JPH0418752A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0418752A
JPH0418752A JP12246290A JP12246290A JPH0418752A JP H0418752 A JPH0418752 A JP H0418752A JP 12246290 A JP12246290 A JP 12246290A JP 12246290 A JP12246290 A JP 12246290A JP H0418752 A JPH0418752 A JP H0418752A
Authority
JP
Japan
Prior art keywords
region
type
electrode
forming
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12246290A
Other languages
Japanese (ja)
Other versions
JP2940557B2 (en
Inventor
Tatsuhiko Ikeda
龍彦 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12246290A priority Critical patent/JP2940557B2/en
Publication of JPH0418752A publication Critical patent/JPH0418752A/en
Application granted granted Critical
Publication of JP2940557B2 publication Critical patent/JP2940557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To dispense with a mask alignment process through which impurities are implanted at the formation of electrodes so as to lessen processes in number by a method wherein first conductivity type and second conductivity type electrodes are provided to a semiconductor device where an NPN, a PNP, an N channel, and a P channel MOS transistor are provided to the same substrate. CONSTITUTION:An N<+>-type buried layer 28, a P<+>-type buried layer 29, and an N<->-type epitaxial layer 30 are deposited on the surface of a P<->-type silicon substrate 27, a P-type channel cut layer 31 and an element isolation insulating film 32 are formed, P<->-type diffusion layers 33 and 34, an N<+>-type collector lead-out layer 35, and a P<+>-type collector lead-out layer 36 are deposited. A first polycrystalline silicon film and an insulating film are provided to the whole surface, and a P-type and an N-type base layer and a channel doped layer are provided through a thermal treatment. Furthermore, electrodes 44-48 are built, a second polycrystalline silicon film is deposited on all the surface, electrodes 53-57 are built, diffusion layers 58-63 are formed through a heat treatment, a passivation insulating film 64 is provided to the whole surface, and a wiring layer 65 is formed at a prescribed position.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、np+1.pnpl・ランジスタ及びnチ
ャネル、pチャネルMOSトランジスタを同一’t’導
体基板」二に有する半導体装置の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to np+1. The present invention relates to a method of manufacturing a semiconductor device having a pnpl transistor and n-channel and p-channel MOS transistors on the same 't' conductor substrate.

〔従来の技術〕[Conventional technology]

第2図はI E D M (InternaNonal
 Electron I)evlccs Moetin
g)Tech、Dig、1988.p780−763に
示された縦型r1pn、pnpトランジスタ及びCM 
OSトランジスタの混在形LSIの断面図である。
Figure 2 shows I E D M (Internal Nonal
Electron I)evlccs Moetin
g) Tech, Dig, 1988. Vertical r1pn, pnp transistor and CM shown on p780-763
FIG. 2 is a cross-sectional view of a mixed type LSI including OS transistors.

同図において、1はp 型半導体基板、2及び3はn型
及びn+型埋込層、4はp+型埋込層、5はn型エピタ
キシャル層、6は素子分離絶縁膜、7はp+型のチャネ
ルカット層、8はp型拡散層、9はp型ベース拡散層、
10はn型ベース拡散層、1、、1.、 、 1.、2
はチャネルドープ領域、13はn型ベース電極、14は
n型ベース電極、15はn型ソス・ドレイン電極、16
はp型ソース・ドレイン電極、17はn型コレクタ引き
出し電極、18はp型コレクタ引き出し7電極、]9は
パソシベション絶縁膜、20はn型エミッタ電極、21
−はn型エミッタ電極、22はn型ゲート電極、23は
p型ゲート電極、24はn型エミッタ拡散層、25はp
型エミッタ拡散層、26は配線層である。
In the figure, 1 is a p-type semiconductor substrate, 2 and 3 are n-type and n+ type buried layers, 4 is a p+ type buried layer, 5 is an n-type epitaxial layer, 6 is an element isolation insulating film, and 7 is a p+ type 8 is a p-type diffusion layer, 9 is a p-type base diffusion layer,
10 is an n-type base diffusion layer; 1, 1. , , 1. ,2
is a channel doped region, 13 is an n-type base electrode, 14 is an n-type base electrode, 15 is an n-type sos/drain electrode, 16
are p-type source/drain electrodes, 17 is an n-type collector extraction electrode, 18 is a p-type collector extraction 7 electrode, ]9 is a passivation insulating film, 20 is an n-type emitter electrode, 21
- is an n-type emitter electrode, 22 is an n-type gate electrode, 23 is a p-type gate electrode, 24 is an n-type emitter diffusion layer, 25 is a p-type
26 is a wiring layer.

