to polish the workpiece to a spherical surface. It has the advantage of being easily processed. Therefore, it is possible to perform spherical processing with a simple configuration and easy control.

(第3実施例) 第4図および第5図は本発明の第3実施例を示す。この
第3実施例も第2実施例と同様に、ワークIに球面加工
を施すものであり、ワーク保持部材2のカバー部6かワ
ークlの研削面と路間等の曲率の球面に形成されている
と共に、研磨工具3の加工面8か球面形状に成形されて
いる。本実施例において、カバー部6は小径に形成でお
り、このカバー部6の寸法不足を補う補助カバー31か
ワーク保持部材2に装着されている。
(Third Embodiment) FIGS. 4 and 5 show a third embodiment of the present invention. In this third embodiment, similarly to the second embodiment, the workpiece I is machined into a spherical surface, and the cover portion 6 of the workpiece holding member 2 is formed into a spherical surface with a curvature between the ground surface of the workpiece I and the groove. At the same time, the processing surface 8 of the polishing tool 3 is formed into a spherical shape. In this embodiment, the cover part 6 is formed to have a small diameter, and an auxiliary cover 31 to compensate for the insufficient size of the cover part 6 is attached to the workpiece holding member 2.

補助カバー31の下面はカバー部6と路間等の曲率の球
面となっていると共に、第5図に示すように全体がカバ
ー部6の外周面に沿う円弧形状となっている。また、こ
の補助カバー31はカンサシ5に旋回自在に連結された
アーム32に取り付けられており、アーム32の旋回に
よってカバー部6の外周面の任意部位に移動して、カバ
ー部6と一体となって加工液Aをワーク保持部材2と研
磨工具3との間に保持するように作用する。これにより
加工液による原子オーダの球面加工を行うことができる
。特に、この実施例ではワーク保持部材2のカバー部2
から外された研磨工具3の液穴9を補助カバー31で覆
うことかてきるため、ワーク保持部材2のカバー部6を
ワーク1の外周近辺を覆うたけの小径とすることができ
る。このためワーク保持部材2を小Yとすることがてき
る。
The lower surface of the auxiliary cover 31 is a spherical surface with a curvature similar to that of the cover part 6, and the entire auxiliary cover 31 has an arcuate shape along the outer peripheral surface of the cover part 6, as shown in FIG. Further, this auxiliary cover 31 is attached to an arm 32 that is rotatably connected to the cover 5, and as the arm 32 rotates, it moves to any position on the outer circumferential surface of the cover part 6 and becomes integral with the cover part 6. This acts to hold the machining fluid A between the workpiece holding member 2 and the polishing tool 3. As a result, atomic-order spherical surface machining can be performed using the machining fluid. In particular, in this embodiment, the cover portion 2 of the workpiece holding member 2
Since the liquid hole 9 of the polishing tool 3 removed from the polishing tool 3 can be covered with the auxiliary cover 31, the cover portion 6 of the workpiece holding member 2 can be made small enough to cover the vicinity of the outer periphery of the workpiece 1. Therefore, the work holding member 2 can be made small Y.

(第4実施例) 第6図は本発明の第4実施例を示す。この第4実施例で
はカンサシ5がモータ(図示省略)に連結されて回転駆
動すると共に、このカンサシ5の回転に伴ってワーク保
持部材2も追従回転するようになっている。すなわち、
ワーク保持部材2のホルダ4に従動ビン41が直立状に
設けられると共に、この従動ピン41と直交する作動ピ
ン42かカンサシ5に設けられている。この構成ではモ
ータによりカンサン5か回転すると、作動ビン42か従
動41に当接するため、ホルダ4が追従回転し、ホルダ
4に保持されたワーク1も回転する。
(Fourth Embodiment) FIG. 6 shows a fourth embodiment of the present invention. In this fourth embodiment, the cover 5 is connected to a motor (not shown) and is driven to rotate, and as the cover 5 rotates, the work holding member 2 also rotates in accordance with the rotation of the cover 5. That is,
A driven pin 41 is provided upright on the holder 4 of the work holding member 2, and an operating pin 42 that is orthogonal to the driven pin 41 is provided on the cover 5. In this configuration, when the motor 5 rotates, the operating bin 42 comes into contact with the follower 41, so the holder 4 follows and rotates, and the workpiece 1 held by the holder 4 also rotates.

このワーク1の回転は加工液による加工中に行われるも
のであり、ワーク1が回転することにより加工液中の研
磨粒子とワーク1の表面との衝突が、さらに助長される
と活発化するため、加工時間を短縮することかできる。
This rotation of the workpiece 1 is performed during machining with the machining fluid, and as the workpiece 1 rotates, the collision between the abrasive particles in the machining fluid and the surface of the workpiece 1 is further promoted and becomes active. , machining time can be shortened.

また、ワーク1はホルダ4の球心0゜を中心にして回転
するため、ワーク1の曲率Rに対してカバー部6の曲率
かdP異なっていても、これらの球心を球心02に一致
させることにより、球面加工を確実に行うことかできる
。このためホルダ4の材質を金属、セラミックス、プラ
スチックなどにより成形でき、材料選択の自由度か大き
くなる。
In addition, since the workpiece 1 rotates around the 0° spherical center of the holder 4, even if the curvature of the cover part 6 is different by dP from the curvature R of the workpiece 1, these spherical centers coincide with the spherical center 02. By doing so, spherical surface machining can be reliably performed. Therefore, the material of the holder 4 can be molded from metal, ceramics, plastic, etc., and the degree of freedom in material selection is increased.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、研磨工具の液穴か
ら加工液を連続的に供給するため、簡単な構成および制
御により原子オーダの研磨を行うことかてきる。
As explained above, according to the present invention, since the machining fluid is continuously supplied from the fluid hole of the polishing tool, polishing on the atomic order can be performed with a simple configuration and control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の研磨装置の基本構成を示す断面図、第
2図は本発明の第1実施例を示す断面図、第3図は第2
実施例を示す断面図、第4図および第5図は第3実施例
を示す断面図および平面図、第6図は第4実施例を示す
断面図、第7図は液中研磨の装置を示す断面図、第8図
はEEM法の原理を説明する側面図、第9図はEEM法
による従来の研磨装置を示す断面図である。 ■・・・ワーク 2・・・ワーク保持部材 3・・・研磨工具 6・・カバー部 7・・・回転軸 8・・・加工面 9・・・液穴 31・・・補助カバー 特許出願人 オリンパス光学工業株式会社第1図 1・・・ワーク 2・・・ワーク保持部材 3・・・研磨工具 6・・・カバー部 7・・・回転軸 8・・・加工面 9・・液穴 31・・・補助カハ− 第4図 第5図 第7図 第8図
FIG. 1 is a sectional view showing the basic configuration of the polishing apparatus of the present invention, FIG. 2 is a sectional view showing the first embodiment of the present invention, and FIG.
4 and 5 are sectional views showing the third embodiment, FIG. 6 is a sectional view showing the fourth embodiment, and FIG. 7 is a submerged polishing apparatus. 8 is a side view illustrating the principle of the EEM method, and FIG. 9 is a sectional view showing a conventional polishing apparatus using the EEM method. ■ Work 2 Work holding member 3 Polishing tool 6 Cover part 7 Rotating shaft 8 Machining surface 9 Liquid hole 31 Auxiliary cover Patent applicant Olympus Optical Industry Co., Ltd. Fig. 1 1 Work 2 Work holding member 3 Polishing tool 6 Cover part 7 Rotating shaft 8 Processing surface 9 Liquid hole 31 ...Auxiliary capacitor - Figure 4, Figure 5, Figure 7, Figure 8

Claims (2)

【特許請求の範囲】[Claims] (1)微細な研磨粒子が混合された加工液をワークと研
磨工具との間に流動させてワークを研磨する方法におい
て、前記加工液を研磨工具の液穴から連続的に供給して
、ワークと研磨工具との間に加工液の液層を形成するこ
とを特徴とする研磨方法。
(1) In a method of polishing a workpiece by flowing a machining fluid mixed with fine abrasive particles between the workpiece and a polishing tool, the machining fluid is continuously supplied from the fluid hole of the polishing tool, and the workpiece is A polishing method characterized by forming a liquid layer of machining fluid between a polishing tool and a polishing tool.
(2)ワークと対向する加工面に加工液が流出する液穴
を有した研磨工具と、微細な研磨粒子が混合された加工
液を研磨工具に連続的に供給する手段と、ワークを保持
すると共に、ワークと前記加工面との間に加工液の液層
を形成するため加工面を覆うカバー部を有したワーク保
持部材と、前記研磨工具およびワーク保持部材を相対的
に回転して加工液に流動を生じさせる手段とを備えてい
ることを特徴とする研磨装置。
(2) A polishing tool having a liquid hole through which the machining fluid flows out on the machining surface facing the workpiece, a means for continuously supplying the machining fluid mixed with fine abrasive particles to the polishing tool, and a workpiece held. At the same time, a workpiece holding member having a cover portion that covers the processing surface to form a liquid layer of processing liquid between the workpiece and the processing surface, and the polishing tool and the workpiece holding member are relatively rotated to form a liquid layer of processing liquid. A polishing device characterized by comprising: means for generating a flow in the polishing device.
JP2321740A 1990-11-26 1990-11-26 Method and device for polishing Pending JPH04193469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2321740A JPH04193469A (en) 1990-11-26 1990-11-26 Method and device for polishing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2321740A JPH04193469A (en) 1990-11-26 1990-11-26 Method and device for polishing

Publications (1)

Publication Number Publication Date
JPH04193469A true JPH04193469A (en) 1992-07-13

Family

ID=18135918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2321740A Pending JPH04193469A (en) 1990-11-26 1990-11-26 Method and device for polishing

Country Status (1)

Country Link
JP (1) JPH04193469A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3069822A4 (en) * 2013-11-11 2017-12-06 Olympus Corporation Polishing tool, polishing method, and polishing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3069822A4 (en) * 2013-11-11 2017-12-06 Olympus Corporation Polishing tool, polishing method, and polishing device

Similar Documents

Publication Publication Date Title
KR870002906A (en) Drive device of workpiece shaft for gyro grinding machine
JPS6071158A (en) Method and device for facing optical lens
JPH11150093A (en) Planarization polishing method for wafer provided with device and its equipment
JPH04193469A (en) Method and device for polishing
US3889426A (en) Optical lens generating machine having an air rotatable spherical bearing workpiece holder
JPS63267155A (en) Polishing device
US3566552A (en) Method of surface finishing a workpiece
JP2002254278A (en) Machining method and device for joined surface
US4173848A (en) Polishing device
JPH032628B2 (en)
JP3192963B2 (en) Polishing equipment
JP3304168B2 (en) Lens polishing method
US3830021A (en) Spherical bearing workpiece holder in an optical lens generating machine
JP2000326185A (en) Grinding and polishing device and grinding and polishing method
JPH07171761A (en) Abrasive solution feed mechanism for polishing device
JPH01268032A (en) Method and apparatus for wafer polishing
JPH03154771A (en) Polishing device
JPS6110925Y2 (en)
JP3065395U (en) Fluid spherical surface polishing machine
JPS6171921A (en) Method of finishing surface
JP3703632B2 (en) Truing and dressing equipment for grinding tools
BE1000491A5 (en) Glass grinding and polishing method - uses wheel cone face with abrasive strip during polishing pass
RU2133185C1 (en) Apparatus for restoring inner cone surfaces
SU1705036A1 (en) Device for the abrasive working of rotating surfaces
JPS6347060A (en) Shaping method and device therefor