JPH04187226A - Polyamide hollow yarn membrane and its production - Google Patents

Polyamide hollow yarn membrane and its production

Info

Publication number
JPH04187226A
JPH04187226A JP31631790A JP31631790A JPH04187226A JP H04187226 A JPH04187226 A JP H04187226A JP 31631790 A JP31631790 A JP 31631790A JP 31631790 A JP31631790 A JP 31631790A JP H04187226 A JPH04187226 A JP H04187226A
Authority
JP
Japan
Prior art keywords
polyamide
hollow fiber
birefringence
nylon
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31631790A
Other languages
Japanese (ja)
Inventor
Takashi Kawai
孝 河合
Isoo Saito
斉藤 磯雄
Chikara Honda
主税 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP31631790A priority Critical patent/JPH04187226A/en
Publication of JPH04187226A publication Critical patent/JPH04187226A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides

Abstract

PURPOSE:To form a polyamide hollow yarn membrane with the internal structure exhibiting excellent elastic recovery and micropore forming property by wet-heat-treating a polyamide hollow yarn having 15X10<-3> to 35X10<-3> birefringence and with both ends opened while keeping the yarn tensionless. CONSTITUTION:A polyamide hollow yarn having 15X10<-3> to 35X10<-3> birefringence and with one or both ends opened is wet-heat-treated with pressurized steam or pressurized hot water while keeping it tensionless to produce a polyamide hollow yarn membrane. The obtained membrane gas 25X10<-3> to 40X10<-3> birefringence in its orientation direction, >=1.150g.cm<-3> density, >=70% elastic recovery rate at 50% elongation and >=1.0X10<-5> cm<-3>.cm<-2>.sec<-2>.cmHg<-1> nitrogen diffusibility at 50% elongation. The membrane is drawn and heat-treated, as required, to fix its internal structure and to further orient the crystal lamella. The ordinary crystalline polyamide such as nylon 6, nylon 66, nylon 12, nylon 610 and nylon 46 is exemplified as the polyamide.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、優れた弾性回復性を有するポリアミド中空糸
膜およびその製造方法に関する。さらに詳しくは、高配
向、高結晶化度を有する高弾性ポリアミド中空糸膜およ
びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a polyamide hollow fiber membrane having excellent elastic recovery properties and a method for producing the same. More specifically, the present invention relates to a highly elastic polyamide hollow fiber membrane having high orientation and high crystallinity, and a method for producing the same.

[従来技術] 従来から、伸縮性もしくは微孔性中空糸またはそれらの
製造方法として種々の提案がなされてきている。例えば
、特開昭52−137026号、特開昭58−4810
号がある。
[Prior Art] Various proposals have been made for stretchable or microporous hollow fibers and methods for producing them. For example, JP-A-52-137026, JP-A-58-4810
There is a number.

これらは積層ラメラを生成しその変形の可逆性を利用す
る方法で得たものである。しかし、まだポリオレフィン
、ポリオキシメチレン、ポリフッカビニリデンからなる
中空糸膜が製造されて知られているにすぎず、該ポリオ
レフィンなどの場合の製造方法はほかの高結晶性重合体
にも応用できるとされているにもかかわらず、実際にポ
リアミドからなる中空糸膜が製造されたことはなかった
These were obtained by a method that generates laminated lamellae and utilizes the reversibility of their deformation. However, only hollow fiber membranes made of polyolefin, polyoxymethylene, and polyfluorovinylidene have been produced and are known, and it is believed that the production method for polyolefins can be applied to other highly crystalline polymers. Despite this, hollow fiber membranes made of polyamide have never actually been manufactured.

従来方法を追試してみたところ、ポリオレフィンなどの
場合に適用される製造方法をポリアミドに適用しても中
空糸膜は得られなかった。
When the conventional method was repeated, hollow fiber membranes could not be obtained even when the manufacturing method applied to polyolefins was applied to polyamide.

すなわち、ポリオレフィンなどの微孔性中空糸膜を製造
する方法として知られている従来法は、高いずり速度を
与えて中空糸を紡出し、微張力下でアニールした後延伸
して熱固定する方法、中空糸を紡出しアニールした後冷
間延伸、熱間延伸して熱固定する方法、中空糸を紡出し
延伸しアニールした後延伸して熱固定する方法であり、
ここでアニールの手段としては加熱ロールやオーブンに
よる乾熱処理が用いられている。ところが、ポリオレフ
ィンなどの高結晶性重合体の場合と違って\ ポリアミ
ドの場合はオーブンなどの通常の乾熱処理を用いたので
は結晶ラメラがほとんど発達せず有用な中空糸膜とはな
らない。
In other words, the conventional method known for manufacturing microporous hollow fiber membranes such as polyolefins is to spin hollow fibers by applying a high shear rate, annealing them under slight tension, and then stretching and heat-setting them. , a method in which hollow fibers are spun and annealed, followed by cold stretching, hot stretching and heat setting; a method in which hollow fibers are spun, drawn, annealed, then drawn and heat set;
Here, as a means of annealing, dry heat treatment using a heating roll or an oven is used. However, unlike the case of highly crystalline polymers such as polyolefin, in the case of polyamide, when ordinary dry heat treatment such as an oven is used, crystal lamellae hardly develop and a useful hollow fiber membrane cannot be obtained.

また一方、ポリアミド繊維についてではあるが、結晶ラ
メラの成長を高速紡糸、フェノール溶液処理で行なう方
法がU、SP第351−3 ]、 10号明細書で提案
されている。しかし、該公知法は、フェノールなどの薬
品を使用して処理するので工程が繁雑であって、処理に
長時間を要し、環境面からも好ましくなく、さらに、フ
ェノール処理後、フェノールを中空糸から十分に除去す
ることが困難であり、したがって、残存フェノールが後
工程で中空糸自体に大きな悪影響を及ぼすことがあり、
例えば、ポリアミドの劣化を助長し、着色、強伸度低下
が生じたりして、均一な中空糸が得られにくく、また、
その伸縮特性も不十分なものしか得られなかった。
On the other hand, regarding polyamide fibers, a method of growing crystalline lamellae by high-speed spinning and treatment with a phenol solution is proposed in U.S. SP No. 351-3], No. 10. However, this known method involves processing using chemicals such as phenol, so the process is complicated, takes a long time, and is unfavorable from an environmental point of view. Therefore, residual phenol may have a large negative effect on the hollow fiber itself in the subsequent process.
For example, it accelerates the deterioration of polyamide, causing discoloration and a decrease in strength and elongation, making it difficult to obtain uniform hollow fibers.
The elastic properties were also insufficient.

[発明が解決しようとする課題] そこで、本発明者らはポリアミドからなる中空糸膜の検
討を重ねたところ、優れた伸縮性を有するポリアミド中
空糸膜を得ることができ本発明をなすに至った。
[Problems to be Solved by the Invention] Therefore, the present inventors repeatedly investigated hollow fiber membranes made of polyamide, and were able to obtain a polyamide hollow fiber membrane with excellent stretchability, leading to the present invention. Ta.

本発明の目的は、優れた弾性回復性、微孔形成性を示す
内部構造のポリアミド中空糸膜を提供するとともに、該
ポリアミド中空糸膜を容易に製造することのできる方法
を提供することである。
An object of the present invention is to provide a polyamide hollow fiber membrane having an internal structure that exhibits excellent elastic recovery properties and microporous formation properties, and to provide a method for easily producing the polyamide hollow fiber membrane. .

別の目的は、ポリアミドからなる中空糸膜という新素材
を提供することであり、また、容易に微孔性中空糸膜に
なし得るポリアミド素材を提供することである。
Another object is to provide a new material called a hollow fiber membrane made of polyamide, and also to provide a polyamide material that can be easily made into a microporous hollow fiber membrane.

[課題を解決するための手段] 本発明は上記目的を達成するために下記の構成としたも
のである。
[Means for Solving the Problems] In order to achieve the above object, the present invention has the following configuration.

(1)配向方向の複屈折が25XiO−3〜40×10
″′3、密度が1. 1−50 g−cm−3以上、5
0%伸長時弾性回復率が70%以上、かつ、窒素透過率
が50%伸長状態でi、  OXl、0−5cm−3・
cm−2・sec−2・cmHg ’以上であることを
特徴とするポリアミド中空糸膜。
(1) Birefringence in the orientation direction is 25XiO-3 to 40×10
″′3, density is 1.1-50 g-cm-3 or more, 5
When the elastic recovery rate at 0% elongation is 70% or more and the nitrogen permeability is at 50% elongation, i, OXl, 0-5 cm-3.
1. A polyamide hollow fiber membrane characterized in that it has an Hg' or higher.

(2)複屈折がi 5 X 10’−”〜35X10−
3であるポリアミド中空糸を両端あるいは片端を開口し
、無緊張状態に保って加圧飽和水蒸気もしくは加圧熱水
による湿熱処理することを特徴とするポリアミド中空糸
膜の製造方法。
(2) Birefringence is i5X10'-"~35X10-
3. A method for producing a polyamide hollow fiber membrane, which comprises opening both ends or one end of the polyamide hollow fiber and subjecting it to a moist heat treatment using pressurized saturated steam or pressurized hot water while keeping the polyamide hollow fiber in a tension-free state.

本発明にいう複屈折、密度、50%伸長時弾性回復率、
窒素透過率は次の方法で測定された値である。
Birefringence, density, elastic recovery rate at 50% elongation, as referred to in the present invention,
The nitrogen permeability is a value measured by the following method.

複屈折二白色光を光源に用い、流動パラフィンを浸漬液
に用いて測定する。
The measurement is carried out using birefringent biwhite light as the light source and liquid paraffin as the immersion liquid.

密度二四塩化炭素とトルエンとの混合媒体を用いた密度
勾配管により25°Cで測定する。
Density is measured at 25°C using a density gradient tube using a mixed medium of carbon ditetrachloride and toluene.

50%伸長時弾性回復率 糸長20cmの中空糸を引張
試験機にて初荷重0.33kg−mm−2、引張速度1
0cm−m1n  ’で伸長率50%(10cm)まで
伸長し、次いで上記引張速度と等速で除重し、2分間最
初と同じ把持間隔(20cm)で放置した後、再び上記
引張速度と等速で伸長し応力が初荷重と同じ0. 33
kg−mm−2に達するまでの伸長距離をLcmとする
。50%伸長時弾性回復率(%)は、次式 %式% により算出される。
Elastic recovery rate at 50% elongation A hollow fiber with a fiber length of 20 cm was tested using a tensile tester at an initial load of 0.33 kg-mm-2 and a tensile speed of 1.
Stretch to 50% elongation (10 cm) at 0cm-m1n', then remove the weight at the same speed as the above tension speed, leave it for 2 minutes at the same gripping interval (20 cm) as at the beginning, and then again at the same speed as the above tension speed. It stretches at 0.0 and the stress is the same as the initial load. 33
Let Lcm be the elongation distance until reaching kg-mm-2. The elastic recovery rate (%) at 50% elongation is calculated using the following formula: %.

窒素透過率:微孔性中空糸膜束の小型モジュールを作り
、中空糸内部に窒素圧をかけて膜を通って外部に透過し
てくる窒素の単位量を25℃で測定した。
Nitrogen permeability: A small module of a microporous hollow fiber membrane bundle was made, nitrogen pressure was applied inside the hollow fibers, and the unit amount of nitrogen that permeated to the outside through the membrane was measured at 25°C.

本発明におけるポリアミド中空糸膜は、従来のポリアミ
ド中空糸膜とはまったく異なった構造を有するものであ
り、これは前記したごとく特異な複屈折、密度、50%
伸長時弾性回復率、窒素透過率をあわせもっことで特徴
づけられる。すなわち、該中空糸膜は次のごとき内部構
造を有するものと推定される。
The polyamide hollow fiber membrane of the present invention has a structure completely different from that of conventional polyamide hollow fiber membranes, and as mentioned above, it has unique birefringence, density, and 50%
It is characterized by a combination of elastic recovery rate during elongation and nitrogen permeability. That is, the hollow fiber membrane is estimated to have the following internal structure.

軸方向に対して垂直な方向に成長した結晶ラメラが積層
して、その結晶ラメラ間は著しく低密度の非品性領域で
ある。この構造は、そのままではほとんど透過性を示さ
ないが、機械的に伸長するとラメラの変形とともにラメ
ラ間非晶領域の空隙化を生じて、空気、窒素などのガス
、水などの液体を透過させることができるようになるの
であり、すなわち、50%伸長状態の窒素透過率は、1
゜0×10−5cm−3・cm−2・sec″2・cm
Hg−1以上が示される。また、機械的伸長によって生
じるラメラの変形、空隙の生成は、可逆的変化をするの
であり、したがって、50%伸長時の弾性回復率70%
以上、好ましくは75%以上が示される。さらにまた、
ラメラ間非晶領域の配向の平均値を示す複屈折でも25
X10−3〜35×10″3のごとき高配向度が示され
るようにもう一方の結晶ラメラ領域はラメラの積層、配
向が十分に発達しており、また、密度1.150g−C
m−3以上、好ましくは1.155 g−cm−3以上
が示されるほどに高度に成長している。
Crystal lamellae grown in a direction perpendicular to the axial direction are stacked, and the area between the crystal lamellae is a poor quality region with extremely low density. This structure shows almost no permeability as it is, but when stretched mechanically, the lamella deforms and the interlamellar amorphous region becomes voided, allowing air, gases such as nitrogen, and liquids such as water to pass through. In other words, the nitrogen permeability at 50% elongation is 1
゜0×10-5cm-3・cm-2・sec″2・cm
Hg-1 or higher is indicated. Furthermore, the deformation of lamellae and the creation of voids caused by mechanical stretching are reversible, and therefore the elastic recovery rate at 50% stretching is 70%.
Above, preferably 75% or more. Furthermore,
Even the birefringence, which indicates the average value of the orientation of the interlamellar amorphous region, is 25
In the other crystal lamella region, the lamination and orientation of lamellae are sufficiently developed as shown by the high degree of orientation such as X10-3 to 35×10″3, and the density is 1.150 g-C.
It has grown to such a high degree that it shows 1.155 g-cm-3 or more, preferably 1.155 g-cm-3 or more.

このような内部構造のポリアミド中空糸膜は高度に伸縮
性であるとともに、弾性回復率が50%伸長変形の繰り
返し20回目で60%以上、好ましくは65%以上とい
う優れた伸縮耐久性をも示すことができる。
Polyamide hollow fiber membranes with such an internal structure are highly stretchable and also exhibit excellent stretch durability, with an elastic recovery rate of 60% or more, preferably 65% or more, at the 20th repetition of 50% stretching deformation. be able to.

本発明にかかわる中空糸膜は、ポリアミドか、らなり、
かつ、高度の弾性回復性、微孔形成性があるという特異
なものであり、したがって、従来のポリオレフィン、ポ
リオキシメチレンなどの伸縮性中空糸では得られなかっ
た優れた特性をもっている。例えば、非晶部分の密度が
著しく低くて分子鎖が十分に弛緩しているので、親水性
基を有することとあいまって非晶部分に多量の吸水をす
ることができ、従って、ポリオレフィンなどが達し得な
いほどの大きな保水性を示すことができる。
The hollow fiber membrane according to the present invention is made of polyamide,
Moreover, it is unique in that it has a high degree of elastic recovery and microporous formation, and therefore has excellent properties that cannot be obtained with conventional stretchable hollow fibers such as polyolefin and polyoxymethylene. For example, since the density of the amorphous part is extremely low and the molecular chain is sufficiently relaxed, combined with the presence of hydrophilic groups, the amorphous part can absorb a large amount of water. It can exhibit unprecedented water retention.

また、極性基を有するので種々の樹脂、ゴムなどとの複
合物を作製する際に極めて容易に接着することができる
。さらにまた、染色性も優れている。
Furthermore, since it has a polar group, it can be bonded extremely easily when making composites with various resins, rubbers, etc. Furthermore, the dyeability is also excellent.

このように優れた特性を有するポリアミド中空糸膜は、
例えば、高弾性回復特性を生かした用途の他に、その微
細な空隙を活用して、高吸水性中空糸膜もしくは高溶媒
吸収性中空糸膜、あるいは、機械的伸長で微孔を形成す
ることができるので分離用として用いることができる。
Polyamide hollow fiber membranes with such excellent properties are
For example, in addition to applications that take advantage of high elastic recovery properties, it is also possible to utilize the fine voids to create highly water-absorbent hollow fiber membranes or highly solvent-absorbent hollow fiber membranes, or to form micropores by mechanical elongation. It can be used for separation.

以下、上記内部構造を有するポリアミド中空糸膜の製造
方法について説明する。
Hereinafter, a method for manufacturing a polyamide hollow fiber membrane having the above-mentioned internal structure will be explained.

本発明の主な特徴は (1)加圧飽和水蒸気もしくは加圧熱水による湿熱処理
を、両端あるいは片端を開口し、無緊張状態にある中空
糸に行なうことにより、結晶ラメラを成長させて、積層
させることを達成すること、(2)さらに、該湿熱処理
に供するポリアミド中空糸の複屈折が15X10−3〜
35X10−3で特徴づけられる配向度を有しているこ
と、にある。
The main features of the present invention are (1) applying moist heat treatment using pressurized saturated steam or pressurized hot water to hollow fibers that are open at both ends or in a tension-free state, thereby growing crystal lamellae; (2) Furthermore, the birefringence of the polyamide hollow fibers subjected to the moist heat treatment is 15X10-3~
It has a degree of orientation characterized by 35X10-3.

湿熱処理は、加圧飽和水蒸気もしくは加圧熱水により行
なわれるが、ここにおける“飽和水蒸気”は飽和水蒸気
であることが望ましいが、場合によっては飽和に近い水
蒸気を用いることもできる。
The moist heat treatment is performed using pressurized saturated steam or pressurized hot water, and "saturated steam" here is preferably saturated steam, but near-saturated steam can also be used in some cases.

湿熱処理は2.5〜5.0kg−Cm−2,1−38〜
160℃の範囲で行なうことが、得られる中空糸膜の特
性からいって好ましい。
Moist heat treatment is 2.5-5.0kg-Cm-2,1-38~
It is preferable to conduct the reaction at a temperature of 160° C. in view of the characteristics of the hollow fiber membrane obtained.

該処理圧力が低すぎると処理不十分で、結晶ラメラの成
長が十分に達成されないため、得られる中空−糸膜の特
性が悪い。一方、高すぎると得られる中空糸膜の特性の
悪化も生じるが、もっと悪いことには湿熱処理時に、中
空糸の融解を生じ始め、中空糸膜相互の融着を生じる。
If the treatment pressure is too low, the treatment will be insufficient and crystal lamella growth will not be achieved sufficiently, resulting in poor properties of the resulting hollow fiber membrane. On the other hand, if the temperature is too high, the properties of the resulting hollow fiber membranes will deteriorate, but what is worse is that the hollow fibers will begin to melt during the wet heat treatment, resulting in mutual fusion of the hollow fiber membranes.

さらに該湿熱処理は、ポリアミド中空糸を両端あるいは
片端を開口し、無緊張状態に保って行なうことが必要で
あるが、該処理は連続式に行なってもよく、またバッチ
式に行なってもよい。連続式の場合には、多段のスリッ
トを処理筒の入口部および出口部に取り付け、十分シー
ルして行なうことで達成できる。一方、バッチ式の場合
は、オートクレーブを用いるが、操作および昇温に要す
る時間を含め通常数分以上処理する。このように比較的
長時間湿熱処理する場合には、ポリアミドの熱酸化劣化
を防止するため、ポリアミド用酸化防止剤を重合工程、
あるいは紡出工程などで添加して中空糸中に含浸させて
おくか、あるいは水溶性酸化時1L剤を含有させた水を
用いて湿熱処理することが望ましい。
Furthermore, the moist heat treatment must be performed with both ends or one end of the polyamide hollow fibers open and kept in a non-tensioned state, but the treatment may be performed continuously or batchwise. . In the case of a continuous type, this can be achieved by attaching multistage slits to the inlet and outlet portions of the processing cylinder and sufficiently sealing them. On the other hand, in the case of a batch method, an autoclave is used, and the treatment usually takes several minutes or more, including the time required for operation and temperature rise. When performing moist heat treatment for a relatively long period of time, an antioxidant for polyamide is added during the polymerization process to prevent thermal oxidative deterioration of polyamide.
Alternatively, it is desirable to add it during the spinning process and impregnate it into the hollow fibers, or to perform a wet heat treatment using water containing a 1L agent during water-soluble oxidation.

湿熱処理に供するポリアミド中空糸は特定の範囲の配向
度を有することが必要であり、これは複屈折で15X1
0−3〜35×10−3である。該配向度条件は得られ
る中空糸に弾性回復性および微孔形成性を付与するため
に重要な条件であり、この条件をはずれる中空糸からは
優れた特性の中空糸膜は得られない。さらに好ましくは
複屈折20XIO−3〜30X10−’の中空糸を供す
るのがよい。特定の配向条件にした後、湿熱処理した中
空糸は、次に乾燥して水分を除去する。その後、得られ
たポリアミド中空糸膜の内部構造を固定し、結晶ラメラ
をさらに配向させるための延伸、熱処理を必要に応じて
行なってもよい。これは通常、50%以下の延伸や16
0℃以下での緊張熱処理により行なわれる。
Polyamide hollow fibers subjected to moist heat treatment must have a degree of orientation within a specific range, which is 15X1 in terms of birefringence.
It is 0-3 to 35×10-3. The orientation condition is an important condition for imparting elastic recovery properties and micropore formation properties to the resulting hollow fibers, and hollow fiber membranes with excellent properties cannot be obtained from hollow fibers that deviate from this condition. More preferably, hollow fibers with a birefringence of 20XIO-3 to 30X10-' are provided. After achieving specific orientation conditions, the moist heat treated hollow fibers are then dried to remove moisture. Thereafter, stretching and heat treatment may be performed as necessary to fix the internal structure of the obtained polyamide hollow fiber membrane and further orient the crystal lamellae. This is usually less than 50% stretching or 16% stretching.
This is done by stress heat treatment at 0°C or lower.

本発明で用いられるポリアミドとしては、ナイロン6、
ナイロン66、ナイロン12、ナイロン1l− 610、ナイロン46などの通常の結晶性ポリアミドが
あげられる。また、該ポリアミドは、必要に応じて種々
の添加剤、例えば核剤、艶消剤、顔料、染料、酸化防止
剤、紫外線吸収剤などを含有してもよい。
The polyamide used in the present invention includes nylon 6,
Examples include common crystalline polyamides such as nylon 66, nylon 12, nylon 11-610, and nylon 46. Further, the polyamide may contain various additives, such as a nucleating agent, a matting agent, a pigment, a dye, an antioxidant, and an ultraviolet absorber, as necessary.

以下本発明について実施例をあげてさらに説明する。The present invention will be further explained below with reference to Examples.

実施例1 ナイロン6チップ(ポリマ濃度1%、98%硫酸溶媒、
25°Cで測定した硫酸相対粘度が3.55)を290
°Cの紡糸温度で、外径/内径10゜0mm/9.4m
mの芯鞘型中空糸用口金を用いて、吐出量3  g−m
in  ’で吐出し、それと同時にその中空部に熱媒シ
リコーン(東しシリコーンS H211)を9ml・m
in −”吐出量で注入して紡出した糸条を、1−.5
ml・sec  ’の冷風で冷却した後、40m−m1
ロー1で巻き取った。この中空糸の密度は1.122g
−cm″′3、複屈折は0.7X10−3であった。
Example 1 Nylon 6 chip (polymer concentration 1%, 98% sulfuric acid solvent,
The relative viscosity of sulfuric acid measured at 25°C is 3.55) and 290
At spinning temperature of °C, outer diameter/inner diameter 10゜0mm/9.4m
Discharge amount 3 g-m using a core-sheath type hollow fiber nozzle
At the same time, 9 ml/m of heat medium silicone (Toshi Silicone S H211) was discharged into the hollow part.
The yarn spun by injecting at a discharge rate of 1-.5
After cooling with cold air of ml・sec', 40m-m1
I wound it up with Row 1. The density of this hollow fiber is 1.122g
-cm'''3, and the birefringence was 0.7X10-3.

この中空糸を2.0倍に延伸して、密度1.125g−
cm−3、複屈折23.2X千0″3とした後、無緊張
状態に保ってヨウ化カリウム1%を含む水溶液中に浸漬
し、オートクレーブ中にセットした。
This hollow fiber was stretched 2.0 times to have a density of 1.125g-
cm-3 and birefringence of 23.2×1,00″3, the sample was kept under no tension and immersed in an aqueous solution containing 1% potassium iodide, and then set in an autoclave.

オートクレーブ内に4.5kg−clTl−2の飽和水
蒸気を導入して10分間処理したところで処理を終了し
、処理中空糸を取り出して水洗後乾燥した。この湿熱処
理中空糸の密度は1.160g−cm−3、複屈折は3
0.5X1.0−3であり、50%伸長時弾性回復率E
R50は81%であった。また、50%伸長状態での窒
素透過率は9. 4X10−5cm−3・cm−2・s
ec−2・cmllg−1という測定結果であった。ま
た、この湿熱処理中空糸を電子顕微鏡で観察すると微細
な多孔構造が観察された。
The treatment was terminated when 4.5 kg-clTl-2 of saturated steam was introduced into the autoclave and treated for 10 minutes, and the treated hollow fibers were taken out, washed with water, and then dried. The density of this moist heat-treated hollow fiber is 1.160 g-cm-3, and the birefringence is 3.
0.5X1.0-3, and the elastic recovery rate E at 50% elongation
R50 was 81%. In addition, the nitrogen permeability at 50% elongation is 9. 4X10-5cm-3・cm-2・s
The measurement result was ec-2/cmllg-1. Furthermore, when this moist heat treated hollow fiber was observed under an electron microscope, a fine porous structure was observed.

比較例1 実施例1で、飽和水蒸気圧を5. 6kg−cm−2に
上げたことを除いたほかは同じ条件、方法で湿熱処理を
行なったところ、処理後の中空糸は融けてかたまりとな
っていた。
Comparative Example 1 In Example 1, the saturated water vapor pressure was set to 5. When moist heat treatment was carried out under the same conditions and method except that the weight was increased to 6 kg-cm-2, the hollow fibers after the treatment melted into a lump.

比較例2 実施例1−で得た未延伸中空糸を実施例1と同じ条件で
湿熱処理を施したが、湿熱処理中空糸の密度はi 、 
 l−32g−cm ’、複屈折は3.5X]−0−3
,50%伸長時弾性回復率ER50は57%であり、5
0%伸長状態での窒素透過率はOC「3・cm−211
sec −2φcml1g ’であった。
Comparative Example 2 The undrawn hollow fiber obtained in Example 1- was subjected to moist heat treatment under the same conditions as Example 1, but the density of the moist heat treated hollow fiber was i,
l-32g-cm', birefringence is 3.5X]-0-3
, the elastic recovery rate ER50 at 50% elongation is 57%, 5
The nitrogen permeability at 0% elongation is OC “3 cm-211
sec -2φcml1g'.

比較例3 実施例1−で、中空糸の両端に結節をつくったことを除
いたほかは同じ条件、方法で湿熱処理を行なったところ
、処理後の中空糸には裂は目がみられ、リーク糸しか得
られなかった。
Comparative Example 3 When wet heat treatment was carried out under the same conditions and method as in Example 1, except that knots were made at both ends of the hollow fibers, cracks were observed in the hollow fibers after the treatment. Only leak threads were obtained.

[発明の効果] 本発明により、優れた弾性回復性、微孔形成性を示す内
部構造のポリアミド中空糸膜が得られ、しかも、該ポリ
アミド中空糸膜を容易に製造することが可能となる。
[Effects of the Invention] According to the present invention, a polyamide hollow fiber membrane having an internal structure exhibiting excellent elastic recovery properties and microporous formation properties can be obtained, and the polyamide hollow fiber membrane can be easily produced.

Claims (2)

【特許請求の範囲】[Claims] (1)配向方向の複屈折が25×10^−^3〜40×
10^−^3、密度が1.150g・cm^−^3以上
、50%伸長時弾性回復率が70%以上、かつ、窒素透
過率が50%伸長状態で1.0×10^−^5cm^−
^3・cm^−^2・sec^−^2・cmHg^−^
1以上であることを特徴とするポリアミド中空糸膜。
(1) Birefringence in the orientation direction is 25×10^-^3~40×
10^-^3, density is 1.150 g cm^-^3 or more, elastic recovery rate at 50% elongation is 70% or more, and nitrogen permeability is 1.0 x 10^-^ at 50% elongation. 5cm^-
^3・cm^-^2・sec^-^2・cmHg^-^
1 or more polyamide hollow fiber membranes.
(2)複屈折が15×10^−^3〜35×10^−^
3であるポリアミド中空糸を両端あるいは片端を開口し
、無緊張状態に保って加圧飽和水蒸気もしくは加圧熱水
による湿熱処理をすることを特徴とするポリアミド中空
糸膜の製造方法。
(2) Birefringence is 15×10^-^3 to 35×10^-^
3. A method for producing a polyamide hollow fiber membrane, which comprises opening both ends or one end of the polyamide hollow fibers and subjecting them to a moist heat treatment using pressurized saturated steam or pressurized hot water while keeping them in a tension-free state.
JP31631790A 1990-11-20 1990-11-20 Polyamide hollow yarn membrane and its production Pending JPH04187226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31631790A JPH04187226A (en) 1990-11-20 1990-11-20 Polyamide hollow yarn membrane and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31631790A JPH04187226A (en) 1990-11-20 1990-11-20 Polyamide hollow yarn membrane and its production

Publications (1)

Publication Number Publication Date
JPH04187226A true JPH04187226A (en) 1992-07-03

Family

ID=18075788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31631790A Pending JPH04187226A (en) 1990-11-20 1990-11-20 Polyamide hollow yarn membrane and its production

Country Status (1)

Country Link
JP (1) JPH04187226A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009011891A (en) * 2007-07-02 2009-01-22 Toray Ind Inc Manufacturing method of composite semi-permeable membrane
JP2012183501A (en) * 2011-03-07 2012-09-27 Kitz Microfilter Corp Nylon hollow yarn membrane module and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009011891A (en) * 2007-07-02 2009-01-22 Toray Ind Inc Manufacturing method of composite semi-permeable membrane
JP2012183501A (en) * 2011-03-07 2012-09-27 Kitz Microfilter Corp Nylon hollow yarn membrane module and production method thereof

Similar Documents

Publication Publication Date Title
US4659529A (en) Method for the production of high strength polyacrylonitrile fiber
US5547756A (en) Porous polypropylene hollow fiber membrane of large pore diameter, production process thereof, and hydrophilized porous hollow fiber membranes
EP0513390B1 (en) Porous hollow fiber membrane of polyethylene and production thereof
US6793820B1 (en) Ethylene-vinyl alcohol hollow fiber membranes
EA001056B1 (en) Wet spinning process for aramid polymer containing salts and fiber produced from this process
JPS6335726B2 (en)
JPS5938322B2 (en) Microporous hollow fiber and its manufacturing method
KR101589746B1 (en) Hollow fiber membrane and method for manufacturing the same
JPH01272814A (en) Polyvinyl alcohol-based yarn having excellent hot water resistance and production thereof
US4658004A (en) Polyacrylonitrile fiber with high strength and high modulus of elasticity
JPH04187226A (en) Polyamide hollow yarn membrane and its production
JPS61108711A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
KR20040077322A (en) Preparation of asymmetric polyethylene hollow fiber membrane having high strength
JPH0246688B2 (en)
JPS62299513A (en) Production of polyphenylene sulfide monofilament
JPS61108713A (en) Polyvinyl alcohol fiber having good fiber properties and its production
JPH0233314A (en) High-tenacity polyvinyl alcohol based fiber and production thereof
JPH08252441A (en) Polypropylene hollow yarn membrane and its production
JPS61108712A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JPH01162816A (en) Novel polyethylene fiber
JP2503037B2 (en) Polyvinyl alcohol fiber with excellent flex fatigue
JPS6335820A (en) Production of polyacrylonitrile fiber having high tenacity
JPH0457769B2 (en)
JPS6399315A (en) Production of high-strength and high-initial elastic modulus polyvinyl alcohol fiber
JPH0959819A (en) Production of polyvinyl alcohol fiber