JPH04192625A - Pll frequency synthesizer - Google Patents

Pll frequency synthesizer

Info

Publication number
JPH04192625A
JPH04192625A JP2318629A JP31862990A JPH04192625A JP H04192625 A JPH04192625 A JP H04192625A JP 2318629 A JP2318629 A JP 2318629A JP 31862990 A JP31862990 A JP 31862990A JP H04192625 A JPH04192625 A JP H04192625A
Authority
JP
Japan
Prior art keywords
frequency
current
output
charge pump
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2318629A
Other languages
Japanese (ja)
Other versions
JP2927937B2 (en
Inventor
Hidehiko Norimatsu
乘松 秀彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2318629A priority Critical patent/JP2927937B2/en
Priority to EP97204137A priority patent/EP0840456A3/en
Priority to DE69130046T priority patent/DE69130046T2/en
Priority to EP91309560A priority patent/EP0482823B1/en
Priority to EP97204136A priority patent/EP0840457A3/en
Priority to CA002122637A priority patent/CA2122637C/en
Priority to CA002053748A priority patent/CA2053748C/en
Priority to CA002122643A priority patent/CA2122643C/en
Priority to AU86021/91A priority patent/AU642536B2/en
Priority to US07/781,093 priority patent/US5173665A/en
Publication of JPH04192625A publication Critical patent/JPH04192625A/en
Priority to US07/933,990 priority patent/US5247265A/en
Priority to US07/933,988 priority patent/US5276408A/en
Application granted granted Critical
Publication of JP2927937B2 publication Critical patent/JP2927937B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

PURPOSE:To quicken the locking at frequency changeover and to ensure stability after changeover by controlling a current quantity to a charge pump through the provision of a current quantity control circuit. CONSTITUTION:A phase frequency comparator 4 detects a deviation in the phase and frequency of an output of a voltage controlled oscillator 1 and an output of a reference frequency generator 3. Then a current quantity control circuit 6 changing continuously a current at charging/discharging of a charge pump 5 is provided on a PLL frequency synthesizer provided with the charge pump 5 charging or discharging a current based on a signal output S1 (S2) in response to a lead (lag) of the phase. Thus, the locking is quickened by using the current quantity control circuit 6 so as to increase the current of the charge pump 5 at frequency changeover and the stability is ensured by reducing the output current of the charge pump 5 after changeover.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はPLL周波数シンセサイザに関し、特に出力の
周波数を高速で切換えるPLL周波数シンセサイザに関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a PLL frequency synthesizer, and particularly to a PLL frequency synthesizer that switches the output frequency at high speed.

〔従来の技術] 従来のPLL周波数シンセサイザにおいて、周波数の切
り換えを高速に行い、かつ切り換え後の動作の安定化を
図る技術として、例えば第5図に示すようなものがある
(特開昭61−134126号)。
[Prior Art] In a conventional PLL frequency synthesizer, there is a technique shown in FIG. 5, for example, as a technique for performing frequency switching at high speed and stabilizing the operation after switching. No. 134126).

“すなわち、第5図はPLL周波数シンセサイザのルー
プフィルタの構成であり、入力端子41と出力端子42
との間に直列に抵抗43を、並列に抵抗44とコンデン
サ45を接続している。そして、抵抗43と並列に可変
抵抗46と抵抗47を接続し、抵抗44と並列に可変抵
抗48と抵抗49を接続している。さらに、可変抵抗4
6.48には抵抗値制御回路50を接続し、制御端子5
1に入力される制御信号によって抵抗値制御回路50が
可変抵抗46.48を制御するようになっている。
"In other words, FIG. 5 shows the configuration of a loop filter of a PLL frequency synthesizer, with an input terminal 41 and an output terminal 42.
A resistor 43 is connected in series between the two, and a resistor 44 and a capacitor 45 are connected in parallel. A variable resistor 46 and a resistor 47 are connected in parallel with the resistor 43, and a variable resistor 48 and a resistor 49 are connected in parallel with the resistor 44. Furthermore, variable resistor 4
The resistance value control circuit 50 is connected to 6.48, and the control terminal 5
The resistance value control circuit 50 controls the variable resistors 46 and 48 according to the control signal input to the resistor 1.

この構成では、周波数が安定している場合には、制御端
子51に入力される制御信号に応じて抵抗値制御回路5
0は可変抵抗46.48をオープンにし、ループフィル
タは抵抗43,44、コンデンサ45にて構成される。
In this configuration, when the frequency is stable, the resistance value control circuit 5
0, the variable resistors 46 and 48 are open, and the loop filter is composed of resistors 43 and 44 and a capacitor 45.

これは周波数が安定になる定数が選ばれる。A constant is selected that makes the frequency stable.

一方、周波数切換時には、抵抗値制御回路5゜は可変抵
抗46.48をショートにするように動作し、高速に周
波数を引込むように選ばれた抵抗47.49を抵抗43
.44に並列接続することで高速引込みを行う。そして
、引込み完了時には、抵抗値制御回路50が可変抵抗4
6.48の抵抗値を徐々にに大きくしていき、最終的に
オープになるよう制御する。これにより、高速な引込み
を可能とし、かつ引込み完了後は、安定に動作するPL
L周波数シンセサイザを実現している。
On the other hand, at the time of frequency switching, the resistance value control circuit 5° operates to short-circuit the variable resistor 46.48, and connects the resistor 47.49 to the resistor 43, which is selected to draw in the frequency at high speed.
.. 44 in parallel to perform high-speed retraction. Then, when the retraction is completed, the resistance value control circuit 50 controls the variable resistor 4.
The resistance value of 6.48 is gradually increased and controlled so that it finally becomes open. This enables high-speed retraction, and after the retraction is completed, the PL operates stably.
This realizes an L frequency synthesizer.

〔発明が解決しようとする課題〕 従来のPLL周波数シンセサイザにおいては、周波数の
引込みが完了した時点で、高抵抗に切換えを行うように
なっているが、チャージポンプからみた場合、軽い負荷
から重い負荷に変わるようになっている。
[Problem to be solved by the invention] In conventional PLL frequency synthesizers, the switch is made to high resistance when frequency pull-in is completed, but when viewed from the charge pump, the load changes from light to heavy. It is set to change to

実際にチャージポンプを構成する場合、負荷によってチ
ャージポンプのドライブ能力が大幅に変わってしまう。
When actually configuring a charge pump, the drive ability of the charge pump changes significantly depending on the load.

この場合、重い負荷がつく事でチャージポンプのドライ
ブ能力は落ちてしまい、デッドゾーンを生じてしまう可
能性が高い。
In this case, the drive ability of the charge pump decreases due to the heavy load, and there is a high possibility that a dead zone will occur.

また、切換え時において、ループフィルタにチャージも
しくはディスチャージがなされていると、抵抗値を変え
ることで電圧制御発振器に与えられる電圧値が僅かなが
ら変化する。電圧制御発振器の変調怒度が高い場合、こ
の切換えにより周波数が変動してしまう。
Further, if the loop filter is being charged or discharged at the time of switching, changing the resistance value slightly changes the voltage value applied to the voltage controlled oscillator. If the modulation intensity of the voltage controlled oscillator is high, the frequency will fluctuate due to this switching.

さらに、■COに電圧を与えるラインすなわちLFの出
力は通常高いインピーダンスを持っているため、このラ
インにスイッチング素子を入れると、そのコントロール
電圧がもれ込む可能性が高い。
Furthermore, since the line that supplies voltage to CO, that is, the output of LF, usually has a high impedance, if a switching element is inserted into this line, there is a high possibility that the control voltage will leak into it.

本発明の目的は高速切換えを可能とする一方で、切換え
後の周波数の安定性を高めたPLL周波数シンセサイザ
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a PLL frequency synthesizer that enables high-speed switching while improving frequency stability after switching.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のPLL周波数シンセサイザは、電圧制御発振器
の出力と基準周波数発生器の出力の位相および周波数の
ずれを位相周波数比較器で検出し、その位相の進み、遅
れに応じた信号出力によって電流をチャージし、あるい
は電流をディスチャージするチャージポンプを備えたP
 、L L周波数シンセサイザに、チャージポンプのチ
ャージ時およびディスチャージ時の電流を連続的に変化
させる電流量制御回路を設けている。
The PLL frequency synthesizer of the present invention detects the phase and frequency deviation between the output of the voltage controlled oscillator and the output of the reference frequency generator using a phase frequency comparator, and charges a current by outputting a signal according to the lead or lag of the phase. or a P with a charge pump to discharge the current.
, L L frequency synthesizer is provided with a current amount control circuit that continuously changes the current during charging and discharging of the charge pump.

この場合、電流量制御回路は、周波数切換時に電流を増
大させ、その後徐々に電流を低減させるように構成され
る。
In this case, the current amount control circuit is configured to increase the current at the time of frequency switching, and then gradually reduce the current.

〔作用〕[Effect]

本発明によれば、電流量制御回路によって周波数切換え
時にチャージポンプの電流を増加させることで引き込み
を速くし、また切換え後にチャージポンプの出力電流を
減少させることで安定化を確保する。
According to the present invention, the current amount control circuit increases the current of the charge pump at the time of frequency switching to speed up the draw-in, and reduces the output current of the charge pump after switching to ensure stability.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例のプロ・ンク図である。FIG. 1 is a diagram of one embodiment of the present invention.

電圧制御発振器1の出力は出力端子10に出力される一
方で一部は可変周波数分周器2に入力され、分周数入力
端子8に入力される分周数入力に応じて周波数分周器2
によって所要の周波数に分周される。分周された信号は
、基準周波数発生器3で発生される基準周波数信号と共
に位相周波数比較器4に入力されて位相および周波数が
比較され、比較結果として遅れ情報S1と進み情報S2
が出力される。チャージポンプ5は、進み情報S2がH
ighの場合にディスチャージ状態となり、遅れ情報S
1が旧ghの場合にチャージを行う。このとき、電流量
設定値入力端子9から入力された電流量設定値に応じて
電流量制御回路6により設定されるディスチャージ電流
量あるいはチャージ電流量にてチャージ、ディスチャー
ジを行う。このチャージポンプ5の出力はループフィル
タ7にて積分、平滑化され、前記電圧制御発振器1にフ
ィードバックされる。
The output of the voltage controlled oscillator 1 is output to the output terminal 10, while a portion is input to the variable frequency divider 2, which divides the frequency according to the division number input to the division number input terminal 8. 2
The frequency is divided into the required frequency by The frequency-divided signal is input to the phase frequency comparator 4 together with the reference frequency signal generated by the reference frequency generator 3, and the phase and frequency are compared, and the comparison result is delay information S1 and advance information S2.
is output. The charge pump 5 has advance information S2 of H
If it is high, it becomes a discharge state and the delay information S
If 1 is the old GH, charge it. At this time, charging and discharging are performed with a discharge current amount or a charge current amount set by the current amount control circuit 6 according to the current amount setting value inputted from the current amount setting value input terminal 9. The output of this charge pump 5 is integrated and smoothed by a loop filter 7 and fed back to the voltage controlled oscillator 1.

このPLL周波数シンセサイザでは、周波数切換え時に
は分周数入力端子8より入力される分周数を変えると共
に、電流量制御回路6から出力されるディスチャージ電
流量あるいはチャージ電流量を増やすような電流量設定
値を電流量設定値入力端子9から入力する。
In this PLL frequency synthesizer, when changing the frequency, the frequency division number input from the frequency division number input terminal 8 is changed, and the current amount setting value is set to increase the discharge current amount or charge current amount output from the current amount control circuit 6. is input from the current amount setting value input terminal 9.

その後、時間的に連続にチャージポンプ5の出力の電流
量を落とすように電流量設定値入力端子9より制御する
。これにより切換えで大幅に周波数がずれている時は、
高速に引込み、引込みが完了すると周波数を安定に出力
できる。
Thereafter, the current amount set value input terminal 9 is used to control the current amount of the output of the charge pump 5 to be reduced continuously over time. As a result, when the frequency is significantly shifted due to switching,
It pulls in at high speed, and when the pull-in is completed, the frequency can be output stably.

第2図は前記電流量制御回路6の一例の回路図である。FIG. 2 is a circuit diagram of an example of the current amount control circuit 6.

同図において、11は電流量設定値が入力される入力端
子(第1図の電流量設定値入力端子9に相当)であり、
ここにはスイ・7チング信号が加えられる。また、12
は電源端子であり、オン状態の時には電圧VDl+が供
給される。さらに、13は前記チャージポンプ5に対し
てディスチャージ電流量あるいはチャージ電流量を出力
する出力端子である。
In the figure, 11 is an input terminal to which a current amount setting value is input (corresponding to the current amount setting value input terminal 9 in FIG. 1),
A switching signal is added here. Also, 12
is a power supply terminal, to which voltage VDl+ is supplied when in the on state. Furthermore, 13 is an output terminal for outputting a discharge current amount or a charge current amount to the charge pump 5.

この回路は、スイッチング素子14と、オペアンプ15
と、nチャンネルMO3FET16と、2個のpチャン
ネルMO5FET17.18と、抵抗19,20.21
と、コンデンサ22とで構成される。そして、抵抗20
には電源電圧が加えられ、この電圧によりコンデンサ2
2はチャージアップされる。また、電源電圧はオペアン
プ15の非反転入力に加えられる。nチャンネルMO3
FET16のソースがオペアンプ15の反転入力に接続
されており、非反転入力の電源電圧は、nチャンネルM
O3FET16のソース電圧と等しくなり、抵抗19の
抵抗値をRI、とおくと、ドレイン電流がVvo/Rt
q流れる。
This circuit includes a switching element 14 and an operational amplifier 15.
, n-channel MO3FET 16, two p-channel MO5FETs 17.18, and resistors 19, 20.21.
and a capacitor 22. And resistance 20
A power supply voltage is applied to the capacitor 2, and this voltage causes the capacitor 2 to
2 is charged up. Further, the power supply voltage is applied to the non-inverting input of the operational amplifier 15. n channel MO3
The source of the FET 16 is connected to the inverting input of the operational amplifier 15, and the power supply voltage of the non-inverting input is the n-channel M
If it becomes equal to the source voltage of O3FET 16 and the resistance value of resistor 19 is set as RI, then the drain current becomes Vvo/Rt.
q flows.

また、pチャンネルMO3’FET17.1Bは、カレ
ントミラー回路を構成しており、pチャンネルMOSF
ET1Bのゲート幅はpチャンネルMO3FET17の
N倍にされている。これにより、nチャンネルMO3F
ET16のドレイン電流はN倍され、pチャンネルMO
SFET1Bのドレイン電流となり、出力端子13に出
力される。
In addition, the p-channel MO3'FET17.1B constitutes a current mirror circuit, and the p-channel MOSFET17.1B constitutes a current mirror circuit.
The gate width of ET1B is N times that of p-channel MO3FET17. This allows n-channel MO3F
The drain current of ET16 is multiplied by N and the p-channel MO
This becomes the drain current of SFET 1B and is output to the output terminal 13.

オン状態からオフ状態に変化させると、オペアンプの非
反転入力の電圧は、抵抗21の抵抗値が非常に大きい場
合、コンデンサ22の電圧が抵抗20を通ってディスチ
ャージされるため、指数関数的に低下し、抵抗20の抵
抗値をR2゜、抵抗21の抵抗値をR2lとおくと、(
R2゜/R,。+R21)・VOOに収束する。オン状
態と同し原理で出力端子3にはN/R19倍された電流
値として伝わる。
When changing from the on state to the off state, the voltage at the non-inverting input of the operational amplifier will drop exponentially because the voltage on the capacitor 22 will be discharged through the resistor 20 if the resistance value of the resistor 21 is very large. However, if the resistance value of the resistor 20 is R2° and the resistance value of the resistor 21 is R2l, then (
R2°/R,. +R21)・Converges to VOO. Based on the same principle as in the on state, a current value multiplied by N/R19 is transmitted to the output terminal 3.

第3図(a)ないしくC)に入力端子11、nチャンネ
ルMO3FET16のドレイン電流、出力端子13の各
電圧波形図を示す。
FIGS. 3(a) to 3(c) show respective voltage waveform diagrams of the input terminal 11, the drain current of the n-channel MO3FET 16, and the output terminal 13.

なお、これはチャージアップする回路であるが、ディス
チャージする場合には第2図のnチャンネルMO3FE
T16をPチャンネルに、pチャンネルのMO3FET
17.18をnチャンネルに置換え、さらに抵抗19の
グランド側を電源12に、PチャネルMO3FET17
.18のソースをグランドにそれぞれ接続すればよい。
Note that this is a charge-up circuit, but when discharging, use the n-channel MO3FE shown in Figure 2.
T16 to P channel, p channel MO3FET
17. Replace 18 with an n-channel, and connect the ground side of the resistor 19 to the power supply 12, and connect the P-channel MO3FET 17.
.. It is sufficient to connect each of the 18 sources to ground.

第4図は前記チャージポンプの一例である。ここではp
チャンネルMO5FET36とnチャンネルMO3FE
T37とでCMO3構造に構成し、これに遅れ位相入力
端子31、進み位相入力端子32、チャージアップ入力
端子33、ディスチャージ出力端子34、チャージ出力
端子35を接続している。
FIG. 4 shows an example of the charge pump. Here p
Channel MO5FET36 and n-channel MO3FE
T37 constitutes a CMO3 structure, and a delayed phase input terminal 31, an advanced phase input terminal 32, a charge up input terminal 33, a discharge output terminal 34, and a charge output terminal 35 are connected to this.

このチャージポンプでは、端子31の遅れ位相入力が旧
ghになると、PチャネルMOS F ET 36を介
してチャージアンプ入力端子33から電流が流込み、端
子32の進み位相人力が旧ghになると、nチャネルM
O3FET37を介してディスチャージ出力34から電
流が流れ出る。
In this charge pump, when the delayed phase input at the terminal 31 becomes the old gh, a current flows from the charge amplifier input terminal 33 via the P channel MOS FET 36, and when the leading phase input at the terminal 32 becomes the old gh Channel M
Current flows out of the discharge output 34 via the O3FET 37.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、電流量制御回路を設けて
チャージポンプへの電流量を制御するように構成してい
るので、周波数切換え時にチャージポンプの電流を増加
させることで引き込みを速くし、また切換え後にチャー
ジポンプの出力電流を減少させることで安定化を確保す
ることができる効果がある。
As explained above, the present invention is configured to include a current amount control circuit to control the amount of current to the charge pump, so that by increasing the current of the charge pump at the time of frequency switching, the drawing speed is increased. Further, by reducing the output current of the charge pump after switching, stabilization can be ensured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロック図、第2図は電流
量制御回路の一例の回路図、第3図はその電圧波形図、
第4図はチャージポンプの回路図、第5図は従来のPL
L周波数シンセサイザにおけるループフィルタの回路図
である。 1・・・電圧制御発振器、2・・・可変周波数分周器、
3・・・基準周波数発生器、4・・・位相周波数比較器
、5・・・チャージポンプ、6・・・電流制御回路、7
・・・ループフィルタ、8・・・分周数入力、9・・・
電流量設定値入力端子、10・・・出力端子、11・・
・電流量設定値入力端子、12・・・電源端子、13・
・・出力端子、14・・・スイッチング素子、15・・
・オペアンプ、16−nチャンネルMO3FET、17
.18・・・Pチャンネル間O3FET、19,20.
21・・・抵抗、22・・・コンデンサ、31・・・遅
れ位相入力端子、32・・・進み位相入力端子、33・
・・チャージアップ入力端子、34・・・ディスチャー
ジ出力端子、35・・・チャージ出力端子、36・・・
Pチャンネル間O3FET、37− nチャンネルMO
3FET、41・・・入力端子、42・・・出力端子、
43.44・・−抵抗、45・・・コンデンサ45.4
6・・・可変抵抗、47・・・抵抗、48・・・可変抵
抗、49・・・抵抗、50・・・抵抗値制御回路、51
・・・制御端子。 第1図 電流量に泡省入カ##p+ 第2図 第3図 t(−す^n)
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is a circuit diagram of an example of a current amount control circuit, and FIG. 3 is a voltage waveform diagram thereof.
Figure 4 is the circuit diagram of the charge pump, Figure 5 is the conventional PL
FIG. 3 is a circuit diagram of a loop filter in an L frequency synthesizer. 1... Voltage controlled oscillator, 2... Variable frequency divider,
3... Reference frequency generator, 4... Phase frequency comparator, 5... Charge pump, 6... Current control circuit, 7
...Loop filter, 8...Divide number input, 9...
Current amount setting value input terminal, 10... Output terminal, 11...
・Current amount setting value input terminal, 12...Power supply terminal, 13・
...Output terminal, 14...Switching element, 15...
・Operational amplifier, 16-n channel MO3FET, 17
.. 18...P-channel O3FET, 19,20.
21... Resistor, 22... Capacitor, 31... Lagging phase input terminal, 32... Leading phase input terminal, 33...
...Charge up input terminal, 34...Discharge output terminal, 35...Charge output terminal, 36...
P-channel O3FET, 37-n channel MO
3FET, 41...input terminal, 42...output terminal,
43.44...-Resistor, 45...Capacitor 45.4
6... Variable resistor, 47... Resistor, 48... Variable resistor, 49... Resistor, 50... Resistance value control circuit, 51
...Control terminal. Figure 1: Bubbles are added to the current amount ##p+ Figure 2: Figure 3 t(-su^n)

Claims (1)

【特許請求の範囲】[Claims] 1、電圧制御発振器と、この電圧制御発振器の出力を分
周する可変周波数分周器と、基準周波数信号を出力する
基準周波数発生器と、この基準周波数出力と分周出力の
位相および周波数のずれを検出し、位相の進み、遅れに
応じた信号を出力する位相周波数比較器と、この位相周
波数比較器の出力を遅れの場合には電流をチャージし、
進みの場合には電流をディスチャージするチャージポン
プと、このチャージポンプの出力を積分し、平滑化する
ループフィルタと、前記チャージポンプのチャージ時お
よびディスチャージ時の電流を連続的に変化させる電流
量制御回路を備えたことを特徴とするPLL周波数シン
セサイザ。2、電流量制御回路は、周波数切換時に電流
を増大させ、その後徐々に電流を低減させるように構成
される特許請求の範囲第1項記載のPLL周波数シンセ
サイザ。
1. A voltage controlled oscillator, a variable frequency divider that divides the output of this voltage controlled oscillator, a reference frequency generator that outputs a reference frequency signal, and a phase and frequency shift between the reference frequency output and the divided output. A phase frequency comparator that detects the phase and outputs a signal according to the phase lead or lag, and charges a current to the output of this phase frequency comparator in the case of a lag,
A charge pump that discharges the current in the case of a lead, a loop filter that integrates and smoothes the output of this charge pump, and a current amount control circuit that continuously changes the current of the charge pump during charging and discharging. A PLL frequency synthesizer characterized by comprising: 2. The PLL frequency synthesizer according to claim 1, wherein the current amount control circuit is configured to increase the current at the time of frequency switching and then gradually reduce the current.
JP2318629A 1990-10-22 1990-11-24 PLL frequency synthesizer Expired - Fee Related JP2927937B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2318629A JP2927937B2 (en) 1990-11-24 1990-11-24 PLL frequency synthesizer
DE69130046T DE69130046T2 (en) 1990-10-22 1991-10-17 Frequency synthesizer with PLL, which enables a frequency change of the output at high speed
EP91309560A EP0482823B1 (en) 1990-10-22 1991-10-17 PLL frequency synthesizer capable of changing an output frequency at a high speed
EP97204136A EP0840457A3 (en) 1990-10-22 1991-10-17 PLL frequency synthesizer capable of changing an output frequency at a high speed
EP97204137A EP0840456A3 (en) 1990-10-22 1991-10-17 PLL frequency synthesizer capable of changing an output frequency at a high speed
CA002053748A CA2053748C (en) 1990-10-22 1991-10-18 Pll frequency synthesizer capable of changing an output frequency at a high speed
CA002122637A CA2122637C (en) 1990-10-22 1991-10-18 Pll frequency synthesizer capable of changing an output frequency at a high speed
CA002122643A CA2122643C (en) 1990-10-22 1991-10-18 Pll frequency synthesizer capable of changing an output frequency at a high speed
AU86021/91A AU642536B2 (en) 1990-10-22 1991-10-21 PLL frequency synthesizer capable of changing an output frequency at a high speed
US07/781,093 US5173665A (en) 1990-10-22 1991-10-22 Pll frequency synthesizer capable of changing an output frequency at a high speed
US07/933,990 US5247265A (en) 1990-10-22 1992-08-21 PLL frequency synthesizer capable of changing an output frequency at a high speed
US07/933,988 US5276408A (en) 1990-10-22 1992-08-21 PLL frequency synthesizer capable of changing an output frequency at a high speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2318629A JP2927937B2 (en) 1990-11-24 1990-11-24 PLL frequency synthesizer

Publications (2)

Publication Number Publication Date
JPH04192625A true JPH04192625A (en) 1992-07-10
JP2927937B2 JP2927937B2 (en) 1999-07-28

Family

ID=18101272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2318629A Expired - Fee Related JP2927937B2 (en) 1990-10-22 1990-11-24 PLL frequency synthesizer

Country Status (1)

Country Link
JP (1) JP2927937B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831483A (en) * 1996-01-30 1998-11-03 Nec Corporation PLL frequency synthesizer having circuit for controlling gain of charge pump circuit
KR100907001B1 (en) * 2007-07-11 2009-07-08 주식회사 하이닉스반도체 PLL Circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941327A (en) * 1982-09-01 1984-03-07 Teijin Ltd Polyester electrical insulating material
JPS6390215A (en) * 1986-10-03 1988-04-21 Matsushita Electric Ind Co Ltd Continuous variable mode pll circuit
JPH02113726A (en) * 1988-10-24 1990-04-25 Fujitsu Ltd Pll circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941327A (en) * 1982-09-01 1984-03-07 Teijin Ltd Polyester electrical insulating material
JPS6390215A (en) * 1986-10-03 1988-04-21 Matsushita Electric Ind Co Ltd Continuous variable mode pll circuit
JPH02113726A (en) * 1988-10-24 1990-04-25 Fujitsu Ltd Pll circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5831483A (en) * 1996-01-30 1998-11-03 Nec Corporation PLL frequency synthesizer having circuit for controlling gain of charge pump circuit
KR100907001B1 (en) * 2007-07-11 2009-07-08 주식회사 하이닉스반도체 PLL Circuit

Also Published As

Publication number Publication date
JP2927937B2 (en) 1999-07-28

Similar Documents

Publication Publication Date Title
US5068626A (en) Charge pump circuit
EP1037366B1 (en) Charge pump circuit having switching circuits for reducing leakage currents
JPH09214338A (en) Pll frequency synthesizer
US6163184A (en) Phase locked loop (PLL) circuit
US5694308A (en) Method and apparatus for regulated low voltage charge pump
US5783972A (en) Power saving PLL circuit
EP1241791B1 (en) PLL frequency synthesizer
US5942947A (en) Current-regulated, voltage-controlled oscillator with duty cycle correction
JPH1065530A (en) Charge pump circuit and pll circuit using it
KR100319422B1 (en) Phase locked loop circuit
JPH01157612A (en) Voltage controlled oscillating circuit
US6380810B1 (en) Reduced lock time for a phase locked loop
JPH04192625A (en) Pll frequency synthesizer
CN210469271U (en) Phase-locked accelerating circuit applied to phase-locked loop system and phase-locked loop system
JPS61269421A (en) Initial phase matching type phase locked loop circuit
JP2001085996A (en) High-speed lockup circuit
KR100233275B1 (en) Charge pump of phase locked loop
JPH0793577B2 (en) Frequency synthesizer
JP4062495B2 (en) Charge pump circuit
JP3392767B2 (en) Phase locked loop
JPH01305724A (en) Frequency synthesizer
JP2001203570A (en) Pll circuit and semiconductor integrated circuit
JPH082020B2 (en) Frequency synthesizer
KR20020042032A (en) Low power charge pump and phase-lock loop thereof
JPH02100519A (en) Frequency synthesizer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees