JPS6171921A - Method of finishing surface - Google Patents

Method of finishing surface

Info

Publication number
JPS6171921A
JPS6171921A JP18887784A JP18887784A JPS6171921A JP S6171921 A JPS6171921 A JP S6171921A JP 18887784 A JP18887784 A JP 18887784A JP 18887784 A JP18887784 A JP 18887784A JP S6171921 A JPS6171921 A JP S6171921A
Authority
JP
Japan
Prior art keywords
workpiece
holding means
base body
working
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18887784A
Other languages
Japanese (ja)
Inventor
Junji Takashita
順治 高下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP18887784A priority Critical patent/JPS6171921A/en
Publication of JPS6171921A publication Critical patent/JPS6171921A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H5/00Combined machining
    • B23H5/06Electrochemical machining combined with mechanical working, e.g. grinding or honing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To enable a mirror surface to be precisely finished for a short time in the surface working of a mirror surface metal mold for molding an optical element by pressing a pellet type working tool for fixing cathode grains against a workpiece of anode to supply current thereto in electrolyte for moving said tool relative to the workpiece. CONSTITUTION:A conductive workpiece 2 is fixedly held by a workpiece holding means 4. A rod body 6 has a spherical end conforming to a semispherical recess provided in the holding means 4. A plurality of working tools 8 are fixedly held by a working tool holding means 10 and bonded to the convex spherical surface with synthetic resin system adhesives 12. Also, the holding means 10 is secured fixedly to a base body 14 to rotate about the axis X. Around the base body 14 is formed a electrolytic tank by a side wall 16 in which electrolyte 18 is contained. The positive pole of a DC stabilizing source 20 is connected to the rod body 6 and the negative pole is connected to the base body 14 through a brush 22. In working, the base body 14 is rotated while the rod body 6 is swung horizontally.

Description

【発明の詳細な説明】 [技術分野] 本発明は導電性材料の表面加工方法に関する。[Detailed description of the invention] [Technical field] The present invention relates to a method of surface processing a conductive material.

[従来技術] 各種金属材料の表面加工、特に表面を鏡面仕上げするた
めの加工方法としては、機械的方法、化学的方法または
電気的方法が用いられている。この種の加工の具体例と
しては、光学素子(たとえばレンズまたはプリズム等)
成形用鏡面金型を例示することができる。この様な金型
は温度及び圧力の変化する条件下において所定の寸法精
度を維持する必要があるため、材質としては極めて硬い
もの、たとえばステンレス鋼、超鋼、各種合金鋼等が使
用される。
[Prior Art] Mechanical methods, chemical methods, or electrical methods are used for surface processing of various metal materials, particularly for mirror-finishing the surfaces. Specific examples of this type of processing include optical elements (e.g. lenses or prisms, etc.)
A mirror-finished mold for molding can be exemplified. Since such molds must maintain a predetermined dimensional accuracy under changing conditions of temperature and pressure, extremely hard materials such as stainless steel, super steel, and various alloy steels are used as materials.

従来、この様な硬質材料からなる金型の表面加工におい
てはその硬さの故に鏡面に什−1−るまでに数多くの工
程を必要としていた。たとえば、表面を放電加]−によ
り所定の形状寸法とした後、粒径40〜25pL程度の
′M#ダイヤモンドペーストで荒ラッピングを行ない、
次に粒径16〜6舊程度の’Mt、ダ・イヤモンドペー
ストでイLにげラッピングを行ない、更に粒径3〜1p
−程度の遊離ダイヤモンドペーストで鏡面仕上げを行な
っていた。また、他の例においては#80〜#200の
ダイヤモンド砥石で荒研削を行ない、次に#400〜#
1000のダイヤモンド砥石で中仕上げ研削を行ない、
更にせ2000〜甘3000のダイヤモンド砥石で鏡面
研削を行ない、最後にポリレンズにより鎖部仕上げを行
なっていた。この様に、従来法においては工程数が多く
、また工程が変わるたびに工具を取換え、被加工物の洗
浄を行ない、場合によっては別の機械に被加工物をセッ
トシなおしたりすることが必要であるので、いわゆる段
取りに時間がかかっており、このため加エコストアツブ
の原因となっていた。
Conventionally, in surface processing of molds made of such hard materials, many steps were required to achieve a mirror surface due to the hardness of the materials. For example, after forming the surface into a predetermined shape and size by electric discharge application]-, rough lapping is performed with 'M# diamond paste with a particle size of about 40 to 25 pL,
Next, wrap with 'Mt and diamond paste with a particle size of about 16-6cm, and then wrap it with a particle size of 3-1p.
The mirror finish was done with - grade free diamond paste. In other examples, rough grinding is performed with a #80 to #200 diamond grindstone, and then #400 to #200 diamond grindstone is used for rough grinding.
Perform semi-finish grinding with a 1000 diamond grindstone,
Furthermore, mirror polishing was performed using a diamond grindstone with a roughness of 2,000 to 3,000, and finally the chain was finished with a polylens. In this way, the conventional method requires a large number of steps, and each time the process changes, it is necessary to change tools, clean the workpiece, and in some cases re-set the workpiece to another machine. Therefore, so-called set-up takes time, and this causes cost savings.

[発明の目的] 本発明は、上記の如き従来技術に鑑み、比較的簡単な工
程にて短かい時間で精密鏡面仕上げが可能な表面仕」−
げ加工方法を提供することを目的とする。
[Object of the Invention] In view of the above-mentioned prior art, the present invention provides a surface finish that allows precision mirror finishing in a short period of time through a relatively simple process.
The purpose is to provide a method for processing

[発明の要旨] 本発明によれば、以上の様な目的は、導電性被加工物と
砥粒固定ベレット型加工工具を複数個保持してなる導電
性の加工工具保持手段との間に電解液を存在せしめ、被
加二[物を陽極とし且つ加工工具保持手段を陰極として
通電せしめ、一方加工工具を被加工物に対し圧接せしめ
つつ相対的に運動ゼしぬることを特徴とする、被加圧物
表面の仕上げ加工方法により達成される。
[Summary of the Invention] According to the present invention, the above object is to prevent electrolysis between a conductive workpiece and a conductive machining tool holding means that holds a plurality of abrasive-fixed pellet type machining tools. A workpiece characterized in that a liquid is made to exist, the workpiece is energized with the workpiece as an anode and the workpiece holding means as a cathode, while the workpiece is brought into pressure contact with the workpiece and moves relative to the workpiece. This is achieved by a method of finishing the surface of a pressurized object.

[発明の実施例] 以下、図面を参照しながら本発明の具体的実施例を説明
する。
[Embodiments of the Invention] Specific embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の加工方法の一実施例を示す概略断面図
である。
FIG. 1 is a schematic sectional view showing an embodiment of the processing method of the present invention.

図において、2は被加工物であり、該被加工物2は導t
[性を有する。4は該被加工物2を保持するためのL段
であり、該手段も導電性を有する。
In the figure, 2 is a workpiece, and the workpiece 2 is a conductor.
[Have sex.] 4 is an L stage for holding the workpiece 2, and this means also has conductivity.

被加工物2はその下面が鏡面に什−にげられるべき面で
あり、−に面及び側面が保持手段4により固定保持され
ている。6は保持手段4の運動の駆動力を伝達するため
の棒体であり、その先端が球形状となっており、保持手
段4の−に面に設けられた半球状四部に適合されている
The lower surface of the workpiece 2 is to be mirror-finished, and the lower surface and side surfaces are fixedly held by the holding means 4. Reference numeral 6 designates a rod for transmitting the driving force for the movement of the holding means 4, and the tip thereof is spherical, and is adapted to the four hemispherical parts provided on the - side of the holding means 4.

8は加工工具であるペレットであり、該ベレット8はた
とえば粒径5〜10.程度のダイヤモンド粉末またはC
BN (立方晶窒化硼素)粉末等の砥粒をSn、Cuま
たはFe等の金属粉末とともに規定の配合比で調合し攪
拌、圧縮、加熱及び焼結することにより得られ、特にダ
イヤモンド砥粒を用いたペレット型加工工具は一般のガ
ラス加工において広く使用されている。多数個の加工工
具8が導電性を有する加工工具保持手段10の」二面に
固定保持されている。保持手段lOの上面は凸球面形状
をなしており、加工工具8は非導電性の合成樹脂系接着
剤12により該凸球面上に接着されている。また、全て
の加工工具8の上面は所定の曲率半径Rを有する曲面に
加工されており、また加工工具8上体としてもそれらの
上面が曲率半径Hの球面」二に位置する様に配置されて
いる。保持手段lOはその下部に設けられたネジにより
導電性を有する基体14に固定されている。該基体14
は−1−記半径Hの球面の回転対称軸Xのまわりに回転
することができる。基体14の周囲には円筒状に側壁1
6が形成されており、これらにより電解槽が形成される
。該電解槽中にはNaNO3水溶液、KNO3水溶液等
の電解液18が収容されている。
8 is a pellet which is a processing tool, and the pellet 8 has a grain size of, for example, 5 to 10. degree of diamond powder or C
It is obtained by mixing abrasive grains such as BN (cubic boron nitride) powder with metal powders such as Sn, Cu or Fe in a specified mixing ratio, stirring, compressing, heating and sintering. Pellet-type processing tools are widely used in general glass processing. A large number of machining tools 8 are fixedly held on two surfaces of a conductive machining tool holding means 10. The upper surface of the holding means IO has a convex spherical shape, and the processing tool 8 is adhered onto the convex spherical surface with a non-conductive synthetic resin adhesive 12. The upper surfaces of all the processing tools 8 are machined into curved surfaces having a predetermined radius of curvature R, and the upper bodies of the processing tools 8 are arranged so that their upper surfaces are located on a spherical surface with a radius of curvature H. ing. The holding means 10 is fixed to the conductive base 14 by screws provided at the bottom thereof. The base 14
can rotate around the axis of rotational symmetry X of the spherical surface of −1− radius H. A cylindrical side wall 1 is provided around the base 14.
6 are formed, and these form an electrolytic cell. The electrolytic cell contains an electrolytic solution 18 such as a NaNO3 aqueous solution or a KNO3 aqueous solution.

20は直VIE安定化電源であり、その正極は導電性棒
体6に接続されており、負極は摺動ブラシ22を介して
ノ、(体14の下部の回転軸の外周面に接触せしめられ
ている。
Reference numeral 20 denotes a direct VIE stabilized power supply, the positive electrode of which is connected to the conductive rod 6, and the negative electrode of which is brought into contact with the outer peripheral surface of the rotating shaft at the bottom of the body 14 via a sliding brush 22. ing.

加工時には、基体14を軸Xのまわりに駆動回転せしめ
11一つ棒体6を水平方向に揺動せしめる(尚、これら
の駆動手段はここでは図示しない)。第2図はこの際の
被加工物2と加工工具8及びその保持手段10との関係
を示す平面図である。加工工具保持手段10は矢印Aの
方向に一定角速度で回転し、一方被加工物2は加工工具
8上を矢印Bの方向に一定の振幅で揺動する。この様な
相対連動は一般のレンズ研摩等の加工におけるものと同
一であり、被加工物2はこれにより矢印Cの方向につれ
まわり運動を行ない、被加工物2と工具8との接触は被
加工面全面で平均化される。
During machining, the base body 14 is driven to rotate around the axis X, and the rod 6 is horizontally swung by the base body 11 (these driving means are not shown here). FIG. 2 is a plan view showing the relationship between the workpiece 2, the processing tool 8, and its holding means 10 at this time. The machining tool holding means 10 rotates at a constant angular velocity in the direction of arrow A, while the workpiece 2 swings on the machining tool 8 in the direction of arrow B with a constant amplitude. This kind of relative interlocking is the same as that in general processing such as lens polishing, and the workpiece 2 thereby rotates in the direction of arrow C, and the contact between the workpiece 2 and the tool 8 is controlled by the workpiece. Averaged over the entire surface.

被加工物2表面の工具8と接触しない部分においては電
解により被加工物の除去が行なわれ、一方被加工物2表
面の工具8との接触部分においては電解の進行にともな
い生ずる不働態化膜の固定砥粒による除去が行なわれる
The workpiece is removed by electrolysis on the part of the surface of the workpiece 2 that does not come into contact with the tool 8, while the passivation film that is generated as the electrolysis progresses on the part of the surface of the workpiece 2 that comes into contact with the tool 8. Removal is performed using fixed abrasive grains.

電解加工の加工速度即ち被加工物の除去速度は電流密度
を高めることにより高められる。しかしながら電流密度
を高めると加工表面の表面粗さが大きくなってくる。そ
こで、電解除去効率を重視する加工の初期においては高
い電流密度を使用し、表面の鏡面仕上り程度を重視する
加工の後期においては低い電流密度を使用するのが好ま
しい。たとえば、第3図(a)に示される様に、加工時
間の経過とともに連続的に徐々に電流密度を小さくする
ことにより、加工の初期においては十分な加工速度を得
て、加工の終期においては十分な鏡面什」−げ程度を得
ることができる。また、電流密度を第3図(b)に示さ
れる様にある時間毎に段階的に次第に小さくしていって
もよい。更には、電流密度を第3図(C)に示される様
にパルス的にしてもよい。この場合には、電流を流さな
い時間があり、その時間においては加工工具8による被
加工物の機械的除去のみが行なわれる。
The processing speed of electrolytic processing, that is, the removal speed of the workpiece can be increased by increasing the current density. However, as the current density increases, the surface roughness of the machined surface increases. Therefore, it is preferable to use a high current density in the early stage of processing when emphasis is placed on electrolytic removal efficiency, and to use a low current density in the latter stage of processing when emphasis is placed on mirror finish of the surface. For example, as shown in Figure 3(a), by continuously decreasing the current density as the machining time progresses, a sufficient machining speed can be obtained at the beginning of machining, and at the end of machining. A sufficient mirror finish can be obtained. Alternatively, the current density may be gradually reduced stepwise at certain time intervals as shown in FIG. 3(b). Furthermore, the current density may be pulsed as shown in FIG. 3(C). In this case, there is a time period during which no current is applied, during which only mechanical removal of the workpiece by the processing tool 8 is performed.

以−1〕の実施例においては十分に被加工物があり下方
に加工工具がある場合を例示したが、逆に上方に加「工
具があり下方に被加工物があってもよい。この様な場合
の具体例を第4 INに示す。この実施例においては、
棒体6の下部に加工工具保持手段10が位置し、該保持
手段10の下面に接着剤12を介17て加]ニエJL 
8が複数個固定保持されている。そして被加−下物2は
基体14に固定された保持手段4により固定保持されて
いる。
In the example below (1), the case where there is a sufficient workpiece and the machining tool is below is illustrated, but conversely, it is also possible to have a machining tool above and the workpiece below. A specific example of the case is shown in the 4th IN. In this example,
A processing tool holding means 10 is located at the lower part of the rod 6, and is applied to the lower surface of the holding means 10 through an adhesive 12.
8 are fixedly held. The object 2 to be processed is fixedly held by a holding means 4 fixed to a base body 14.

また、以−1−の実施例においては加工工具としてダイ
ヤモンド等の砥粒を金属で焼結したペレット型加工−[
具を用いたが、加工工具としては、その他たどえばダイ
ヤモンド等の砥粒を非導電性樹脂で固定したものを用い
てもよく、この場合には接着剤による電気的絶縁を考慮
する必要がない。
In addition, in the following embodiment -1-, the processing tool is a pellet-type processing tool in which abrasive grains such as diamond are sintered with metal.
However, as a processing tool, it is also possible to use a tool in which abrasive grains such as diamond are fixed with non-conductive resin, and in this case, it is necessary to consider electrical insulation using adhesive. do not have.

更に、以上の実施例においては電解液を電解槽中のみに
存在)tしめているが、電解液は外部からポンプ等で圧
送循環せしめてもよい。これにより加[二の進行にとも
ない汚れてくる電解液を電解槽外F?Hにおいて適宜清
浄化し目、っ電解液を所定の濃度に維持することができ
る。
Further, in the above embodiments, the electrolytic solution is present only in the electrolytic cell, but the electrolytic solution may be pumped and circulated from outside using a pump or the like. This removes the electrolyte, which becomes dirty as the addition progresses, outside the electrolytic tank. The electrolyte can be maintained at a predetermined concentration by appropriately cleaning the electrolyte in H.

[発明の効果] 以」二の様な本発明によれば、工具の交換や使用機械の
交換や加工中における被加工物の洗浄等を要することな
く比較的短かい時間で低コストにて良好な鏡面仕上げ程
度を有する表面を得ることができる。
[Effects of the Invention] According to the present invention as described in (2) below, it is possible to achieve good results in a relatively short time, at low cost, and without the need for exchanging tools, replacing machines, or cleaning workpieces during machining. A surface with a mirror finish can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第4図は本発明方法の実施例を示す断面図で
あり、第2図は被加工物と加工工具との関係を示す平面
図であり、第3図(a)、(b)及び(C)は電流密度
の変化を示すグラフである。 2:被加工物   4:被加工物保持手段6:棒体  
   8加工工具 10:加工工具保持手段  12:接着剤14:基体 
   16:側壁 18:電解液   20:直流安定化電源22:摺動ブ
ラシ 第3図(a) 時間 第3図(b) 時間 第3図(C) ぬA 第4図 晴聞
1 and 4 are cross-sectional views showing an embodiment of the method of the present invention, FIG. 2 is a plan view showing the relationship between a workpiece and a processing tool, and FIGS. ) and (C) are graphs showing changes in current density. 2: Workpiece 4: Workpiece holding means 6: Rod body
8 Processing tool 10: Processing tool holding means 12: Adhesive 14: Base
16: Side wall 18: Electrolyte 20: DC stabilized power supply 22: Sliding brush Fig. 3 (a) Time Fig. 3 (b) Time Fig. 3 (C) NuA Fig. 4 Harumun

Claims (2)

【特許請求の範囲】[Claims] (1)導電性被加工物と砥粒固定ペレット型加工工具を
複数個保持してなる導電性の加工工具保持手段との間に
電解液を存在せしめ、被加工物を陽極とし且つ加工工具
保持手段を陰極として通電せしめ、一方加工工具を被加
工物に対し圧接せしめつつ相対的に運動せしめることを
特徴とする、被加工物表面の仕上げ加工方法。
(1) An electrolytic solution is caused to exist between the conductive workpiece and a conductive processing tool holding means which holds a plurality of abrasive fixed pellet type processing tools, and the workpiece is used as an anode and the processing tool is held. A method for finishing the surface of a workpiece, characterized in that a means is used as a cathode to energize the workpiece, while a processing tool is brought into pressure contact with the workpiece and moved relative to the workpiece.
(2)加工の進行とともに通電電流を次第に小さくする
、第1項の表面仕上げ加工方法。
(2) The surface finishing method of item 1, in which the applied current is gradually reduced as the processing progresses.
JP18887784A 1984-09-11 1984-09-11 Method of finishing surface Pending JPS6171921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18887784A JPS6171921A (en) 1984-09-11 1984-09-11 Method of finishing surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18887784A JPS6171921A (en) 1984-09-11 1984-09-11 Method of finishing surface

Publications (1)

Publication Number Publication Date
JPS6171921A true JPS6171921A (en) 1986-04-12

Family

ID=16231437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18887784A Pending JPS6171921A (en) 1984-09-11 1984-09-11 Method of finishing surface

Country Status (1)

Country Link
JP (1) JPS6171921A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0324142A1 (en) 1988-01-11 1989-07-19 Shizuoka Seiki Co. Ltd. Finishing method employing electrochemical machining and an electrochemical finishing machine
JPH0373221A (en) * 1989-08-09 1991-03-28 Shizuoka Seiki Co Ltd Electrolytic finishing
US5028303A (en) * 1988-04-08 1991-07-02 Shizuoka Seiki Co. Ltd. Electrolytic finishing method
JPH0425620A (en) * 1990-05-17 1992-01-29 T H K Kk Working method for rolling member rolling face in bearing and the bearing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57144627A (en) * 1981-03-02 1982-09-07 Nikko Kikai Kk Grinder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57144627A (en) * 1981-03-02 1982-09-07 Nikko Kikai Kk Grinder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0324142A1 (en) 1988-01-11 1989-07-19 Shizuoka Seiki Co. Ltd. Finishing method employing electrochemical machining and an electrochemical finishing machine
US4956060A (en) * 1988-01-11 1990-09-11 Shizuoka Seiki Co., Ltd. Finishing method employing electro-chemical machining, and an electro-chemical finishing machine
US5028303A (en) * 1988-04-08 1991-07-02 Shizuoka Seiki Co. Ltd. Electrolytic finishing method
JPH0373221A (en) * 1989-08-09 1991-03-28 Shizuoka Seiki Co Ltd Electrolytic finishing
JPH0425620A (en) * 1990-05-17 1992-01-29 T H K Kk Working method for rolling member rolling face in bearing and the bearing

Similar Documents

Publication Publication Date Title
US5071525A (en) Method of grinding lenses and apparatus therefor
EP1877216B1 (en) Method of electrolytically microfinishing a metallic workpiece
EP0421350A1 (en) Method of and apparatus for electropolishing and grinding
JPS6171921A (en) Method of finishing surface
EP1033908A2 (en) Plasma discharge truing apparatus and fine-machining methods using the apparatus
JPH08243927A (en) Grinding tool and its manufacture and grinding device
CN111168172B (en) Side-flow type movable template electrolytic grinding composite processing method and device
KR930005036Y1 (en) Method of grinding lens and apparatus therefor
JPS62193777A (en) Linear abrasive body and polishing method
JPH0360975A (en) Method for forming glass optical element
JPS5822627A (en) Method of compound machining of electrolysis and grinding of cylindrical inner surface
JPH04296510A (en) Method of machining outersurface of beta-alumina molded or calcined pipe, and grinding tool used therein
Matsuzawa et al. Micro-spherical lens mold fabrication by cup-type metal-bond grinding wheels applying ELID (electrolytic in-process dressing)
JP3703632B2 (en) Truing and dressing equipment for grinding tools
JPS62173117A (en) Method and tool for corrective grinding
JPH06335853A (en) Grinding and device therefor
JP2003260646A (en) Grinding method of nonaxisymmetric and aspheric surface, and its device
CN118386123A (en) Aspherical optical female die polishing method and hot-pressing die
JPS63232944A (en) Polishing tool
JPS63295122A (en) Electrolytic polsihing device
CN116442014A (en) Electrolyte fixed electrochemical mechanical polishing method, device and equipment
Saleh et al. 11.18 Electrolytic In-Process Dressing (ELID) Grinding for Nano-Surface Generation
JPH0360974A (en) Method and device for simultaneously electrolytic grinding two surfaces
JPS6034227A (en) Electrolytic abrasive grain polishing method of cylindrical inner face
JPH1158230A (en) Dressing device of grinding tool