ここて、npn、pnpはそれぞれnpn、pn p 
l□ランジスタの形成用領域を表わl〜、n M Os
、pMosはそれぞれロチャネル、pチャネルMO3I
−ランジスタの形成用領域を表わす。
Here, npn and pnp are npn and pn p, respectively.
l □ Represents the area for forming transistors l~, n M Os
, pMos are lo channel and p channel MO3I, respectively.
- represents the area for the formation of transistors;

つぎに、製造工程について第3A図ないし第3C図を参
照して説明する。
Next, the manufacturing process will be explained with reference to FIGS. 3A to 3C.

ます、基板1のpnp領域の表面にn型埋込層2を形成
し、第3A図に示すように、rlpn、pMO3領域の
表面にn+型埋込層3を形成すると共に、n型埋込層2
の表面及びn M OS領域の表面にp 型埋込層4を
形成し、その後n型エピタキンヤル層5を形成する。
First, an n-type buried layer 2 is formed on the surface of the pnp region of the substrate 1, and an n+-type buried layer 3 is formed on the surface of the rlpn, pMO3 region, as shown in FIG. 3A. layer 2
A p-type buried layer 4 is formed on the surface of the substrate and the surface of the nMOS region, and then an n-type epitaaxial layer 5 is formed.

そし7て、チャネルカット層7を形成したのち、所定領
域に素子分離絶縁膜6を形成して素子分離を行い、pn
p、nMO3領域のp+型埋込層4のp型拡散層8を形
成したのち、−に面金面に薄い窒化膜]00を形成し、
npn、pHp領域のコレクタ引出部にn+埋込層3及
びp+埋込層4に達する溝101を形成し、これらの溝
101内及び窒化膜1001に多結晶シリコン層1.0
2を形成する。
After forming the channel cut layer 7, an element isolation insulating film 6 is formed in a predetermined region to perform element isolation.
After forming the p-type diffusion layer 8 of the p+-type buried layer 4 in the p, nMO3 region, a thin nitride film]00 is formed on the − metal surface,
Grooves 101 reaching the n+ buried layer 3 and p+ buried layer 4 are formed in the collector lead-out portions of the npn and pHp regions, and a polycrystalline silicon layer 1.0 is formed in these grooves 101 and on the nitride film 1001.
form 2.

つぎに、第3B図に示すように、npn、nMO8領域
の多結晶シリコン層102を所定形状にバターニングし
、コレクタ電極層1.02 a 、ベス電極層102b
及びソース・ドレイン電極層102cを形成し、パター
ニングにより多結晶シリコン層102を除去した所定部
分に新たにパッジベージコン絶縁膜1つを形成し、pn
p、pM。
Next, as shown in FIG. 3B, the polycrystalline silicon layer 102 in the npn, nMO8 region is patterned into a predetermined shape, and a collector electrode layer 1.02a and a base electrode layer 102b are formed.
Then, a source/drain electrode layer 102c is formed, and one new PAD conductor insulating film is formed in a predetermined portion where the polycrystalline silicon layer 102 has been removed by patterning.
p, pM.

S領域についても同様にコレクタ、ベース ソス・ドレ
インの各電極層を形成する。
For the S region, collector, base, sos, and drain electrode layers are formed in the same manner.

その後、所定パターンのマスクを用い、npn領域のベ
ース電極層102b、第3B図には図示されていないp
np領域のコレクタ電極層及び9MO8領域のソース・
ドレイン領域にボロン(B)を注入し2、n型ベース電
極13.p型コレクタづき出し電極18.p型ソース・
ドレイン電極16を形成すると共に、他の所定パターン
のマスクを用い、npn領域のコレクタ電極層102a
、nMO3領域のソース・ドレイン電極層102c及び
第3B図には図示されていないpnp領域のベス電極層
にリン(P)を注入してn型コレクタ引き出し電極17
.n型ソース・ドレイン電極15及びn型ベース電極1
4を形成する。
Thereafter, using a mask with a predetermined pattern, the base electrode layer 102b in the npn region is
The collector electrode layer in the np region and the source layer in the 9MO8 region.
Boron (B) is implanted into the drain region 2, and an n-type base electrode 13. P-type collector exposed electrode 18. p-type source
While forming the drain electrode 16, a collector electrode layer 102a in the npn region is formed using a mask with another predetermined pattern.
, phosphorus (P) is implanted into the source/drain electrode layer 102c in the nMO3 region and the base electrode layer in the pnp region (not shown in FIG. 3B) to form the n-type collector extraction electrode 17.
.. n-type source/drain electrode 15 and n-type base electrode 1
form 4.

さらに、第3C図に示すように、エミッタ及びゲートと
なる領域の絶縁膜1つを除去し、各電極表面を酸化し、
絶縁膜]9を除去した領域の底部の窒化膜100及びこ
の窒化膜100の直下の薄い酸化膜を、除去すると同時
に横方向にエツチングしたのち、再び多結晶シリコンを
全面に薄く堆積し、この多結晶シリコンによって、ベー
ス電極13とn型エピタキシャル層5とを接続すると共
に、ソース・ドレイン電極15とp型拡散層8とを接続
したのち、エミッタ、ゲート領域を酸化してエミッタ、
ゲート領域にも絶縁膜19を形成し、pnp、pMO3
領域についても同様の工程を行つO そしてその後、第2図に示すように、npn■) n 
p領域のベース領域、nMO8,pMO8領域のチャネ
ルドープ領域に、それぞれ所定の不純物を注入し、て各
拡散領域9,10及びチャネルドブ領域11.12を形
成し、npn、pnp領域のエミッタ領域にエミッタ用
開孔を形成した後、再び多結晶シリコンを堆積し、別の
所定パターンのマスクを用いてヒ素(As)を導入し、
npn領域に[1型エミッタ電極20.nMO8領域に
T〕型ゲ〜1・電極22を形成したのち、異なる所定パ
ターンのマスクを用いてBを導入し、pnp領域にp型
エミッタ電極21.pMO8領域にp型ゲート電極23
を形成し、これらの不純物導入時の熱拡散によって、I
l型エミッタ拡散層24.p型エミッタ拡散層25を形
成したのぢ、所定位置にコンタクトポールを開孔して配
線層26を形成し、所望の配線を行う。
Furthermore, as shown in FIG. 3C, one insulating film in the region that will become the emitter and gate is removed, and the surface of each electrode is oxidized.
The nitride film 100 at the bottom of the region where the insulating film] 9 has been removed and the thin oxide film immediately below the nitride film 100 are etched laterally at the same time as they are removed, and polycrystalline silicon is deposited thinly over the entire surface again. After connecting the base electrode 13 and the n-type epitaxial layer 5 and connecting the source/drain electrode 15 and the p-type diffusion layer 8 using crystalline silicon, the emitter and gate regions are oxidized to form an emitter,
An insulating film 19 is also formed in the gate region, pnp, pMO3
The same process is performed for the area O and then, as shown in Figure 2, npn■) n
Predetermined impurities are implanted into the base region of the p region and the channel doped regions of the nMO8 and pMO8 regions to form respective diffusion regions 9 and 10 and channel dove regions 11 and 12, and into the emitter regions of the npn and pnp regions. After forming the emitter hole, polycrystalline silicon is deposited again, and arsenic (As) is introduced using another predetermined pattern mask.
[1 type emitter electrode 20. After forming a T]-type electrode 22 in the nMO8 region, B is introduced using a mask with a different predetermined pattern, and a p-type emitter electrode 21 is formed in the pnp region. P-type gate electrode 23 in pMO8 region
is formed, and by thermal diffusion when introducing these impurities, I
l-type emitter diffusion layer 24. After forming the p-type emitter diffusion layer 25, a contact pole is opened at a predetermined position to form a wiring layer 26, and desired wiring is performed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の半導体装置の製造方法では、n型ベース電極]4
及びn型ソース・ドレイン電極15と、p型ベース電極
13及びp型ソース・ドレイン電極16とで注人種が異
なるため、n型の電極]415の形成時の不純物注入の
ためのフ第1・レジスト等のマスク合わせ工程と、p型
の電極1B、16の形成時の不純物注入のための他のマ
スク合わせ工程とが必要となり、マスク合わせ工程か2
回必要となる。
In conventional semiconductor device manufacturing methods, n-type base electrode]4
Since the type of implantation is different between the n-type source/drain electrode 15 and the p-type base electrode 13 and p-type source/drain electrode 16, the・A mask alignment process for resist, etc., and another mask alignment process for impurity implantation when forming p-type electrodes 1B and 16 are required;
times are required.

また、n型エミッタ電極20及びn型ゲート電極22と
、p型エミッタ電極21及びp型ゲート電極23も、同
様に注人種が異なるため、n型の電極20.22の形成
のためのマスク合わせ工程と、p型の電極21.23の
形成のためのマスク合わせ工程が必要になる。
In addition, since the n-type emitter electrode 20 and n-type gate electrode 22 and the p-type emitter electrode 21 and p-type gate electrode 23 are also different in injection type, a mask for forming the n-type electrode 20 and 22 is used. A matching process and a mask matching process for forming the p-type electrodes 21 and 23 are required.

このように、各電極13〜16.20〜23の形成時の
不純物注入のために、多数のマスク合オ〕せ工程が必要
になるという問題点があった。
As described above, there is a problem in that a large number of mask alignment steps are required to implant impurities when forming each of the electrodes 13-16 and 20-23.

この発明は、」二重のような問題点を解消するためにな
され、各電極形成時の不純物注入の為のマスク合わせ二
り程を削減できるようにすることを[」的とする。
The present invention has been made to solve the problem of "duplication" and aims to reduce the number of mask alignments required for impurity implantation when forming each electrode.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体装置の製造方法は、同一パ1′、
導体基板」二に、第1導電型のベース層を有するバイポ
ーラトランジスタの形成用の第1−領域と、Wi 24
 ’rTX型のベース層を有するバイポーラトランジス
タの形成用の第2領域と、第2導電型のチャネル領域を
有するMO3+−ランジスタの形成用の第3領域と、第
1導電型のチャネル領域を有するMOSトランジスタの
形成用の第4領域とを備えた丁導体装置を製造する半導
体装置の製造方法において、前記第3領域の前記基板上
方にのろ選択的に酸化膜を形成する工程と、全面に第1
導電型の不純物を導入した第1の多結晶シリコン膜及び
第1−の絶縁膜を順次に堆積する工程と、前記第1の多
結晶シリコン膜を前記第1の絶縁膜と共に所定形状に加
工し、前記第1領域にベース電極、前記第2領域にエミ
ッタ電極及びコレクタ電極、前記第3領域にゲート電極
、前記第4領域にソース・ドレイン電極をそれぞれ形成
する一■二程と、加工した前記第1の多結晶シリコン膜
及び前記第1の絶縁膜の側面に絶縁膜を形成するゴー程
と、前記第4領域の前記基板上方にのみ選択的に酸化膜
を形成する工程と、全面に第2導電型の不純物を導入し
た第2の多結晶シリコン膜を堆積する上程と、前記第2
の多結晶シリコン膜を所定形状に加工し、前記第1領域
にエミッタ電極及びコレクタ電極。
The method for manufacturing a semiconductor device according to the present invention includes
a first region for forming a bipolar transistor having a base layer of a first conductivity type;
A MOS having a second region for forming a bipolar transistor having a base layer of 'rTX type, a third region for forming a MO3+- transistor having a channel region of the second conductivity type, and a channel region of the first conductivity type. A semiconductor device manufacturing method for manufacturing a semiconductor device including a fourth region for forming a transistor, the step of slowly and selectively forming an oxide film above the substrate in the third region; 1
a step of sequentially depositing a first polycrystalline silicon film into which conductivity type impurities are introduced and a first insulating film, and processing the first polycrystalline silicon film together with the first insulating film into a predetermined shape. , forming a base electrode in the first region, an emitter electrode and a collector electrode in the second region, a gate electrode in the third region, and a source/drain electrode in the fourth region; a step of forming an insulating film on the side surfaces of the first polycrystalline silicon film and the first insulating film; a step of selectively forming an oxide film only above the substrate in the fourth region; and a step of forming an oxide film on the entire surface. The process of depositing a second polycrystalline silicon film into which two conductivity type impurities are introduced, and
A polycrystalline silicon film is processed into a predetermined shape, and an emitter electrode and a collector electrode are formed in the first region.

前記第2領域にベース電極、前記第3領域にソース・ド
レイン電極、前記第4領域にゲート電極をそれぞれ形成
する工程と、熱処理により前記第1゜第2領域にエミッ
タ拡散層及び外部ベース拡散層を形成し、前記第3.第
4領域にソース・ドレイン拡散層を形成する上程とを含
むことを特徴としている。
Forming a base electrode in the second region, a source/drain electrode in the third region, and a gate electrode in the fourth region, and forming an emitter diffusion layer and an external base diffusion layer in the first and second regions by heat treatment. and the third. The method is characterized in that it includes an upper step of forming a source/drain diffusion layer in the fourth region.

〔作用〕[Effect]

この発明においては、第1導電型の不純物を導入した第
1の多結晶シリコン膜を形成し、これを所定形状に加工
して第1導電型の各電極を形成し第2導電型の不純物を
導入した第2の多結晶シリコン膜を形成し、これを所定
形状に加]ニして第2導電型の各電極を形成するため、
従来のように、各電極形成時の不純物注入の為のマスク
合わせ二[程が不要となり、全体の工程数の削減が図れ
る。
In this invention, a first polycrystalline silicon film doped with impurities of a first conductivity type is formed, processed into a predetermined shape to form each electrode of the first conductivity type, and impurities of a second conductivity type are introduced. In order to form each electrode of the second conductivity type by forming the introduced second polycrystalline silicon film and shaping it into a predetermined shape,
This eliminates the need for mask alignment for impurity implantation during the formation of each electrode, which is required in the past, and the overall number of steps can be reduced.

〔実施例〕〔Example〕

第1A図ないl−第1F図はこの発明の半導体装置の製
造方法の一実施例の断面図であり、以下に各]L程につ
いて説明する。
FIGS. 1A to 1F are cross-sectional views of an embodiment of the method for manufacturing a semiconductor device of the present invention, and each step L will be explained below.

ただし2、これらの図において、npn、pnpnMO
3,pMO8は、第1.第2.第3.第4領域に相当す
るnpn トランジスタ+  p n p トランジス
タ、nチャネルMO8トランジスタ、pチャネルMO3
+−ランジスタの形成用領域をそれぞれ表イフす。
However, 2. In these figures, npn, pnpnMO
3, pMO8 is the first. Second. Third. NPN transistor + pnp transistor corresponding to the fourth region, n-channel MO8 transistor, p-channel MO3
The regions for forming +- transistors are shown respectively.

まず、第1A図に示すように、p−型シリコン基板27
の表面にn+型埋込層28を形成し、pnp、pMO3
領域の埋込層28の表面にp+型埋込層29を形成した
のぢ、全面にn−型エピタキシャル層30を堆積し、底
面にp型チャネルカット層31が形成されるように素子
分離絶縁膜32を形成し、pnp、nMO5領域のエピ
タキSノャル層30にそれぞれp 型拡散層33.34
を形成すると共に、npn、pnp領域にそれぞれn+
型コレクタ引ぎ出し層35及びp+型コレクタ引き出し
層36を形成する。
First, as shown in FIG. 1A, a p-type silicon substrate 27
An n+ type buried layer 28 is formed on the surface of the pnp, pMO3
After forming a p+ type buried layer 29 on the surface of the buried layer 28 in the region, an n- type epitaxial layer 30 is deposited on the entire surface, and element isolation insulation is performed so that a p type channel cut layer 31 is formed on the bottom surface. A film 32 is formed, and p-type diffusion layers 33 and 34 are formed in the epitaxial S normal layer 30 in the pnp and nMO5 regions, respectively.
At the same time, n+ is formed in the npn and pnp regions, respectively.
A type collector extraction layer 35 and a p+ type collector extraction layer 36 are formed.

その後、npn領域のベース領域となるn 型エピタキ
シャル層30にB+等のp型不純物イオンが注入される
と共に、pnp領域のベース領域となるp 型拡散層3
3にP+等のn型不純物イオンが注入され、n M O
S領域のp 型拡散層34及びpMO8領域のn 型エ
ピタキシャル層30の表面にしきい値電圧制御のための
チャネルドープイオン注入を行う。
Thereafter, p-type impurity ions such as B+ are implanted into the n-type epitaxial layer 30, which will become the base region of the npn region, and the p-type diffusion layer 3, which will become the base region of the pnp region.
3, n-type impurity ions such as P+ are implanted into n M O
Channel doping ions are implanted into the surfaces of the p type diffusion layer 34 in the S region and the n type epitaxial layer 30 in the pMO8 region for threshold voltage control.

そして、第1B図に示すように、表面全面を酸化して酸
化膜を形成したのち、n M OS領域のp 型拡散層
34の表面にのみ酸化膜37が残るように酸化膜をエツ
チング【7、表面全面に第1−の多結晶シリコン膜38
及び第1の絶縁膜としてのCVD酸化膜3つを順次堆積
し、その後CVD酸化膜3つを通してp型不純物を多結
晶シリコン膜38中にドープする。このとき、CVD酸
化膜39の形成時の熱処理によって、npn、pnp領
域にそれぞれp型ベース層40.n型ベース層41が形
成されると共に、nMO8,pMO3領域にチャネルド
ープ層42.43が形成される。
Then, as shown in FIG. 1B, after oxidizing the entire surface to form an oxide film, the oxide film is etched so that the oxide film 37 remains only on the surface of the p-type diffusion layer 34 in the nMOS region. , a first polycrystalline silicon film 38 is formed on the entire surface.
Then, three CVD oxide films as a first insulating film are sequentially deposited, and then p-type impurities are doped into the polycrystalline silicon film 38 through the three CVD oxide films. At this time, by heat treatment during formation of the CVD oxide film 39, p-type base layers 40 are formed in the npn and pnp regions, respectively. An n-type base layer 41 is formed, and channel doped layers 42 and 43 are formed in the nMO8 and pMO3 regions.

さらに、第1C図に示すように、p型の多結晶シリコン
膜38及び酸化膜39を所定パターンに加工し、npn
領域にp型ベース電極44.pn■)領域にn型コレク
タ電極45及びp型エミッタ電極46.nMO8領域に
p型ゲート電極47pMO3領域にn型ソース・ドレイ
ン電極48を形成する。
Furthermore, as shown in FIG. 1C, the p-type polycrystalline silicon film 38 and the oxide film 39 are processed into a predetermined pattern, and the npn
A p-type base electrode 44. An n-type collector electrode 45 and a p-type emitter electrode 46. A p-type gate electrode 47 is formed in the nMO8 region, and an n-type source/drain electrode 48 is formed in the pMO3 region.

このとき、多結晶シリコン膜38及び酸化膜39のパタ
ーン加工によって、npn領域のエミッタ領域に開孔4
9を形成すると共に、pMO5領域のゲート領域に開孔
50を形成する。
At this time, by patterning the polycrystalline silicon film 38 and the oxide film 39, an opening 4 is formed in the emitter region of the npn region.
At the same time, an opening 50 is formed in the gate region of the pMO5 region.

つぎに、第1D図に示すように、パターニングにより形
成された各電極44〜48及びその上の酸化膜39の側
面に絶縁膜からなるサイドウオル51を形成し、その後
再び酸化膜を薄く形成し、p〜IQs領域の開孔50内
にのみ酸化膜52が残るように酸化膜をエツチングする
Next, as shown in FIG. 1D, side walls 51 made of an insulating film are formed on the side surfaces of each of the electrodes 44 to 48 formed by patterning and the oxide film 39 thereon, and then a thin oxide film is formed again. The oxide film is etched so that the oxide film 52 remains only in the opening 50 in the p-IQs region.

そして、第1E図に示すように、表面全面に第2の多結
晶シリコン膜を堆積形成し、この多結晶シリコン膜にn
型不純物を注入したのち、これをパターニングし、np
n領域の開孔49にn型エミッタ電極53及びコレクタ
引き出し層35上にn型コレクタ電極54.pnp領域
のベース層41上にn型ベース電極55.nMO3領域
のp型拡散層34上にn型ソース・ドレイン電極56゜
pMO3領域n 型エピタキシャル層’30」二にn型
ゲート電極57をそれぞれ形成する。
Then, as shown in FIG. 1E, a second polycrystalline silicon film is deposited over the entire surface, and this polycrystalline silicon film is
After implanting type impurities, this is patterned to form an np
An n-type emitter electrode 53 is formed in the opening 49 in the n-region, and an n-type collector electrode 54 is formed on the collector lead-out layer 35. An n-type base electrode 55. is formed on the base layer 41 in the pnp region. An n-type source/drain electrode 56 is formed on the p-type diffusion layer 34 in the nMO3 region, and an n-type gate electrode 57 is formed on the n-type epitaxial layer '30' in the pMO3 region.

さらに、第1F図に示すように、熱処理によって、np
n領域におけるn型ベース層40中のエミッタ電極53
及びベース電極44の下部にn+型エミッタ拡散層58
及びp+型外部ベース拡散層59をそれぞれ形成すると
共に、pnp領域におけるn型ベース層41中のエミッ
タ電極46及びベース電極55の下部にp+型エミッタ
拡散層60及びn+型外部ベース拡散層61をそれぞれ
形成し、n M OS領域におけるp 拡散層34のソ
ース・ドレイン電極56の下部にn+型ソースドレイン
拡散層62を形成し、pMO3領域におけるr] 型エ
ピタキシャル層3oのソース・トレイン電極48の下部
にp+型ソース・ドレイン拡散層6′3を形成したのち
、パッシベーション絶縁膜64を全面に形成し、所定位
置にコンタクトホールを開孔(7、配線層65を形成す
ることにより、npn、pnpl□ランジスタ及びn 
M OSp M OS トランジスタが混在した半導体
装置が完成する。
Furthermore, as shown in FIG. 1F, by heat treatment, np
Emitter electrode 53 in n-type base layer 40 in n region
and an n+ type emitter diffusion layer 58 under the base electrode 44.
and a p+ type external base diffusion layer 59, respectively, and a p+ type emitter diffusion layer 60 and an n+ type external base diffusion layer 61 are respectively formed under the emitter electrode 46 and the base electrode 55 in the n type base layer 41 in the pnp region. An n+ type source/drain diffusion layer 62 is formed under the source/drain electrode 56 of the p diffusion layer 34 in the nMOS region, and an n+ type source/drain diffusion layer 62 is formed under the source/drain electrode 48 of the r] type epitaxial layer 3o in the pMO3 region. After forming a p+ type source/drain diffusion layer 6'3, a passivation insulating film 64 is formed on the entire surface, and contact holes are opened at predetermined positions (7. By forming a wiring layer 65, an npn, pnpl transistor) is formed. and n
A semiconductor device including M OSp M OS transistors is completed.

なお、」二足実施例ては、npn領域のp型ベス電極4
4.pnp領域のp型コレクタ電極45及びp型エミッ
タ電極46.nMO8領域のp型ゲート電極47.pM
O3領域のn型ソース・ドレイン領域48を形成したの
ち、npn領域のn型エミッタ電極5′3及びn型コレ
クタ電極54゜pnp領域のn型ベース電極55.nM
O3領域のr]型ソース・ドレイン電極56.pMO8
領域のr1型ゲート電極57を形成したが、これらの電
極の形成順序を入れ換えてもよい。
In addition, in the two-legged embodiment, the p-type base electrode 4 in the npn region
4. A p-type collector electrode 45 and a p-type emitter electrode 46 in the pnp region. p-type gate electrode 47 in nMO8 region. pM
After forming the n-type source/drain regions 48 in the O3 region, the n-type emitter electrode 5'3 and the n-type collector electrode 54 in the npn region, the n-type base electrode 55 in the pnp region. nM
r] type source/drain electrodes 56 in the O3 region. pMO8
Although the r1 type gate electrode 57 in the region is formed, the order in which these electrodes are formed may be reversed.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の半導体装置の製造方法によれ
ば、第1導電型の不純物を導入した第1の多結晶シリコ
ン膜を形成し、これを所定形状に加工して第1導電型の
各電極を形成し、第2導電型の不純物を導入した第2の
多結晶シリコン膜を形成し、これを所定形状に加工して
第2導電型の各電極を形成するため、従来のように、各
電極形成時の不純物注入の為のマスク合わせ上程が不要
となり、全体の工程数を削減することができる。
As described above, according to the method of manufacturing a semiconductor device of the present invention, a first polycrystalline silicon film doped with a first conductivity type impurity is formed, and this is processed into a predetermined shape to form a first conductivity type impurity. Each electrode is formed by forming a second polycrystalline silicon film doped with a second conductivity type impurity, and processing this into a predetermined shape to form each second conductivity type electrode. , the mask alignment process for impurity implantation when forming each electrode is no longer necessary, and the overall number of steps can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1A図ないし第1F図はこの発明の゛1′、導体装置
の製造方法の一実施例の各工程の断面図、第2図は従来
の半導体装置の断面図、第3八図ないし第3C図は第2
図に示す″、6導体装置の製造工程の断面図である。 図において、27はシリコン基板、37.52は酸化膜
、38は第1の多結晶シリコン膜、39はCVD酸化膜
、40はp型ベース層、41はn型ベース層、44はp
型ベース電極、45はp型] 6 コレクタ電極、46はp型ゲート電極、47は■)型ゲ
ート電極、48はn型ソース・ドレイン電極、5]はザ
イドウォール、53はn型エミッタ電極、54はn型コ
レクタ電極、55はn型ベス電極、56はn型ソース・
ドレイン電極、57はn型ゲート電極、58.60はエ
ミッタ拡散層、59.6]は外部ベース拡散層、62.
63はソース・ドレイン拡散層である。 なお、各図中同一符号は同一または相当部分を示す。
1A to 1F are cross-sectional views of each step of an embodiment of a method for manufacturing a conductor device according to the present invention, FIG. 2 is a cross-sectional view of a conventional semiconductor device, and FIGS. 38 to 3C are The figure is the second
This is a sectional view of the manufacturing process of the 6-conductor device shown in the figure. In the figure, 27 is a silicon substrate, 37.52 is an oxide film, 38 is a first polycrystalline silicon film, 39 is a CVD oxide film, and 40 is a 41 is a p-type base layer, 44 is a p-type base layer, and 44 is a p-type base layer.
type base electrode, 45 is p type] 6 collector electrode, 46 is p type gate electrode, 47 is ■) type gate electrode, 48 is n type source/drain electrode, 5] is Zide wall, 53 is n type emitter electrode, 54 is an n-type collector electrode, 55 is an n-type base electrode, and 56 is an n-type source electrode.
57 is an n-type gate electrode, 58.60 is an emitter diffusion layer, 59.6] is an external base diffusion layer, 62.
63 is a source/drain diffusion layer. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] (1)同一半導体基板上に、第1導電型のベース層を有
するバイポーラトランジスタの形成用の第1領域と、第
2導電型のベース層を有するバイポーラトランジスタの
形成用の第2領域と、第2導電型のチャネル領域を有す
るMOSトランジスタの形成用の第3領域と、第1導電
型のチャネル領域を有するMOSトランジスタの形成用
の第4領域とを備えた半導体装置を製造する半導体装置
の製造方法において、 前記第3領域の前記基板上方にのみ選択的に酸化膜を形
成する工程と、 全面に第1導電型の不純物を導入した第1の多結晶シリ
コン膜及び第1の絶縁膜を順次に堆積する工程と、 前記第1の多結晶シリコン膜を前記第1の絶縁膜と共に
所定形状に加工し、前記第1領域にベース電極、前記第
2領域にエミッタ電極及びコレクタ電極、前記第3領域
にゲート電極、前記第4領域にソース・ドレイン電極を
それぞれ形成する工程と、 加工した前記第1の多結晶シリコン膜及び前記第1の絶
縁膜の側面に絶縁膜を形成する工程と、前記第4領域の
前記基板上方にのみ選択的に酸化膜を形成する工程と、 全面に第2導電型の不純物を導入した第2の多結晶シリ
コン膜を堆積する工程と、 前記第2の多結晶シリコン膜を所定形状に加工し、前記
第1領域にエミッタ電極及びコレクタ電極、前記第2領
域にベース電極、前記第3領域にソース・ドレイン電極
、前記第4領域にゲート電極をそれぞれ形成する工程と
、 熱処理により前記第1、第2領域にエミッタ拡散層及び
外部ベース拡散層を形成し、前記第3、第4領域にソー
ス・ドレイン拡散層を形成する工程と を含むことを特徴とする半導体装置の製造方法。
(1) On the same semiconductor substrate, a first region for forming a bipolar transistor having a base layer of a first conductivity type, a second region for forming a bipolar transistor having a base layer of a second conductivity type, and a second region for forming a bipolar transistor having a base layer of a second conductivity type. Manufacture of a semiconductor device for manufacturing a semiconductor device including a third region for forming a MOS transistor having a channel region of two conductivity types and a fourth region for forming a MOS transistor having a channel region of first conductivity type The method includes: selectively forming an oxide film only above the substrate in the third region; and sequentially forming a first polycrystalline silicon film doped with impurities of a first conductivity type and a first insulating film over the entire surface. processing the first polycrystalline silicon film together with the first insulating film into a predetermined shape, forming a base electrode in the first region, an emitter electrode and a collector electrode in the second region, and depositing a base electrode in the first region, an emitter electrode and a collector electrode in the second region, and a step of depositing the first polycrystalline silicon film together with the first insulating film into a predetermined shape. a step of forming a gate electrode in the region and a source/drain electrode in the fourth region; a step of forming an insulating film on side surfaces of the processed first polycrystalline silicon film and the first insulating film; a step of selectively forming an oxide film only above the substrate in a fourth region; a step of depositing a second polycrystalline silicon film doped with a second conductivity type impurity over the entire surface of the second polycrystalline silicon film; Processing a silicon film into a predetermined shape, forming an emitter electrode and a collector electrode in the first region, a base electrode in the second region, a source/drain electrode in the third region, and a gate electrode in the fourth region. and forming an emitter diffusion layer and an external base diffusion layer in the first and second regions by heat treatment, and forming source/drain diffusion layers in the third and fourth regions. Method of manufacturing the device.
JP12246290A 1990-05-11 1990-05-11 Method for manufacturing semiconductor device Expired - Fee Related JP2940557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12246290A JP2940557B2 (en) 1990-05-11 1990-05-11 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12246290A JP2940557B2 (en) 1990-05-11 1990-05-11 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0418752A true JPH0418752A (en) 1992-01-22
JP2940557B2 JP2940557B2 (en) 1999-08-25

Family

ID=14836457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12246290A Expired - Fee Related JP2940557B2 (en) 1990-05-11 1990-05-11 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2940557B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333237B1 (en) 1999-03-25 2001-12-25 Nec Corporation Method for manufacturing a semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333237B1 (en) 1999-03-25 2001-12-25 Nec Corporation Method for manufacturing a semiconductor device

Also Published As

Publication number Publication date
JP2940557B2 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
JPS62155553A (en) Simultaneous manufacture of bipolar transistor and cmos transistor
JPS6265358A (en) Integrated circuit and manufacturing thereof
JPH0355984B2 (en)
JP3030963B2 (en) Method for manufacturing semiconductor device
JPS61279171A (en) Simultaneous making of transistors of bipolar type and cmos type
JPH01140761A (en) Semiconductor device
JPS62155552A (en) Simultaneous manufacture of bipolar transistor and cmos transistor
JP2509690B2 (en) Semiconductor device
JPS63200568A (en) Bipolar transistor employing cmos technology and manufacture of the same
JPS61242064A (en) Manufacture of complementary type semiconductor device
JPH02101747A (en) Semiconductor integrated circuit and manufacture thereof
JPH0418752A (en) Manufacture of semiconductor device
JP2575876B2 (en) Semiconductor device
KR100259586B1 (en) Method for manufacturing semiconductor device
JPH03262154A (en) Manufacture of bicmos type semiconductor integrated circuit
JPS62181458A (en) Complementary type mos transistor and manufacture thereof
JPH023270A (en) Manufacture of hct semiconductor device
JP2616809B2 (en) Semiconductor device
JPH04368171A (en) Manufacture of bi-cmos integrated circuit
JPS63244768A (en) Bipolar cmos type semiconductor device and manufacture thereof
JPS61251165A (en) Manufacture of bi-mis integrated circuit
JP2828644B2 (en) Method for manufacturing semiconductor integrated circuit
JP3300474B2 (en) Semiconductor device and manufacturing method thereof
JP2889246B2 (en) Semiconductor device
JPH0474434A (en) Manufacture of bi-cmos integrated circuit

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees