JP2009011891A - Manufacturing method of composite semi-permeable membrane - Google Patents

Manufacturing method of composite semi-permeable membrane Download PDF

Info

Publication number
JP2009011891A
JP2009011891A JP2007173755A JP2007173755A JP2009011891A JP 2009011891 A JP2009011891 A JP 2009011891A JP 2007173755 A JP2007173755 A JP 2007173755A JP 2007173755 A JP2007173755 A JP 2007173755A JP 2009011891 A JP2009011891 A JP 2009011891A
Authority
JP
Japan
Prior art keywords
semipermeable membrane
composite semipermeable
boron
water
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007173755A
Other languages
Japanese (ja)
Other versions
JP5239228B2 (en
JP2009011891A5 (en
Inventor
Kenta Iwai
健太 岩井
Shinichi Minegishi
進一 峯岸
Hiroki Tomioka
洋樹 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007173755A priority Critical patent/JP5239228B2/en
Publication of JP2009011891A publication Critical patent/JP2009011891A/en
Publication of JP2009011891A5 publication Critical patent/JP2009011891A5/ja
Application granted granted Critical
Publication of JP5239228B2 publication Critical patent/JP5239228B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a composite semi-permeable membrane having high blocking performance against boron not dissociated in a neutral region. <P>SOLUTION: The composite semi-permeable membrane having performance of a water permeation coefficient of 30×10<SP>-12</SP>m<SP>3</SP>/m<SP>2</SP>×Pa s or less, is manufactured by a method of forming a separation functional layer consisting of cross-linked polyamide by the interface polycondensation reaction of a multifunctional amine compound to a multifunctional acid-halide. Then, the composite semi-permeable membrane is subjected to steam treatment in a steam atmosphere heated to 101-140°C in a pressurized condition of 104-364 kPa. A boron permeation coefficient is reduced to 1/3 or less by this treatment. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は液状混合物の選択分離に有用な複合半透膜の製造方法に関する。詳しくは、海水やかん水から塩分を除去する際にホウ素も十分に除去することができる、架橋ポリアミドからなる分離機能層を有する複合半透膜を製造する方法に関する。   The present invention relates to a method for producing a composite semipermeable membrane useful for selective separation of a liquid mixture. Specifically, the present invention relates to a method for producing a composite semipermeable membrane having a separation functional layer made of a crosslinked polyamide, which can sufficiently remove boron when removing salt from seawater or brine.

近年、複合半透膜を用いた海水の淡水化が、世界中の水処理プラントで実用化されてきている。分離機能層が架橋ポリアミドからなる複合半透膜は、多官能性アミンと多官能性ハロゲン化物との界面重縮合によって分離機能層を形成し、容易に製膜できるという利点があり、さらに、高塩排除率、高透過流束であるという優れた性能を有する利点がある(特許文献1,2参照)。   In recent years, desalination of seawater using a composite semipermeable membrane has been put to practical use in water treatment plants around the world. The composite semipermeable membrane whose separation functional layer is made of cross-linked polyamide has the advantage that the separation functional layer can be easily formed by interfacial polycondensation of a polyfunctional amine and a polyfunctional halide. There exists an advantage which has the outstanding performance that it is a salt rejection rate and a high permeation | transmission flux (refer patent document 1, 2).

しかしながら、水処理によって取得する水に要求される水質基準はますます厳しくなっており、特に海水中に微量含まれるホウ素については、通常の逆浸透膜処理では飲料水に適用できる濃度にまで低減することが困難である。   However, the water quality standards required for water obtained by water treatment are becoming stricter, and especially for boron contained in trace amounts in seawater, it is reduced to a concentration applicable to drinking water by ordinary reverse osmosis membrane treatment. Is difficult.

そこで、複合半透膜のホウ素阻止性能を向上させる手段が種々提案されてきている。その一つとして、界面重縮合により製膜された複合半透膜を熱処理して性能向上させる方法が挙げられる。この方法では、従来の製造方法に対して大きな変更を加える必要がないため、簡便な改善方法として有用である。その熱処理としては、例えば、架橋ポリアミドからなる複合半透膜を40〜100℃の範囲で熱水処理する方法が提案されている(特許文献3,4参照)。   Therefore, various means for improving the boron blocking performance of the composite semipermeable membrane have been proposed. One of them is a method of improving the performance by heat-treating a composite semipermeable membrane formed by interfacial polycondensation. This method is useful as a simple improvement method because it is not necessary to make major changes to the conventional manufacturing method. As the heat treatment, for example, a method of hydrothermally treating a composite semipermeable membrane made of a crosslinked polyamide in a range of 40 to 100 ° C. has been proposed (see Patent Documents 3 and 4).

しかし、この方法によって処理されて得られる複合半透膜を、25℃、pH6.5、ホウ素濃度5ppm、TDS濃度3.5重量%の海水を5.5MPaの操作圧力で透過させた場合のホウ素透過係数は、熱水処理前と熱水処理後とで比較した場合、(熱水処理前のホウ素透過係数)÷(熱水処理後のホウ素透過係数)は2.5程度であり、熱水処理だけではホウ素透過性を十分に低減させることはできない。そこで、より高いホウ素阻止性能向上効果を得られる、後処理方法の開発が望まれていた。   However, the composite semipermeable membrane obtained by the treatment by this method is boron in a case where seawater having a temperature of 6.5 ° C., a pH of 6.5, a boron concentration of 5 ppm, and a TDS concentration of 3.5% by weight is permeated at an operating pressure of 5.5 MPa. When the permeation coefficient is compared before and after hydrothermal treatment, (boron permeation coefficient before hydrothermal treatment) / (boron permeation coefficient after hydrothermal treatment) is about 2.5. Treatment alone cannot sufficiently reduce boron permeability. Therefore, it has been desired to develop a post-treatment method capable of obtaining a higher boron blocking performance improvement effect.

特開平1−180208号公報JP-A-1-180208 特開平2−115027号公報Japanese Patent Laid-Open No. 2-115027 特開平11−19493号公報JP-A-11-19493 特公平7−114941号公報Japanese Patent Publication No.7-114941

本発明は、ホウ素のような中性領域では非解離の物質に対しても十分に高い阻止性能を示す複合半透膜を製造する方法の提供を目的とする。   An object of the present invention is to provide a method for producing a composite semipermeable membrane exhibiting a sufficiently high blocking performance against a non-dissociated substance in a neutral region such as boron.

上記課題を解決するための本発明法は、下記(1)〜(6)によって特定される。
(1)多官能アミン化合物と多官能酸ハロゲン化物とから界面重縮合反応によって架橋ポリアミドからなる分離機能層を形成する方法によって、水透過係数が30×10−12/m・Pa・s以下の性能を有する複合半透膜を製造した後、該複合半透膜を、加圧かつ加熱された水蒸気雰囲気下で蒸気処理することを特徴とする複合半透膜の製造方法。
(2)前記蒸気処理が、104〜364kPaの加圧条件下、かつ、101〜140℃に加熱された水蒸気雰囲気中で行われることを特徴とする上記(1)に記載の複合半透膜の製造方法。
(3)25℃、pH6.5、ホウ素濃度5ppm、TDS濃度3.5重量%の海水を5.5MPaの操作圧力で透水処理したときのホウ素透過係数が、(前記蒸気処理前のホウ素透過係数)÷(前記蒸気処理後のホウ素透過係数)≧3.0の関係式が成り立つことを特徴とする、上記(1)または(2)に記載の複合半透膜の製造方法。
(4)上記(1)〜(3)のいずれかに記載の製造方法によって得られる複合半透膜を有していることを特徴とする複合半透膜エレメント。
(5)上記(1)〜(3)のいずれかに記載の製造方法によって得られる複合半透膜を用いて海水もしくはかん水を逆浸透処理することを特徴とする水処理方法
The method of the present invention for solving the above problems is specified by the following (1) to (6).
(1) by a method for forming a separating functional layer comprising a crosslinked polyamide by interfacial polycondensation reaction from a polyfunctional amine compound and a polyfunctional acid halide, water permeability coefficient is 2 · Pa · 30 × 10 -12 m 3 / m A method for producing a composite semipermeable membrane, comprising: producing a composite semipermeable membrane having a performance of s or less, and then subjecting the composite semipermeable membrane to steam treatment in a pressurized and heated water vapor atmosphere.
(2) The composite semipermeable membrane according to (1), wherein the steam treatment is performed under a pressurized condition of 104 to 364 kPa and in a steam atmosphere heated to 101 to 140 ° C. Production method.
(3) Boron permeability coefficient when seawater treated at 25 ° C., pH 6.5, boron concentration 5 ppm, TDS concentration 3.5% by weight at an operating pressure of 5.5 MPa is (boron permeability coefficient before the steam treatment) ) ÷ (Boron permeability coefficient after the steam treatment) ≧ 3.0 is satisfied, The method for producing a composite semipermeable membrane according to the above (1) or (2),
(4) A composite semipermeable membrane element comprising a composite semipermeable membrane obtained by the production method according to any one of (1) to (3) above.
(5) A water treatment method characterized by subjecting seawater or brine to reverse osmosis using the composite semipermeable membrane obtained by the production method according to any one of (1) to (3) above.

本発明法によれば、逆浸透膜処理では高度に阻止することが難しかったホウ素のような中性領域で非解離の物質にたいしても高い阻止性能を有する複合半透膜を製造することができる。したがって、この複合半透膜によれば、特に海水の脱塩において、これまでは高度の阻止が難しかったホウ素を高い阻止率でもって除去することができ、逆浸透処理による飲料水製造において好適に用いることができる。   According to the method of the present invention, it is possible to produce a composite semipermeable membrane having high blocking performance even for a non-dissociated substance in a neutral region such as boron, which has been difficult to block by reverse osmosis membrane treatment. Therefore, according to this composite semipermeable membrane, boron, which has been difficult to prevent at a high level, can be removed with a high rejection rate, particularly in seawater desalination, and is suitable for drinking water production by reverse osmosis treatment. Can be used.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本発明は、微多孔性支持膜上に、多官能アミン化合物と多官能酸ハロゲン化物とからの界面重縮合反応によって架橋ポリアミドからなる分離機能層を形成させる方法によって、水透過係数が30×10−12/m・Pa・s以下の性能を有する複合半透膜を製造した後、該複合半透膜を、加圧・加熱された水蒸気雰囲気下で蒸気処理するものである。ここで、加圧・加熱された水蒸気雰囲気下は、104〜364kPaの加圧条件下において101〜140℃に加熱された水蒸気雰囲気下であることが好ましい。 The present invention provides a water permeability coefficient of 30 × 10 6 by a method in which a separation functional layer made of a crosslinked polyamide is formed on a microporous support membrane by an interfacial polycondensation reaction from a polyfunctional amine compound and a polyfunctional acid halide. After producing a composite semipermeable membrane having a performance of −12 m 3 / m 2 · Pa · s or less, the composite semipermeable membrane is subjected to steam treatment in a pressurized and heated water vapor atmosphere. Here, the pressurized and heated steam atmosphere is preferably a steam atmosphere heated to 101 to 140 ° C. under a pressure of 104 to 364 kPa.

多官能アミン化合物とは、一分子中に少なくとも2個以上の一級および/または二級アミノ基を有する多官能アミンをいう。たとえば2個以上のアミノ基がオルト位やメタ位、パラ位のいずれかの位置関係でベンゼンに結合したフェニレンジアミン、キシリレンジアミン、1,3,5−トリアミノベンゼン、1,2,4−トリアミノベンゼン、3,5−ジアミノ安息香酸などの芳香族多官能アミン、エチレンジアミン、プロピレンジアミンなどの脂肪族アミン、1,2−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサン、ピペラジン、1,3−ビスピペリジルプロパン、4−アミノメチルピペラジンなどの脂環式多官能アミン等を挙げることができる。中でも、膜の選択分離性や透過性、耐熱性を考慮すると一分子中に2〜4個の一級および/または二級アミノ基を有する芳香族多官能アミンであることが好ましく、このような多官能芳香族アミンとしては、m−フェニレンジアミン、p−フェニレンジアミン、1,3,5−トリアミノベンゼンが好適に用いられる。中でも、入手の容易性や取り扱いのしやすさから、m−フェニレンジアミン(以下、m−PDAと記す)を用いることがより好ましい。これらの多官能アミンは、単独で用いたり、混合して用いてもよい。   The polyfunctional amine compound refers to a polyfunctional amine having at least two primary and / or secondary amino groups in one molecule. For example, phenylenediamine, xylylenediamine, 1,3,5-triaminobenzene, 1,2,4- in which two or more amino groups are bonded to benzene in any of the ortho, meta, and para positions. Aromatic polyfunctional amines such as triaminobenzene and 3,5-diaminobenzoic acid, aliphatic amines such as ethylenediamine and propylenediamine, 1,2-diaminocyclohexane, 1,4-diaminocyclohexane, piperazine, 1,3-bis Examples include alicyclic polyfunctional amines such as piperidylpropane and 4-aminomethylpiperazine. Of these, aromatic polyfunctional amines having 2 to 4 primary and / or secondary amino groups in one molecule are preferred in consideration of selective separation, permeability, and heat resistance of the membrane. As the functional aromatic amine, m-phenylenediamine, p-phenylenediamine, and 1,3,5-triaminobenzene are preferably used. Among these, it is more preferable to use m-phenylenediamine (hereinafter referred to as m-PDA) from the standpoint of availability and ease of handling. These polyfunctional amines may be used alone or in combination.

多官能酸ハロゲン化物とは、一分子中に少なくとも2個のハロゲン化カルボニル基を有する酸ハロゲン化物をいう。たとえば、3官能酸ハロゲン化物では、トリメシン酸クロリド、1,3,5−シクロヘキサントリカルボン酸トリクロリド、1,2,4−シクロブタントリカルボン酸トリクロリドなどを挙げることができ、2官能酸ハロゲン化物では、ビフェニルジカルボン酸ジクロリド、アゾベンゼンジカルボン酸ジクロリド、テレフタル酸クロリド、イソフタル酸クロリド、ナフタレンジカルボン酸クロリドなどの芳香族2官能酸ハロゲン化物、アジポイルクロリド、セバコイルクロリドなどの脂肪族2官能酸ハロゲン化物、シクロペンタンジカルボン酸ジクロリド、シクロヘキサンジカルボン酸ジクロリド、テトラヒドロフランジカルボン酸ジクロリドなどの脂環式2官能酸ハロゲン化物を挙げることができる。多官能アミンとの反応性を考慮すると、多官能酸ハロゲン化物は多官能酸塩化物であることが好ましく、また、膜の選択分離性、耐熱性を考慮すると、一分子中に2〜4個の塩化カルボニル基を有する多官能芳香族酸塩化物であることが好ましい。中でも、入手の容易性や取り扱いのしやすさの観点から、トリメシン酸クロリドを用いるとより好ましい。これらの多官能酸ハロゲン化物は、単独で用いたり、混合して用いてもよい。   The polyfunctional acid halide refers to an acid halide having at least two carbonyl halide groups in one molecule. Examples of trifunctional acid halides include trimesic acid chloride, 1,3,5-cyclohexanetricarboxylic acid trichloride, 1,2,4-cyclobutanetricarboxylic acid trichloride, and bifunctional acid halides include biphenyl dicarboxylic acid. Aromatic difunctional acid halides such as acid dichloride, azobenzene dicarboxylic acid dichloride, terephthalic acid chloride, isophthalic acid chloride, naphthalene dicarboxylic acid chloride, aliphatic difunctional acid halides such as adipoyl chloride, sebacoyl chloride, cyclopentane Examples thereof include alicyclic difunctional acid halides such as dicarboxylic acid dichloride, cyclohexane dicarboxylic acid dichloride, and tetrahydrofuran dicarboxylic acid dichloride. Considering the reactivity with the polyfunctional amine, the polyfunctional acid halide is preferably a polyfunctional acid chloride, and considering the selective separation property and heat resistance of the membrane, 2 to 4 per molecule. The polyfunctional aromatic acid chloride having a carbonyl chloride group is preferred. Among them, it is more preferable to use trimesic acid chloride from the viewpoint of easy availability and easy handling. These polyfunctional acid halides may be used alone or in combination.

本発明の複合分半透膜の分離機能層の厚みは、十分な分離性能および透過水量を得るために、通常0.01〜1μmの範囲内、好ましくは0.1〜0.5μmの範囲内である。   The thickness of the separation functional layer of the composite semipermeable membrane of the present invention is usually within the range of 0.01 to 1 μm, preferably within the range of 0.1 to 0.5 μm, in order to obtain sufficient separation performance and permeated water amount. It is.

本発明における複合半透膜は、微多孔性支持膜上に分離機能層が形成された複合半透膜であり、この微多孔性支持膜は、実質的にイオン等の分離性能を有さないものであって、実質的に分離性能を有する分離機能層に強度を与えるためのものである。孔のサイズや分布は特に限定されないが、例えば、均一で微細な孔をもち、あるいは、分離機能層が形成される側の表面からもう一方の面まで徐々に大きな微細孔をもち、かつ、分離機能層が形成される側の表面で微細孔の大きさが0.1nm以上100nm以下であるような支持膜が好ましい。   The composite semipermeable membrane in the present invention is a composite semipermeable membrane in which a separation functional layer is formed on a microporous support membrane, and this microporous support membrane has substantially no separation performance of ions or the like. In order to give strength to the separation functional layer having separation performance substantially. The size and distribution of the pores are not particularly limited. For example, the pores have uniform and fine pores, or gradually have large pores from the surface on the side where the separation functional layer is formed to the other surface, and are separated. A support membrane in which the size of the micropores is 0.1 nm or more and 100 nm or less on the surface on the side where the functional layer is formed is preferable.

微多孔性支持膜に使用する材料やその形状は特に限定されないが、たとえばポリエステルまたは芳香族ポリアミドから選ばれる少なくとも一種を主成分とする布帛(基布)により強化された、ポリスルホンや酢酸セルロースやポリ塩化ビニル、あるいはそれらを混合した樹脂からなるものが好ましく使用される。使用される樹脂素材としては、化学的、機械的、熱的に安定性の高いポリスルホンを使用するのが特に好ましい。具体的には、次の化学式に示す繰り返し単位からなるポリスルホンを用いると、孔径が制御しやすく、寸法安定性が高いため好ましい。   The material used for the microporous support membrane and the shape thereof are not particularly limited. For example, polysulfone, cellulose acetate, or polysiloxane reinforced with a fabric (base fabric) containing at least one selected from polyester or aromatic polyamide as a main component. Those made of vinyl chloride or a mixture of these are preferably used. As the resin material to be used, it is particularly preferable to use polysulfone having high chemical, mechanical and thermal stability. Specifically, it is preferable to use polysulfone composed of repeating units represented by the following chemical formula because the pore diameter is easy to control and the dimensional stability is high.

たとえば、上記ポリスルホンのN,N−ジメチルホルムアミド(DMF)溶液を、密に織ったポリエステル布あるいは不織布(基布)の上に一定の厚さに注型し、それを水中で湿式凝固させることによって、表面の大部分が直径数10nm以下の微細な孔を有した微多孔性支持膜を製造することができる。   For example, the N, N-dimethylformamide (DMF) solution of the above polysulfone is cast on a densely woven polyester cloth or non-woven cloth (base cloth) to a certain thickness, and wet coagulated in water. Thus, a microporous support membrane having most of the surface with fine pores having a diameter of several tens of nm or less can be produced.

上記の微多孔質支持膜の厚みや基布の厚みは、複合半透膜の強度およびそれをエレメントにしたときの充填密度に影響を与える。十分な機械的強度および充填密度を得るためには、微多孔質支持膜の厚みは50〜300μmの範囲内にあることが好ましく、より好ましくは75〜200μmの範囲内である。また、基布上に形成された多孔質層の厚みは、10〜200μmの範囲内にあることが好ましく、より好ましくは30〜100μmの範囲内である。   The thickness of the microporous support membrane and the thickness of the base fabric affect the strength of the composite semipermeable membrane and the packing density when it is used as an element. In order to obtain sufficient mechanical strength and packing density, the thickness of the microporous support membrane is preferably in the range of 50 to 300 μm, more preferably in the range of 75 to 200 μm. Moreover, it is preferable that the thickness of the porous layer formed on the base fabric exists in the range of 10-200 micrometers, More preferably, it exists in the range of 30-100 micrometers.

微多孔質支持膜の表面孔径等の形態は、走査型電子顕微鏡や透過型電子顕微鏡、原子間顕微鏡により観察できる。例えば走査型電子顕微鏡で観察するのであれば、基材から多孔質層を剥がした後、この多孔質層を凍結割断法で切断して断面観察のサンプルとする。このサンプルに白金または白金−パラジウムまたは四塩化ルテニウム、好ましくは四塩化ルテニウムを薄くコーティングして3〜6kVの加速電圧で高分解能電界放射型走査電子顕微鏡(UHR−FE−SEM)で観察する。高分解能電界放射型走査電子顕微鏡は、日立製S−900型電子顕微鏡などが使用できる。得られた電子顕微鏡写真から多孔質支持体の膜厚や表面孔径を決定する。なお、本発明における厚みや孔径は平均値を意味するものである。   Forms such as the surface pore diameter of the microporous support membrane can be observed with a scanning electron microscope, a transmission electron microscope, or an atomic microscope. For example, when observing with a scanning electron microscope, after peeling off the porous layer from the substrate, the porous layer is cut by a freeze cleaving method to obtain a sample for cross-sectional observation. The sample is thinly coated with platinum, platinum-palladium, or ruthenium tetrachloride, preferably ruthenium tetrachloride, and observed with a high-resolution field emission scanning electron microscope (UHR-FE-SEM) at an acceleration voltage of 3 to 6 kV. A Hitachi S-900 electron microscope or the like can be used as the high resolution field emission scanning electron microscope. The film thickness and surface pore diameter of the porous support are determined from the obtained electron micrograph. In addition, the thickness and the hole diameter in this invention mean an average value.

次に、本発明によって蒸気処理される複合半透膜の製造方法について述べる。   Next, the manufacturing method of the composite semipermeable membrane processed by steam according to the present invention will be described.

例えば、密に織ったポリエステル布や不織布などの基布の上に、ポリスルホン溶液を一定の厚さに注型し、それを水中で湿式凝固させて、表面の大部分が直径数十nm以下の微細な孔を有した微多孔性支持膜を製造する。   For example, a polysulfone solution is cast to a certain thickness on a base fabric such as a densely woven polyester fabric or nonwoven fabric, and it is wet-coagulated in water, so that most of the surface has a diameter of several tens of nm or less. A microporous support membrane having fine pores is produced.

このようにして得られた微多孔性支持膜上に、1分子中に少なくとも2個のアミノ基を有する多官能アミン化合物の水溶液、多官能酸ハロゲン化物の溶液を順に塗布してin−situ界面重縮合反応をさせて、実質的に分離性能を有するポリアミド分離機能層を形成させる。   On the microporous support membrane thus obtained, an aqueous solution of a polyfunctional amine compound having at least two amino groups in one molecule and a solution of a polyfunctional acid halide are sequentially applied to form an in-situ interface. A polycondensation reaction is performed to form a polyamide separation functional layer having substantially separation performance.

多官能アミン化合物水溶液中の多官能アミン化合物の濃度は、0.5〜20重量%の範囲内にあることが好ましく、1〜15重量%の範囲内にあることがより好ましい。多官能アミン化合物濃度が0.5重量%を下回ると、水透過係数が30×10−12/m・Pa・s以下の複合半透膜を作製することが困難となり、20重量%を超えると分離機能層の膜厚が大きくなり実用レベルの透過水量を得ることが困難となる。 The concentration of the polyfunctional amine compound in the polyfunctional amine compound aqueous solution is preferably in the range of 0.5 to 20% by weight, and more preferably in the range of 1 to 15% by weight. Multi the polyfunctional amine compound concentration is below 0.5 wt%, it is difficult to water permeability coefficient to produce the following composite semipermeable membrane 30 × 10 -12 m 3 / m 2 · Pa · s, 20 wt% If it exceeds 1, the thickness of the separation functional layer becomes large, and it becomes difficult to obtain a permeated water amount at a practical level.

多官能酸ハロゲン化物を溶解する溶媒は、水と非混和性であり、かつ、多官能酸ハロゲン化物を溶解するとともに、微多孔性支持膜を破壊せず、界面重縮合により架橋ポリマーを形成し得るものであればよい。例えば、炭化水素化合物、シクロヘキサン、1,1,2−トリクロロ−1,2,2トリフルオロエタンなどが挙げられるが、反応速度、溶媒の揮発性から、好ましくは、n−ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、1,1,2−トリクロロ−1,2,2トリフルオロエタンなどである。   The solvent that dissolves the polyfunctional acid halide is immiscible with water, dissolves the polyfunctional acid halide, does not destroy the microporous support membrane, and forms a crosslinked polymer by interfacial polycondensation. Anything can be obtained. For example, hydrocarbon compounds, cyclohexane, 1,1,2-trichloro-1,2,2 trifluoroethane and the like are mentioned. From the reaction rate and solvent volatility, n-hexane, heptane, octane, Nonane, decane, undecane, dodecane, 1,1,2-trichloro-1,2,2 trifluoroethane and the like.

上記有機溶媒中の多官能酸ハロゲン化物の濃度は、0.04〜1.0重量%の範囲内であると好ましい。0.04重量%を下回ると、活性層である分離機能層の形成が不十分となりやすく、1.0重量%を超えると実用レベルの透過水量を得ることが困難となり、また、コスト高となる。   The concentration of the polyfunctional acid halide in the organic solvent is preferably in the range of 0.04 to 1.0% by weight. If the amount is less than 0.04% by weight, the formation of the separation functional layer, which is an active layer, is likely to be insufficient. If the amount exceeds 1.0% by weight, it is difficult to obtain a practical level of permeated water, and the cost is increased. .

多官能アミン化合物水溶液、および多官能酸ハロゲン化物溶液には、多官能アミン化合物と多官能酸ハロゲン化物との反応を妨害しないものであれば、必要に応じて、アシル化触媒や極性溶媒、酸補足剤、界面活性剤、酸化防止剤などを含有させることもできる。   In the polyfunctional amine compound aqueous solution and the polyfunctional acid halide solution, as long as they do not interfere with the reaction between the polyfunctional amine compound and the polyfunctional acid halide, an acylation catalyst, a polar solvent, an acid can be used as necessary. Supplementary agents, surfactants, antioxidants, and the like can also be included.

これら多官能アミン化合物、多官能酸ハロゲン化物およびその他の成分の比率は、上記範囲内の濃度でもって製造する複合半透膜の水透過係数が30×10−12/m・Pa・s以下になるように適宜調整すればよい。 The ratio of these polyfunctional amine compounds, polyfunctional acid halides and other components is such that the water permeability coefficient of the composite semipermeable membrane produced with a concentration within the above range is 30 × 10 −12 m 3 / m 2 · Pa · What is necessary is just to adjust suitably so that it may become s or less.

このようにして得られた複合半透膜(水透過係数が30×10−12/m・Pa・s以下)を、そのまま、加圧・加熱された水蒸気雰囲気下で蒸気処理しても良いし、また、前記のようにして得られた複合半透膜を、次いで、水洗などによって未反応残存物を取り除いた後、pHが6〜13の範囲内の塩素含有水溶液に常圧で接触させ、その後に、加圧・加熱された水蒸気雰囲気下で蒸気処理してもよい。後者の場合には、最終的に得られる複合半透膜の塩排除率、透過水量を高めることができるので好ましい。ここで、加圧・加熱された水蒸気雰囲気は、104〜364kPaの加圧条件下において101〜140℃に加熱された水蒸気雰囲気であることが好ましい。 The composite semipermeable membrane (water permeability coefficient of 30 × 10 −12 m 3 / m 2 · Pa · s or less) thus obtained is steam-treated in a pressurized and heated steam atmosphere as it is. In addition, after removing the unreacted residue by washing the composite semipermeable membrane obtained as described above with water or the like, it is applied to a chlorine-containing aqueous solution having a pH of 6 to 13 at normal pressure. After that, steam treatment may be performed in a pressurized and heated steam atmosphere. The latter case is preferable because it can increase the salt rejection rate and the amount of permeated water of the finally obtained composite semipermeable membrane. Here, it is preferable that the water vapor atmosphere pressurized and heated is a water vapor atmosphere heated to 101 to 140 ° C. under a pressure of 104 to 364 kPa.

蒸気処理の前に常圧で接触処理させるpH6〜13の塩素含有水溶液としては、以下に例示する塩素発生化合物を含有する水溶液が用いられる。すなわち、塩素発生化合物としては、塩素ガス、サラシ粉、次亜塩素酸ナトリウム、二酸化塩素、クロラミンB、クロラミンT、ハラゾーン、ジクロロジメチルヒダントイン、塩素化イソシアヌル酸およびその塩などを代表例として挙げることができ、酸化力の強さによって、その濃度を決定することが好ましい。上記の塩素発生化合物を含有する水溶液の中でも、次亜塩素酸ナトリウム水溶液が、取り扱い性の点から好ましい。また、塩素処理剤として、次亜塩素酸ナトリウムを使用する場合、遊離塩素の濃度は10〜2000ppmが好ましく、膜性能のバランスを考えると、100〜1000ppmの範囲がより好ましい。塩素処理時間は2分〜20時間が好ましく、遊離塩素濃度が低く、処理pHが高い場合には、処理時間は長時間の方が好ましく、逆に遊離塩素濃度が高く、処理pHが低い場合には、処理時間は短時間の方が好ましい。   As the chlorine-containing aqueous solution having a pH of 6 to 13 to be contact-treated at normal pressure before the steam treatment, an aqueous solution containing a chlorine generating compound exemplified below is used. That is, typical examples of the chlorine generating compound include chlorine gas, white powder, sodium hypochlorite, chlorine dioxide, chloramine B, chloramine T, harazone, dichlorodimethylhydantoin, chlorinated isocyanuric acid and salts thereof. The concentration is preferably determined by the strength of the oxidizing power. Among the aqueous solutions containing the above chlorine generating compound, a sodium hypochlorite aqueous solution is preferable from the viewpoint of handleability. Moreover, when using sodium hypochlorite as a chlorinating agent, the concentration of free chlorine is preferably 10 to 2000 ppm, and the range of 100 to 1000 ppm is more preferable in view of the balance of membrane performance. Chlorine treatment time is preferably 2 minutes to 20 hours, and when the free chlorine concentration is low and the treatment pH is high, the treatment time is preferably long, and conversely when the free chlorine concentration is high and the treatment pH is low. The treatment time is preferably shorter.

複合半透膜における水透過係数(L)とホウ素透過係数(P)の値は、膜面で生じる濃度分極現象を考慮した以下の測定・算出方法で求めることができる。 The values of the water permeability coefficient (L p ) and the boron permeability coefficient (P b ) in the composite semipermeable membrane can be obtained by the following measurement / calculation method considering the concentration polarization phenomenon occurring on the membrane surface.

平膜状の複合半透膜の試料を用いて測定する場合は、参考文献1(M. タニグチ(M.Taniguchi)らによる「ジャーナル・オブ・メンブレン・サイエンス」第183巻,2000年,p259−267(以下、参考文献1という)に記載された平膜セル(図1)を使用する。この平膜セルは、図1(縦断面図)に示すように、供給する原水の流れ方向に対し、半透膜、不織布、燒結金属を順次重ね、その上に蓋部を重ねてシールした構造のものであり、側面上部から透過水が、側面下部から濃縮水が排出される。   When measuring using a flat membrane-like composite semipermeable membrane sample, Reference 1 (M. Taniguchi et al., “Journal of Membrane Science” Vol. 183, 2000, p259- The flat membrane cell (FIG. 1) described in H.267 (hereinafter referred to as Reference Document 1) is used, as shown in FIG. In this structure, a semipermeable membrane, a nonwoven fabric, and a sintered metal are sequentially stacked, and a lid is stacked and sealed thereon. Permeated water is discharged from the upper side and concentrated water is discharged from the lower side.

この平膜セルを用い、供給圧力5.5MPa、流量3.5L/分で、25℃の模擬海水(pH6.5、ホウ素濃度5.0mg/L、全溶質濃度3.5重量%の海水)を透過させ、水透過流束(J)、得られた透過水の水質、濃縮水の水質を測定する。これら測定値から、半透膜の阻止性能を求め、以下の式によって水透過係数(L),ホウ素透過係数(P)を算出する。 Using this flat membrane cell, simulated sea water (pH 6.5, boron concentration 5.0 mg / L, total solute concentration 3.5 wt% seawater) at a supply pressure of 5.5 MPa and a flow rate of 3.5 L / min at 25 ° C. was transmitted, the water flux (J v), the water quality of the permeated water obtained to measure the quality of the concentrate. From these measured values, the blocking performance of the semipermeable membrane is obtained, and the water permeability coefficient (L p ) and boron permeability coefficient (P b ) are calculated by the following equations.

ここで、TDS浸透圧(π)は、「AIChEジャーナル」第46巻,2000年,p1967−1973(以下、参考文献2という)に記載された、いわゆる「三宅の式」(下記)によって求めることができる。   Here, the TDS osmotic pressure (π) is obtained by the so-called “Miyake's formula” (below) described in “AIChE Journal” Vol. 46, 2000, p1967-1973 (hereinafter referred to as Reference 2). Can do.

上記におけるTDS原水膜面濃度(C)は、
の式から求める。ここにおけるTDS濃縮水濃度(C)とホウ素原水膜面濃度(Cmb)の値としては実測による値を用いればよい。
TDS raw water membrane surface concentration in the (C m) is
Obtained from the equation Here, as the values of the TDS concentrated water concentration (C f ) and the boron raw water film surface concentration (C mb ), values obtained by actual measurement may be used.

また、上記TDS物質移動係数(k)は、評価セルによって決められる値であり、この測定で用いた平膜セルの場合、
k=1.63×10−3・Q0.4053
である。つづいて、ホウ素の物質移動係数(k)は、参考文献1に示されるように、
k/k=(D/D0.75
D :TDS拡散係数[m/s]
:ホウ素拡散係数[m/s]
から算出する。
The TDS mass transfer coefficient (k) is a value determined by the evaluation cell. In the case of the flat membrane cell used in this measurement,
k = 1.63 × 10 −3 · Q 0.4053
It is. Subsequently, the mass transfer coefficient (k b ) of boron, as shown in Reference 1,
k / k b = (D / D b ) 0.75
D: TDS diffusion coefficient [m 2 / s]
D b: Boron diffusion coefficient [m 2 / s]
Calculate from

したがって、上記の式から未知数L,P,P,C,Cmbを算出する。
なお、平膜セルの代わりに膜エレメントで測定する場合には、参考文献2に示されているように、膜エレメントの長さ方向に積分しながらL,Pをフィッティングによって算出すればよい。
Therefore, the unknowns L p , P, P b , C m , and C mb are calculated from the above formula.
When measurement is performed with a membrane element instead of a flat membrane cell, L p and P may be calculated by fitting while integrating in the length direction of the membrane element as shown in Reference 2.

本発明による蒸気処理に供される複合半透膜は、水透過係数が30×10−12/m・Pa・s以下の性能を有する複合半透膜である。好ましくは20×10−12/m・Pa・s以下であり、より好ましくは、15×10−12/m・Pa・s以下である。水透過係数が30×10−12/m・Pa・sを超える複合半透膜である場合は、本発明による蒸気処理を行っても十分な効果が得られない。 Composite semipermeable membrane to be subjected to a steam treatment according to the invention, the water permeability coefficient is a composite semipermeable membrane having a 30 × 10 -12 m 3 / m 2 · Pa · s or less performance. Preferably it is 20 * 10 < -12 > m < 3 > / m < 2 > * Pa * s or less, More preferably, it is 15 * 10 < -12 > m < 3 > / m < 2 > * Pa * s or less. In the case of a composite semipermeable membrane having a water permeability coefficient exceeding 30 × 10 −12 m 3 / m 2 · Pa · s, sufficient effects cannot be obtained even if the steam treatment according to the present invention is performed.

上記した水透過係数を有する複合半透膜を本発明によって蒸気処理すると、蒸気処理の前後における複合半透膜のホウ素透過係数を、次式のとおりにすることができる。   When the composite semipermeable membrane having the water permeability coefficient described above is steam-treated according to the present invention, the boron permeability coefficient of the composite semipermeable membrane before and after the steam treatment can be made as follows.

(蒸気処理前のホウ素透過係数)÷(蒸気処理後のホウ素透過係数)≧3.0
ここで、ホウ素透過係数は、25℃、pH6.5、ホウ素濃度5ppm、TDS濃度3.5重量%の海水を5.5MPaの操作圧力で透水処理したときのホウ素透過係数であり、それぞれ、蒸気処理する前の段階で測定した値、蒸気処理した後に測定した値である。
(Boron permeability coefficient before steam treatment) ÷ (Boron permeability coefficient after steam treatment) ≧ 3.0
Here, the boron permeation coefficient is a boron permeation coefficient when seawater having a temperature of 25 ° C., a pH of 6.5, a boron concentration of 5 ppm, and a TDS concentration of 3.5% by weight is subjected to a water permeation treatment at an operating pressure of 5.5 MPa. It is a value measured at a stage before the treatment, and a value measured after the steam treatment.

このように、本発明で特定した蒸気処理を行うことによって、ホウ素透過係数を3分の1以下に低減させることができるので、ホウ素を高い阻止率でもって除去することができる複合半透膜とすることができ、逆浸透膜処理による飲料水製造において好適に用いることができる。   Thus, by performing the steam treatment specified in the present invention, the boron permeation coefficient can be reduced to 1/3 or less, and therefore, a composite semipermeable membrane capable of removing boron with a high rejection rate and And can be suitably used in drinking water production by reverse osmosis membrane treatment.

本発明による蒸気処理を行う際の処理圧力は、104〜364kPaの範囲であることが好ましく、120〜315kPaの範囲であることがより好ましく、143〜271kPaの範囲であることが特に好ましい。また処理温度は、101〜140℃の範囲であることが好ましく、105〜135℃の範囲であることがより好ましく、110〜130℃の範囲であることが特に好ましい。101℃未満で蒸気処理や熱水処理する場合は、ホウ素除去率向上効果が不十分となる。一方、上限の140℃をこえても特に問題ないが、140℃以下の処理の場合と効果は同等であり、現実的な処理設備やコスト面から高くても140℃以下であることが好ましい。このような加圧下において加熱することにより101℃以上の水蒸気中の処理が可能となる。   The treatment pressure when performing the steam treatment according to the present invention is preferably in the range of 104 to 364 kPa, more preferably in the range of 120 to 315 kPa, and particularly preferably in the range of 143 to 271 kPa. The treatment temperature is preferably in the range of 101 to 140 ° C, more preferably in the range of 105 to 135 ° C, and particularly preferably in the range of 110 to 130 ° C. When steam treatment or hot water treatment is performed at a temperature lower than 101 ° C., the effect of improving the boron removal rate is insufficient. On the other hand, even if the upper limit of 140 ° C. is exceeded, there is no particular problem, but the effect is the same as in the case of processing at 140 ° C. or lower, and it is preferably 140 ° C. or lower at the highest in terms of realistic processing equipment and cost. By heating under such pressure, treatment in water vapor of 101 ° C. or higher becomes possible.

本発明では加圧・加熱下の水蒸気雰囲気下で処理することが重要である。ここで、水蒸気雰囲気は、その圧力・温度条件下での飽和水蒸気量あるいはそれに近い量の水蒸気が充満する雰囲気である。   In the present invention, it is important to perform the treatment in a steam atmosphere under pressure and heating. Here, the water vapor atmosphere is an atmosphere filled with a saturated water vapor amount or a near water vapor amount under the pressure and temperature conditions.

これに対し、水蒸気を充満させていない乾熱雰囲気下で加熱する場合(例えば熱風処理やオーブン等の処理を行う場合)には、複合半透膜が乾燥し、複合半透膜中の微多孔性支持体や分離機能層の収縮が顕著になり、実用レベルの透過水量を得ることが困難となる。また、複合半透膜が乾燥した状態で熱処理されるため、微多孔性支持体や分離機能層の亀裂などの欠点が生じやすく、ホウ素除去性能が低下することが懸念される。   On the other hand, when heating is performed in a dry heat atmosphere not filled with water vapor (for example, when hot air treatment or oven treatment is performed), the composite semipermeable membrane is dried, and the microporous structure in the composite semipermeable membrane is dried. The shrinkage of the conductive support and the separation functional layer becomes remarkable, and it becomes difficult to obtain a practical level of permeated water. In addition, since the composite semipermeable membrane is heat-treated in a dry state, defects such as cracks in the microporous support and the separation functional layer are likely to occur, and there is a concern that the boron removal performance is deteriorated.

本発明によって蒸気処理する時間は、ある程度以上の時間であれば、短時間でも長時間でも同等の効果が得られるため特に制限されないが、生産効率やコスト面を考慮すると短時間である方が好ましい。かかる処理時間は、1〜30分の範囲にあることが好ましく、2〜20分の範囲にあることがより好ましい。   The steam treatment time according to the present invention is not particularly limited as long as it is a certain time or longer, since the same effect can be obtained in a short time or a long time. However, in consideration of production efficiency and cost, a shorter time is preferable. . Such treatment time is preferably in the range of 1 to 30 minutes, more preferably in the range of 2 to 20 minutes.

すなわち、30×10−12/m・Pa・s以下の水透過係数を有する複合半透膜に対して、104〜364kPaの加圧条件下において101〜140℃に加熱された水蒸気による蒸気処理を施すことにより、複合半透膜のホウ素除去率を格段に向上させることができるものであり、高ホウ素除去率を有する複合半透膜とすることができる。 That is, for a composite semipermeable membrane having a water permeability coefficient of 30 × 10 −12 m 3 / m 2 · Pa · s or less, by steam heated to 101 to 140 ° C. under a pressure of 104 to 364 kPa. By performing the steam treatment, the boron removal rate of the composite semipermeable membrane can be remarkably improved, and a composite semipermeable membrane having a high boron removal rate can be obtained.

このようなホウ素除去率向上効果を得るための具体的な蒸気処理方法としては以下のような方法がある。   Specific steam treatment methods for obtaining such a boron removal rate improvement effect include the following methods.

上記蒸気処理をオンラインで行う場合は、例えばラビリンスシールを用いた、従来から繊維製造などに使用されている加圧スチーム装置を用いることができる。また、バッチ式で行う場合はオートクレーブのような汎用の装置を用いることができる。   In the case where the steam treatment is performed online, for example, a pressurized steam apparatus conventionally used for fiber production or the like using a labyrinth seal can be used. Moreover, when performing by a batch type, a general purpose apparatus like an autoclave can be used.

このように高温・高圧で蒸気処理して形成される本発明の複合半透膜は、プラスチックネットなどの原水流路材と、トリコットなどの透過水流路材と、必要に応じて耐圧性を高めるためのフィルムと共に、多数の孔を穿設した筒状の集水管の周りに巻回され、スパイラル型の複合半透膜エレメントにして好適に用いられる。さらに、このエレメントを直列または並列に接続して圧力容器に収納した複合半透膜モジュールとすることもできる。   Thus, the composite semipermeable membrane of the present invention formed by steam treatment at a high temperature and a high pressure increases the pressure resistance as needed, and the raw water flow path material such as plastic net, the permeate flow path material such as tricot, and the like. The film is wound around a cylindrical water collecting tube having a large number of holes, and is preferably used as a spiral composite semipermeable membrane element. Furthermore, a composite semipermeable membrane module in which these elements are connected in series or in parallel and accommodated in a pressure vessel can be obtained.

また、上記の複合半透膜やそのエレメント、モジュールは、それらに原水を供給するポンプや、その原水を前処理する装置などと組み合わせて、流体分離装置を構成することができる。この分離装置を用いることにより、原水から飲料水などの透過水と、膜を透過しなかった濃縮水を分離して、目的にあった水を得ることができる。   In addition, the above-described composite semipermeable membrane, its elements, and modules can be combined with a pump that supplies raw water to them, a device that pretreats the raw water, and the like to form a fluid separation device. By using this separation device, permeated water such as drinking water and concentrated water that has not permeated through the membrane can be separated from the raw water, and water suitable for the purpose can be obtained.

流体分離装置の操作圧力は高い方が脱塩率は向上するが、運転に必要なエネルギーも上昇すること、また、複合半透膜の耐久性を考慮すると、複合半透膜に被処理水を透過する際の操作圧力は、海水脱塩条件では1MPa以上、10MPa以下が好ましい。またかん水脱塩条件では0.3MPa以上、5MPa以下が好ましい。供給水温度は、高くなると脱塩率が低下するが、低くなるにしたがい透水性能も減少するので、5℃以上、45℃以下が好ましい。また、供給水pHは、高くなると、海水などの高塩濃度の供給水の場合、マグネシウムなどのスケールが発生する恐れがあり、低くなると膜の劣化が懸念されるため、中性領域での運転が好ましい。   The higher the operating pressure of the fluid separator, the higher the desalination rate, but the energy required for operation also increases, and considering the durability of the composite semipermeable membrane, water to be treated is added to the composite semipermeable membrane. The operating pressure for permeation is preferably 1 MPa or more and 10 MPa or less under seawater desalting conditions. Moreover, 0.3MPa or more and 5MPa or less are preferable on the brine demineralization conditions. As the feed water temperature increases, the desalination rate decreases. However, as the water supply temperature decreases, the water permeation performance also decreases. Therefore, the feed water temperature is preferably 5 ° C. or higher and 45 ° C. or lower. In addition, when the supply water pH is high, scales such as magnesium may be generated in the case of high salt concentration supply water such as seawater, and when it is low, there is a concern about membrane deterioration. Is preferred.

実施例および比較例における測定は次のとおり行った。
<参考例>
ポリエステル不織布(通気度0.5〜1cc/cm・sec)上にポリスルホンの15.3重量%ジメチルホルムアミド(DMF)溶液を200μmの厚みで室温(25℃)でキャストし、ただちに水中に浸漬して5分間放置し、次いで、90℃2分間熱水中で処理して微多孔性支持膜を作製した。
Measurements in Examples and Comparative Examples were performed as follows.
<Reference example>
A 15.3% by weight dimethylformamide (DMF) solution of polysulfone was cast on a polyester nonwoven fabric (air permeability 0.5 to 1 cc / cm 2 · sec) at a room temperature (25 ° C.) to a thickness of 200 μm and immediately immersed in water. For 5 minutes, and then treated in hot water at 90 ° C. for 2 minutes to produce a microporous support membrane.

このようにして得られた微多孔性支持膜(厚さ210〜215μm)を、メタフェニレンジアミン(以下mPDAという)3.5重量%水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロリド(以下TMCという)0.12重量%、テレフタル酸クロリド(以下TPCという)0.18重量%含むn−デカン溶液を表面が完全に濡れるように塗布して1分間静置した。次に膜から余分な溶液を除去するために、膜を1分間垂直に把持して液切りした。その後、90℃の熱水で2分間洗浄した後、pH7、塩素濃度200mg/lに調整した次亜塩素酸ナトリウム水溶液に2分間浸漬し、亜硫酸水素ナトリウム濃度が1,000mg/lの水溶液中に浸漬することで、余分な次亜塩素酸ナトリウムを還元除去した。さらに、この膜を95℃の熱水で2分間再洗浄した。   The microporous support membrane (thickness 210 to 215 μm) thus obtained was immersed in a 3.5% by weight aqueous solution of metaphenylenediamine (hereinafter referred to as mPDA) for 2 minutes, and the support membrane was slowly moved vertically. After removing the excess aqueous solution from the surface of the support membrane by blowing nitrogen from the air nozzle, 0.12% by weight of trimesic acid chloride (hereinafter referred to as TMC) and 0.18% by weight of terephthalic acid chloride (hereinafter referred to as TPC) n -The decane solution was applied so that the surface was completely wetted and allowed to stand for 1 minute. Next, in order to remove excess solution from the membrane, the membrane was held vertically for 1 minute to drain the solution. Then, after washing with hot water at 90 ° C. for 2 minutes, it was immersed in an aqueous solution of sodium hypochlorite adjusted to pH 7 and a chlorine concentration of 200 mg / l for 2 minutes, and in an aqueous solution having a sodium bisulfite concentration of 1,000 mg / l. By dipping, excess sodium hypochlorite was reduced and removed. Furthermore, this membrane was rewashed with hot water at 95 ° C. for 2 minutes.

得られた複合半透膜の性能を、前記した測定・算出方法により、前記した模擬海水を用いて流量3.5L/分で評価したところ、膜透過流束は1.01m/m・日、透過水TDS濃度は73ppm、透過水ホウ素濃度は0.40mg/lであった。この複合半透膜は水透過係数Lp=8.3×10−12/m・Pa・s、ホウ素透過係数Pb=8.9×10−7m/sであった。なお、水透過係数およびホウ素透過係数の算出に必要なTDS濃縮水濃度とホウ素原水膜面濃度は実測値を用いた。 When the performance of the obtained composite semipermeable membrane was evaluated at a flow rate of 3.5 L / min using the above-described simulated seawater by the above-described measurement / calculation method, the membrane permeation flux was 1.01 m 3 / m 2. On the day, the permeated water TDS concentration was 73 ppm, and the permeated water boron concentration was 0.40 mg / l. This composite semipermeable membrane had a water permeability coefficient Lp = 8.3 × 10 −12 m 3 / m 2 · Pa · s and a boron permeability coefficient Pb = 8.9 × 10 −7 m / s. The measured values were used for the TDS concentrated water concentration and the boron raw water film surface concentration necessary for calculating the water permeability coefficient and the boron permeability coefficient.

<実施例1>
参考例で製造して得られた複合半透膜を、オートクレーブを用いて199kPaの加圧条件下、120℃の水蒸気によって20分間処理した。この複合半透膜を参考例と同様の条件で評価したところ、透過水TDS濃度は65ppm、透過水ホウ素濃度は0.19mg/lであった。この複合半透膜は水透過係数Lp=4.0×10−12/m・Pa・s、ホウ素透過係数Pb=2.8×10−7m/sであった。
<Example 1>
The composite semipermeable membrane obtained by manufacturing in the reference example was treated with water vapor at 120 ° C. for 20 minutes under a pressure of 199 kPa using an autoclave. When this composite semipermeable membrane was evaluated under the same conditions as in the reference example, the permeated water TDS concentration was 65 ppm and the permeated water boron concentration was 0.19 mg / l. This composite semipermeable membrane had a water permeability coefficient Lp = 4.0 × 10 −12 m 3 / m 2 · Pa · s and a boron permeability coefficient Pb = 2.8 × 10 −7 m / s.

<実施例2>
参考例で製造して得られた複合半透膜をオートクレーブを用いて蒸気処理する際の処理条件を271kPaの加圧条件下、130℃、3分間に変更した他は、実施例1と同様にして複合半透膜を作製した。この複合半透膜を参考例と同様にして膜性能を評価したところ、透過水TDS濃度43ppm、透過水ホウ素濃度は0.18mg/lであった。この複合半透膜は水透過係数Lp=3.7×10−12/m・Pa・s、ホウ素透過係数Pb=2.5×10−7m/sであった。
<Example 2>
Except that the composite semipermeable membrane produced by the reference example was steam-treated using an autoclave, the processing conditions were changed to 130 ° C. for 3 minutes under a pressure of 271 kPa, as in Example 1. Thus, a composite semipermeable membrane was produced. When the membrane performance of this composite semipermeable membrane was evaluated in the same manner as in the reference example, the permeated water TDS concentration was 43 ppm and the permeated water boron concentration was 0.18 mg / l. This composite semipermeable membrane had a water permeability coefficient Lp = 3.7 × 10 −12 m 3 / m 2 · Pa · s and a boron permeability coefficient Pb = 2.5 × 10 −7 m / s.

<実施例3>
界面重縮合反応させる際のmPDA、TMC、TPCの組成を表1に示すように変更した他は、参考例と同様にして複合半透膜を作製した。この複合半透膜を参考例と同様にして膜性能を評価したところ、膜透過流束は1.13m/m・日、透過水TDS濃度は69ppm、透過水ホウ素濃度は0.48mg/lであった。この複合半透膜は水透過係数Lp=11.8×10−12/m・Pa・s、ホウ素透過係数Pb=12.0×10−7m/sであった。
<Example 3>
A composite semipermeable membrane was produced in the same manner as in the Reference Example except that the composition of mPDA, TMC, and TPC during the interfacial polycondensation reaction was changed as shown in Table 1. When this composite semipermeable membrane was evaluated to membrane performance in the same manner as in Reference Example, membrane permeation flux 1.13m 3 / m 2 · day, permeate TDS concentration 69 ppm, permeate boron concentration 0.48 mg / l. This composite semipermeable membrane had a water permeability coefficient Lp = 11.8 × 10 −12 m 3 / m 2 · Pa · s and a boron permeability coefficient Pb = 12.0 × 10 −7 m / s.

このようにして得られた複合半透膜を、オートクレーブを用いて271kPaの加圧条件下、130℃の水蒸気によって3分間処理した。この複合半透膜を上記と同様の条件で評価したところ、透過水TDS濃度は45ppm、透過水ホウ素濃度は0.22mg/lであった。この複合半透膜は水透過係数Lp=5.0×10−12/m・Pa・s、ホウ素透過係数Pb=3.8×10−7m/sであった。 The composite semipermeable membrane thus obtained was treated with water vapor at 130 ° C. for 3 minutes under a pressure of 271 kPa using an autoclave. When this composite semipermeable membrane was evaluated under the same conditions as described above, the permeated water TDS concentration was 45 ppm and the permeated water boron concentration was 0.22 mg / l. This composite semipermeable membrane had a water permeability coefficient Lp = 5.0 × 10 −12 m 3 / m 2 · Pa · s and a boron permeability coefficient Pb = 3.8 × 10 −7 m / s.

<比較例1>
界面重縮合反応させる際のmPDA、TMC、TPCの組成を表1に示すように変更した他は、参考例と同様にして複合半透膜を作製した。この複合半透膜を、参考例と同様にして膜性能を評価したところ、膜透過流束は1.50m/m・日、透過水TDS濃度は341ppm、透過水ホウ素濃度は0.89mg/lであった。この複合半透膜は水透過係数Lp=48.9×10−12/m・Pa・s、ホウ素透過係数Pb=29.3×10−7m/sであった。
<Comparative Example 1>
A composite semipermeable membrane was produced in the same manner as in the Reference Example except that the composition of mPDA, TMC, and TPC during the interfacial polycondensation reaction was changed as shown in Table 1. When this composite semipermeable membrane was evaluated for membrane performance in the same manner as in the Reference Example, the membrane permeation flux was 1.50 m 3 / m 2 · day, the permeate TDS concentration was 341 ppm, and the permeate boron concentration was 0.89 mg. / L. This composite semipermeable membrane had a water permeability coefficient Lp = 48.9 × 10 −12 m 3 / m 2 · Pa · s and a boron permeability coefficient Pb = 29.3 × 10 −7 m / s.

このようにして得られた複合半透膜を、オートクレーブを用いて199kPaの加圧条件下、120℃の水蒸気によって20分間処理した。この複合半透膜を上記と同様の条件で評価したところ、透過水TDS濃度は312ppm、透過水ホウ素濃度は1.38mg/lであった。この複合半透膜は、水透過係数Lp=42.9×10−12/m・Pa・s、ホウ素透過係数Pb=23.8×10−7m/sであった。 The composite semipermeable membrane thus obtained was treated with water vapor at 120 ° C. for 20 minutes under a pressure of 199 kPa using an autoclave. When this composite semipermeable membrane was evaluated under the same conditions as above, the permeated water TDS concentration was 312 ppm and the permeated water boron concentration was 1.38 mg / l. This composite semipermeable membrane had a water permeability coefficient Lp = 42.9 × 10 −12 m 3 / m 2 · Pa · s and a boron permeability coefficient Pb = 23.8 × 10 −7 m / s.

<比較例2>
参考例で製造して得られた複合半透膜を、熱風乾燥機中で110℃、10分間乾熱処理を施した。得られた複合半透膜を参考例と同様にして膜性能を評価したところ、透過水TDS濃度は324ppm、透過水ホウ素濃度は1.17mg/lであった。この複合半透膜は水透過係数Lp=1.2×10−12/m・Pa・s、ホウ素透過係数Pb=15.3×10−7m/sであった。
<Comparative Example 2>
The composite semipermeable membrane obtained by manufacturing in the reference example was subjected to a dry heat treatment at 110 ° C. for 10 minutes in a hot air dryer. When the membrane performance of the obtained composite semipermeable membrane was evaluated in the same manner as in the reference example, the permeated water TDS concentration was 324 ppm and the permeated water boron concentration was 1.17 mg / l. This composite semipermeable membrane had a water permeability coefficient Lp = 1.2 × 10 −12 m 3 / m 2 · Pa · s and a boron permeability coefficient Pb = 15.3 × 10 −7 m / s.

<比較例3>
参考例で製造して得られた複合半透膜を、95℃熱水中で30分間熱水処理を施した。得られた複合半透膜を参考例と同様にして膜性能を評価したところ、透過水TDS濃度は62.5ppm、透過水ホウ素濃度は0.32mg/lであった。この複合半透膜は水透過係数Lp=4.2×10−12/m・Pa・s、ホウ素透過係数Pb=6.1×10−7m/sであった。
<Comparative Example 3>
The composite semipermeable membrane obtained by manufacturing in the reference example was subjected to hydrothermal treatment in 95 ° C. hot water for 30 minutes. When the membrane performance of the obtained composite semipermeable membrane was evaluated in the same manner as in the reference example, the permeated water TDS concentration was 62.5 ppm and the permeated water boron concentration was 0.32 mg / l. This composite semipermeable membrane had a water permeability coefficient Lp = 4.2 × 10 −12 m 3 / m 2 · Pa · s and a boron permeability coefficient Pb = 6.1 × 10 −7 m / s.

なお、実施例1〜3の製膜条件と結果を表1に、比較例1〜3の製膜条件と結果を表2に示す。   The film forming conditions and results of Examples 1 to 3 are shown in Table 1, and the film forming conditions and results of Comparative Examples 1 to 3 are shown in Table 2.

水透過係数等の膜性能を評価する際に使用する平膜セルの構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the flat membrane cell used when evaluating membrane performance, such as a water permeability coefficient.

Claims (5)

多官能アミン化合物と多官能酸ハロゲン化物とから界面重縮合反応によって架橋ポリアミドからなる分離機能層を形成する方法によって、水透過係数が30×10−12/m・Pa・s以下の性能を有する複合半透膜を製造した後、該複合半透膜を、加圧かつ加熱された水蒸気雰囲気下で蒸気処理することを特徴とする複合半透膜の製造方法。 A water permeability coefficient of 30 × 10 −12 m 3 / m 2 · Pa · s or less is obtained by a method of forming a separation functional layer made of a crosslinked polyamide from a polyfunctional amine compound and a polyfunctional acid halide by interfacial polycondensation reaction. A method for producing a composite semipermeable membrane, comprising: producing a composite semipermeable membrane having performance, and then subjecting the composite semipermeable membrane to steam treatment in a pressurized and heated water vapor atmosphere. 前記蒸気処理が、104〜364kPaの加圧条件下、かつ、101〜140℃に加熱された水蒸気雰囲気中で行われることを特徴とする請求項1に記載の複合半透膜の製造方法。   The method for producing a composite semipermeable membrane according to claim 1, wherein the steam treatment is performed under a pressurized condition of 104 to 364 kPa and in a steam atmosphere heated to 101 to 140 ° C. 25℃、pH6.5、ホウ素濃度5ppm、TDS濃度3.5重量%の海水を5.5MPaの操作圧力で透水処理したときのホウ素透過係数が、(前記蒸気処理前のホウ素透過係数)÷(前記蒸気処理後のホウ素透過係数)≧3.0の関係式が成り立つことを特徴とする、請求項1または2に記載の複合半透膜の製造方法。   Boron permeability coefficient when seawater treated at 25 ° C., pH 6.5, boron concentration 5 ppm, TDS concentration 3.5 wt% at an operating pressure of 5.5 MPa is (boron permeability coefficient before the steam treatment) / ( 3. The method for producing a composite semipermeable membrane according to claim 1, wherein a relational expression of boron permeability coefficient after vapor treatment) ≧ 3.0 is established. 請求項1〜3のいずれかに記載の製造方法によって得られる複合半透膜を有していることを特徴とする複合半透膜エレメント。   A composite semipermeable membrane element comprising the composite semipermeable membrane obtained by the production method according to claim 1. 請求項1〜3のいずれかに記載の製造方法によって得られる複合半透膜を用いて海水もしくはかん水を逆浸透処理することを特徴とする水処理方法。   4. A water treatment method comprising reverse osmosis treatment of seawater or brine using a composite semipermeable membrane obtained by the production method according to claim 1.
JP2007173755A 2007-07-02 2007-07-02 Manufacturing method of composite semipermeable membrane Expired - Fee Related JP5239228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007173755A JP5239228B2 (en) 2007-07-02 2007-07-02 Manufacturing method of composite semipermeable membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007173755A JP5239228B2 (en) 2007-07-02 2007-07-02 Manufacturing method of composite semipermeable membrane

Publications (3)

Publication Number Publication Date
JP2009011891A true JP2009011891A (en) 2009-01-22
JP2009011891A5 JP2009011891A5 (en) 2010-06-24
JP5239228B2 JP5239228B2 (en) 2013-07-17

Family

ID=40353461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007173755A Expired - Fee Related JP5239228B2 (en) 2007-07-02 2007-07-02 Manufacturing method of composite semipermeable membrane

Country Status (1)

Country Link
JP (1) JP5239228B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014213262A (en) * 2013-04-25 2014-11-17 栗田工業株式会社 Forward osmosis membrane
JP2015089532A (en) * 2013-11-05 2015-05-11 日東電工株式会社 Composite semipermeable membrane
KR20170091970A (en) * 2016-02-02 2017-08-10 주식회사 엘지화학 Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
JP2018058018A (en) * 2016-10-04 2018-04-12 野村マイクロ・サイエンス株式会社 Regeneration method for reverse osmosis membrane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287507A (en) * 1987-05-20 1988-11-24 Toray Ind Inc Production of semipermeable composite membrane
JPH04187226A (en) * 1990-11-20 1992-07-03 Toray Ind Inc Polyamide hollow yarn membrane and its production
JPH1119493A (en) * 1997-07-03 1999-01-26 Nitto Denko Corp Reverse osmotic membrane module and treatment of sea water
JP2006187719A (en) * 2005-01-06 2006-07-20 Toray Ind Inc Method for operating fresh water production device and fresh water production device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287507A (en) * 1987-05-20 1988-11-24 Toray Ind Inc Production of semipermeable composite membrane
JPH04187226A (en) * 1990-11-20 1992-07-03 Toray Ind Inc Polyamide hollow yarn membrane and its production
JPH1119493A (en) * 1997-07-03 1999-01-26 Nitto Denko Corp Reverse osmotic membrane module and treatment of sea water
JP2006187719A (en) * 2005-01-06 2006-07-20 Toray Ind Inc Method for operating fresh water production device and fresh water production device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014213262A (en) * 2013-04-25 2014-11-17 栗田工業株式会社 Forward osmosis membrane
JP2015089532A (en) * 2013-11-05 2015-05-11 日東電工株式会社 Composite semipermeable membrane
US10682615B2 (en) 2013-11-05 2020-06-16 Nitto Denko Corporation Composite semi-permeable membrane
KR20170091970A (en) * 2016-02-02 2017-08-10 주식회사 엘지화학 Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
KR102054544B1 (en) * 2016-02-02 2019-12-10 주식회사 엘지화학 Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
JP2018058018A (en) * 2016-10-04 2018-04-12 野村マイクロ・サイエンス株式会社 Regeneration method for reverse osmosis membrane

Also Published As

Publication number Publication date
JP5239228B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5115196B2 (en) Composite semipermeable membrane and method for producing the same
JP5741431B2 (en) Composite semipermeable membrane and method for producing the same
JP2011078980A (en) Composite semipermeable membrane and manufacturing method of the same
JPWO2010050421A1 (en) Composite semipermeable membrane and method for producing the same
WO2016002821A1 (en) Composite semipermeable membrane
JP2018039003A (en) Composite semipermeable membrane and production method of the same
JP2010094641A (en) Method of treating composite semipermeable film
JP2019098330A (en) Composite semipermeable membrane and method for producing the same
JP2008080187A (en) Composite semipermeable membrane and use thereof
JP2018069160A (en) Composite semipermeable membrane, and spiral type separation membrane element
JP2004330042A (en) Composite semi-permeable membrane and its production method
JP5239228B2 (en) Manufacturing method of composite semipermeable membrane
JP2008246419A (en) Production method for composite semi-permeable membrane
JP7300810B2 (en) Composite semipermeable membrane and manufacturing method thereof
WO2016052427A1 (en) Composite semipermeable membrane and method for producing same, and spiral separation membrane element
JP5177056B2 (en) Composite semipermeable membrane
WO2016136966A1 (en) Composite semipermeable membrane
JP2000334280A (en) Production of multiple reverse osmosis membrane
JP2009262089A (en) Manufacturing method of composite semi-permeable membrane
JP2013223861A (en) Composite diaphragm
JP2017213501A (en) Composite semipermeable membrane and method for producing composite semipermeable membrane
JP2012143750A (en) Method for producing composite semi-permeable membrane
JP2021035658A (en) Composite semipermeable membrane and production method of composite semipermeable membrane
JP5050335B2 (en) Manufacturing method of composite semipermeable membrane
CN108430612B (en) Composite semipermeable membrane

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees