JPH0417616A - Production of stainless steel wire - Google Patents

Production of stainless steel wire

Info

Publication number
JPH0417616A
JPH0417616A JP11856990A JP11856990A JPH0417616A JP H0417616 A JPH0417616 A JP H0417616A JP 11856990 A JP11856990 A JP 11856990A JP 11856990 A JP11856990 A JP 11856990A JP H0417616 A JPH0417616 A JP H0417616A
Authority
JP
Japan
Prior art keywords
steel wire
stainless steel
wire
plating
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11856990A
Other languages
Japanese (ja)
Other versions
JPH0713258B2 (en
Inventor
Tsuyoshi Nishimura
強 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASUKA GIKEN KK
Tokyo Rope Manufacturing Co Ltd
Tokyo Seiko Co Ltd
Original Assignee
ASUKA GIKEN KK
Tokyo Rope Manufacturing Co Ltd
Tokyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASUKA GIKEN KK, Tokyo Rope Manufacturing Co Ltd, Tokyo Seiko Co Ltd filed Critical ASUKA GIKEN KK
Priority to JP2118569A priority Critical patent/JPH0713258B2/en
Publication of JPH0417616A publication Critical patent/JPH0417616A/en
Publication of JPH0713258B2 publication Critical patent/JPH0713258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Heat Treatment Of Steel (AREA)
  • Wire Processing (AREA)
  • Metal Extraction Processes (AREA)

Abstract

PURPOSE:To produce the stainless steel wire with which spark flaws, contact flaws and plating flaws are prevented by subjecting the stainless steel wire to a surface hardening treatment prior to the execution of an Ni plating treatment, then subjecting the wire to the Ni plating treatment in the state of applying tension thereto. CONSTITUTION:The austenitic stainless steel wire is subjected to an under drawing treatment at need then to a soln. heat treatment (heating to about 110 deg.C) by the conventional method. The wire is then subjected to the surface hardening treatment by rolling, etc., by which the Vickers hardness is improved to about 50 to 150; thereafter, the tension is applied to the wire and while the wire is held straight, the wire is subjected to the Ni plating. After the plating layer is formed, the wire is further subjected to finish drawing so that alpha' martensite is incorporated at 60 to 90% into the structure of the wire. The stainless steel wire which has the good workability and is improved in the electrical conductivity and corrosion resistance is obtd. This steel wire is useful for coil springs, etc.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、加工性が良好で、かつ導電性と耐食性の向上
を図ったコイルばねに主として使用されるステンレス鋼
線の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a stainless steel wire that has good workability and is mainly used for coil springs with improved conductivity and corrosion resistance.

[従来の技術〕 ステンレス鋼線は耐食性が良いことを利用してコイルば
ねなどに広く利用されている。このステンレス鋼線は伸
線加工の際、さらにはばね成形加工時表面の潤滑性が悪
いため、その製造に際し、ステンレスの表面に樹脂皮膜
、鉛、銅、ニッケルなどの金属メツキを施して潤滑性を
高めている。
[Prior Art] Stainless steel wire is widely used in coil springs and the like because of its good corrosion resistance. The surface of this stainless steel wire has poor lubricity during wire drawing and even during spring forming, so during manufacturing, the surface of the stainless steel wire is coated with a resin film and metal plating with lead, copper, nickel, etc. to improve lubricity. is increasing.

その中でも最も一般的なものがニッケルめっきである。Among them, the most common is nickel plating.

このニッケルめっきを施す前のステンレス線の状態には
硬質線そのものにめっきを施す場合と、溶体化して軟か
い状態でめっきを施す方法があるが、それぞれ一長一短
がある。すなわち硬質線にニッケルめっきを施してから
溶体化処理を行う場合には、メツキ過程で吸収した水素
ガスを放出してその後の線の性質の向上に寄与させたり
、あるいはニッケルめっきとステンレス母材との間に金
属の拡散層を作って密着性を向上させる利点がある。し
かしこの方法では、硬質線をめっきするので線グセが悪
くメツキ槽の中で、メツキ線が隣りの線にからみついた
り、電極棒との接点部分に接したり、離れたりしてスパ
ークを起しこの部分で疵を生じたりするなど非常に多く
の問題がある。そこでその対策として溶体化処理してニ
ッケルめっきを施す方法がある例えば(特公昭6216
278号)。この場合、母線が軟かすぎてメツキ装置の
ガイドでこすり疵を生じたり、又溶体化処理時にボビン
巻き取りを行う場合、ボビンの胴部で重なり合った部分
がクニック(微小島り)を生じて、これがメツキ浴中で
蛇行して電極棒から外れて、スパークの原因となったり
する。又めっき前の母線は1100℃程度で溶体化処理
を行うためステンレスの表面層は軟かく又結晶粒界が外
部に数多く顔を出しめっき時の水素侵入場所を多く与え
ている。又ステンレス素地か軟かすぎるとその上に析出
したニッケルがその後の伸線加工時ダイスとの接触を受
ける際、ニッケルそのものの潤滑性を充分に発揮する以
前に素地にニッケルが、めり込んでしまう場合がある。
There are two ways to condition the stainless steel wire before nickel plating: one is to plate the hard wire itself, and the other is to plate it in a soft state through solution treatment. Each method has its advantages and disadvantages. In other words, when a hard wire is subjected to nickel plating and then subjected to solution treatment, the hydrogen gas absorbed during the plating process is released and contributes to improving the properties of the wire afterwards, or the nickel plating and stainless steel base material are mixed. This has the advantage of creating a metal diffusion layer between the layers to improve adhesion. However, in this method, the hard wire is plated, so the wire tends to be curly and the plating wire may get tangled with neighboring wires in the plating tank, touch the contact part with the electrode rod, or come apart, causing sparks. There are many problems such as scratches occurring in this part. Therefore, as a countermeasure, there is a method of solution treatment and nickel plating (for example,
No. 278). In this case, the generatrix is too soft and scratches occur in the guide of the plating device, and when winding the bobbin during solution treatment, the overlapping portions of the bobbin body may form nicks (micro islands). , this may meander in the plating bath and come off the electrode rod, causing sparks. Furthermore, since the bus bar before plating is subjected to solution treatment at about 1100° C., the surface layer of the stainless steel is soft and many grain boundaries are exposed to the outside, providing many places for hydrogen to enter during plating. Also, if the stainless steel base material is too soft, when the nickel that has precipitated on it comes into contact with the die during subsequent wire drawing, the nickel may sink into the base material before the nickel itself can fully demonstrate its lubricity. There is.

その場合、析出したニッケルの結晶粒間の隙間、すなわ
ち潤滑剤の粉末がはまり込む隙間が減少し、潤滑性が低
下してしまう。
In that case, the gaps between the precipitated nickel crystal grains, that is, the gaps into which the lubricant powder fits, decrease, resulting in a decrease in lubricity.

またステンレス母線にニッケルなどの責の金属をメツキ
すると、使用雰囲気環境如何によっては、かえってステ
ンレス鋼自体の耐食性をそこなう場合もある。
Furthermore, if a stainless steel bus bar is plated with a metal such as nickel, the corrosion resistance of the stainless steel itself may be adversely affected depending on the operating environment.

[発明が解決しようとする課題] 本発明の目的とするところは、ニッケルめっき処理をお
こなう前に、ステンレス鋼線に表面硬化処理を施し、ニ
ッケルめっき処理を張力をかけた状態でおこなうことに
より、スパーク疵、接触疵、かき疵を防止するステンレ
ス鋼線の製造方法を提供することである。
[Problems to be Solved by the Invention] The purpose of the present invention is to surface harden the stainless steel wire before nickel plating and perform the nickel plating under tension. An object of the present invention is to provide a method for manufacturing stainless steel wire that prevents spark flaws, contact flaws, and scratch flaws.

本発明の別の目的は、ニッケルめっき処理をおこなう前
に、ステンレス鋼線に表面硬化処理を施すことにより、
ニッケルめっき処理時に水素が鋼線内部に侵入すること
を防止し、もってステンレス鋼線の脆化を阻止するステ
ンレス鋼線の製造方法を提供することである。
Another object of the present invention is to surface harden the stainless steel wire before nickel plating.
It is an object of the present invention to provide a method for manufacturing a stainless steel wire that prevents hydrogen from entering the steel wire during nickel plating treatment, thereby preventing embrittlement of the stainless steel wire.

更に本発明の目的は、ニッケルめっき処理をおこなう前
に、ステンレス鋼線に表面硬化処理を施すことにより、
鋼線の硬さを、この表面に形成されるニッケルめっき層
よりも硬<シ、もって、仕上加工時にニッケルめっき層
が鋼線に埋め込まれるのを防ぐとともに、ニッケルめっ
き層に多数の亀裂を生じせしめ、両者の作用により潤滑
剤の侵入領域を増大して、潤滑性を向上することかでき
るステンレス鋼線の製造方法を提供することである。
A further object of the present invention is to surface harden the stainless steel wire before nickel plating.
By making the steel wire harder than the nickel plating layer formed on the surface, it prevents the nickel plating layer from being embedded in the steel wire during finishing, and also prevents many cracks from forming in the nickel plating layer. In addition, it is an object of the present invention to provide a method for producing a stainless steel wire, which can increase the penetration area of the lubricant through the effects of both of the above and improve the lubricity.

本発明の更に異なる目的は、めっき層を半光沢ニッケル
めっき層/銅めっき層/光沢ニッケルめっき層の三層構
造とすることによりスチレン鋼線の耐食性を向上するス
テンレス鋼線の製造方法を提供することである。
A further object of the present invention is to provide a method for manufacturing a stainless steel wire that improves the corrosion resistance of a styrene steel wire by forming the plating layer into a three-layer structure of a semi-bright nickel plating layer, a copper plating layer, and a bright nickel plating layer. That's true.

[課題を解決する手段] この目的を達成するために、本発明のステンレス鋼線の
製造方法は、オーステナイト系ステンレス鋼線に溶体化
処理を施す工程と、溶体化処理した上記鋼線に、表面硬
化処理を施す工程と、表面硬化処理を施した鋼線に張力
を付加した状態でニッケルめっき処理をおこなう工程と
、ニッケルめっきした鋼線を仕上伸線処理する工程とを
具備したステンレス鋼線の製造方法である。
[Means for Solving the Problems] In order to achieve this object, the method for manufacturing a stainless steel wire of the present invention includes a step of solution-treating an austenitic stainless steel wire, and a surface treatment of the solution-treated steel wire. A stainless steel wire manufacturing process that includes a hardening process, a nickel plating process with tension applied to the surface hardened steel wire, and a final wire drawing process on the nickel plated steel wire. This is the manufacturing method.

本発明の実施態様のステンレスM線の製造方法は、ステ
ンレス鋼線へのめっき処理が、半光沢ニッケルめっき、
銅めっき、光沢ニッケルめっきを順におこなう工程であ
る。
In the method for manufacturing a stainless steel M wire according to an embodiment of the present invention, the plating treatment on the stainless steel wire is semi-bright nickel plating,
This is a process in which copper plating and bright nickel plating are performed in sequence.

本発明の別の実施態様のステンレス鋼線の製造方法は、
溶体化処理する鋼線が、下引き伸線加工されている。
A method for manufacturing a stainless steel wire according to another embodiment of the present invention includes:
The steel wire to be solution-treated is subjected to underdrawing.

本発明の別の実施態様のステンレス鋼線の製造方法は、
鋼線の表面硬化処理で得られる鋼線の表面硬度が、ニッ
ケルめっき処理で得られるニッケルめっき層の硬度より
も高くなるように表面硬化処理かおこなわれている。
A method for manufacturing a stainless steel wire according to another embodiment of the present invention includes:
Surface hardening is performed so that the surface hardness of the steel wire obtained by surface hardening of the steel wire is higher than the hardness of the nickel plating layer obtained by nickel plating.

本発明の実施態様のステンレス鋼線の製造方法は、仕上
伸線処理が、鋼線の組織中にαマルテンサイトが60〜
90%含まれるようにおこなわれている。
In the method for producing a stainless steel wire according to an embodiment of the present invention, in the finishing wire drawing treatment, alpha martensite is present in the structure of the steel wire from 60 to 60%.
This is done to ensure that it contains 90%.

[作用および効果] 本発明のステンレス鋼線の製造方法によれば、ニッケル
めっき処理をおこなう前にステンレス鋼線に表面硬化処
理を施し、ニッケルめっき処理をテンションを掛けた状
態でおこなっている。従って、ニッケルめっき処理は、
処理されるステンレス鋼線の表面か硬くしかも真直ぐな
状態でおこなわれる。このためステンレス鋼線かニッケ
ルめっき処理設備の各ガイドや電極に接触することを防
止し、仮に接触してもステンレス鋼線に疵が付きにくく
なる。すなわち、めっき処理時におけるステンレス鋼線
のスパーク疵、接触疵、かき疵を防止することができる
[Operations and Effects] According to the method for manufacturing a stainless steel wire of the present invention, the stainless steel wire is subjected to a surface hardening treatment before being nickel plated, and the nickel plating treatment is performed under tension. Therefore, nickel plating treatment is
The surface of the stainless steel wire being treated is hard and straight. This prevents the stainless steel wire from coming into contact with the guides and electrodes of the nickel plating equipment, and even if contact occurs, the stainless steel wire is less likely to be damaged. That is, spark flaws, contact flaws, and scratch flaws on the stainless steel wire during plating can be prevented.

本発明のステンレス鋼線の製造方法によれば、ニッケル
めっき処理をおこなう前にステンレス鋼線に表面硬化処
理を施している。このため、ステンレス鋼線の表面に形
成されている結晶粒界(ここが水素の侵入経路となる)
を潰して、ニッケルめっき処理時にここから水素が鋼線
内部に侵入捕捉されることを阻止し、もってステンレス
鋼線の脆化を防止することができる。なお、素材を硬化
することによる水素脆化の助長が考えられるが、本発明
程度の加工では問題とはならず、むしろ粒界を潰すこと
の方が脆化防止に有効である。
According to the method for manufacturing a stainless steel wire of the present invention, the stainless steel wire is subjected to surface hardening treatment before being subjected to nickel plating treatment. For this reason, the grain boundaries formed on the surface of the stainless steel wire (this becomes the entry route for hydrogen)
By crushing the stainless steel wire, it is possible to prevent hydrogen from penetrating and being trapped inside the steel wire during the nickel plating process, thereby preventing the stainless steel wire from becoming brittle. Although hydrogen embrittlement may be promoted by hardening the material, this does not pose a problem in the processing of the present invention, and rather, crushing grain boundaries is more effective in preventing embrittlement.

更に本発明のステンレス鋼線の製造方法によれば、ニッ
ケルめっき処理をおこなう前に、ステンレス鋼線に表面
硬化処理を施すことにより、鋼線の硬さを、この表面に
形成されるニッケルめっき層よりも硬くすることができ
る。この結果、ステンレス鋼線が硬いので、初期の伸線
加工時にニッケルめっき層が鋼線に埋め込まれることが
なく、析出したニッケル結晶の粒界に多くの潤滑剤かは
まり込むと同時に、相対的に柔らかいニッケルめっき層
が塑性変形して、ニッケルめっき層に多数の亀裂が生し
、この亀裂箇所にも潤滑剤が侵入することにより潤滑剤
の侵入領域を増大して、潤滑性を向上することができる
。 本発明の別のステンレス鋼線の製造方法によれば、
めっき層を半光沢ニッケルめっき層/銅めっき層/光沢
ニッケルめっき層の三層構造とすることにより、めっき
ステンレス鋼線が腐食環境下に置かれた場合、卑なる光
沢めっき層がアノードとなって溶解し、責なる銅や半光
沢めっき層がカソードとして防食され、その結果、下層
にあるステンレス鋼線が保護され、その耐食性を向上す
る。
Furthermore, according to the method for manufacturing a stainless steel wire of the present invention, by subjecting the stainless steel wire to surface hardening treatment before performing the nickel plating treatment, the hardness of the steel wire can be improved by applying a nickel plating layer formed on the surface. It can be made harder. As a result, since the stainless steel wire is hard, the nickel plating layer is not embedded in the steel wire during the initial wire drawing process, and a large amount of lubricant gets stuck in the grain boundaries of the precipitated nickel crystals. The soft nickel plating layer is plastically deformed, causing many cracks in the nickel plating layer, and the lubricant also penetrates into these cracks, increasing the area where the lubricant can penetrate and improving lubricity. can. According to another method of manufacturing stainless steel wire of the present invention,
By making the plating layer a three-layer structure of semi-bright nickel plating layer, copper plating layer, and bright nickel plating layer, when the plated stainless steel wire is placed in a corrosive environment, the base bright plating layer becomes an anode. When melted, the copper and semi-bright plating layer acting as a cathode prevents corrosion, thereby protecting the underlying stainless steel wire and improving its corrosion resistance.

[発明の詳細な説明コ 本発明のステンレス鋼線の製造方法は、まずオーステナ
イト系ステンレス鋼線を用意し、この鋼線に必要により
常法に従って下引き伸線処理を施す。ついて常法に従っ
た溶体化処理(約1100℃に加熱)後に、表面硬化処
理をおこなう(以下この処理で得られた鋼線を母線と称
する)。この表面硬化処理は、母線表面に形成されるめ
っき層よりも母線の硬度が高くなるようにおこなわれる
もので、通常、ビッカース硬さで50〜150程度向上
させるように処理するのが好適である。すなわち、母線
の硬度はその線径によっても異なるが、概ねHv170
〜230程度である。またこの母線表面に析出形成され
るニッケルめっき層の硬さは、めっきの条件(液の組成
、液のpH,液の温度、添加剤の有無など)により異な
るが、通常のめっきではHv190〜250程度である
。従って、ビッカース硬度で50〜150程度向上させ
ることにより、母線の硬度がニッケルめっき層よりも概
ね硬くなる。表面硬化処理は、例えば、母線に圧延加工
を施してもよく、また線引き用ダイスにより線径を1/
10〜1/30程度細くすることによりなされる。この
表面硬化処理後又はこの処理と同時に、母線に張力を付
加して伸直に保持した状態でめっき処理槽内に母線を通
す。
[Detailed Description of the Invention] In the method for producing a stainless steel wire of the present invention, an austenitic stainless steel wire is first prepared, and if necessary, this steel wire is subjected to underdrawing treatment according to a conventional method. After solution treatment (heating to about 1100° C.) according to a conventional method, a surface hardening treatment is performed (hereinafter, the steel wire obtained by this treatment will be referred to as a generatrix). This surface hardening treatment is performed so that the hardness of the generatrix is higher than that of the plating layer formed on the surface of the generatrix, and it is usually preferable to perform the treatment to increase the Vickers hardness by about 50 to 150. . In other words, the hardness of the generatrix varies depending on the wire diameter, but is generally Hv170.
It is about ~230. In addition, the hardness of the nickel plating layer deposited and formed on the surface of this generatrix varies depending on the plating conditions (solution composition, solution pH, solution temperature, presence or absence of additives, etc.), but in normal plating, the hardness is Hv190 to 250. That's about it. Therefore, by increasing the Vickers hardness by about 50 to 150, the hardness of the generatrix becomes approximately harder than the nickel plating layer. The surface hardening treatment may be performed, for example, by rolling the generatrix, or by reducing the wire diameter to 1/2 using a wire drawing die.
This is done by making it thinner by about 10 to 1/30. After or at the same time as this surface hardening treatment, tension is applied to the generatrix and the generatrix is held straight and passed through the plating bath.

母線のめっき処理をおこなうと、水素が母線内に侵入し
ようとするが、上記表面硬化処理により母材表面に露出
していたオーステナイト組織の結晶粒界(ここが水素の
侵入しやすい箇所となる)が押し潰されており、母線へ
の水素吸蔵量が減少する。母線のめっき処理は、常法に
従って、通常のニッケルめっき処理をおこなってもよく
、また、半光沢ニッケルめっき、銅めっき、光沢ニッケ
ルめっきを順に行って三層のめっき層を形成するように
してもよい。三層のめっき層を形成した場合、めっきス
テンレス鋼線が腐食環境下に置かれた場合、卑なる光沢
めっき層がアノードとなって溶解し、責なる銅や半光沢
ニッケルめっき層がカソードとして防食され、その結果
、下層にあるステンレス鋼線が保護され、その耐食性を
向上する。
When plating the generatrix, hydrogen tries to penetrate into the generatrix, but the grain boundaries of the austenite structure exposed on the surface of the base metal due to the above surface hardening treatment (this is where hydrogen easily penetrates). is crushed, and the amount of hydrogen stored in the bus bar decreases. The plating of the bus bar may be performed by ordinary nickel plating according to a conventional method, or by sequentially performing semi-bright nickel plating, copper plating, and bright nickel plating to form three plating layers. good. When a three-layer plating layer is formed, when a plated stainless steel wire is placed in a corrosive environment, the base bright plating layer acts as an anode and dissolves, and the responsible copper or semi-bright nickel plating layer acts as a cathode to prevent corrosion. As a result, the underlying stainless steel wire is protected and its corrosion resistance is improved.

めっき層を形成した後、仕上伸線加工をおこなうと、め
っき層に比べて母線の硬度か高いため、ニッケルめっき
層か鋼線に埋め込まれることがなく、相対的に柔らかい
ニッケルめっき層か塑性変形して、ニッケルめっき層に
多数の亀裂が生じ、この亀裂箇所に潤滑剤が侵入するこ
とにより潤滑剤の侵入領域を増大して、潤滑性を向上す
る。
After forming the plating layer, when finishing wire drawing is performed, the hardness of the generatrix is higher than that of the plating layer, so the nickel plating layer is not embedded in the steel wire, and the relatively soft nickel plating layer undergoes plastic deformation. As a result, many cracks are generated in the nickel plating layer, and the lubricant penetrates into these cracks, thereby increasing the area into which the lubricant penetrates and improving lubricity.

このようにして製造されたステンレス鋼線を伸線加工を
施すとオーステナイト組織は加工によってマルテンサイ
ト組織に変化し硬度を増して強度が上昇する。オーステ
ナイトからマルテンサイト組織に変化する度合はステン
レスを構成するニッケルやクロームやカーボンなどの含
有元素の量によって異なりばね周線としてはニッケル8
%、クローム18%カーボン0.07%程度を含有する
18−8ステンレスが最も一般的である。この成分のも
のををばね用線材として使用する場合には、加工を加え
ることによって発生するマルテンサイトの量が60%〜
90%の組織の機械的性質が最も適している。このマル
テンサイト量を発生せしめるためには、常温環境下では
、母線の直径に対し、その1/2〜1/4程度の仕上り
径まで引き伸ばせばよい。マルテンサイトの量が60%
以下では強度不足であり、90%以上となければ脆化を
生じて好ましくない。オーステナイトからマルテンサイ
トを生じる度合は、加工の程度のみでなく加工を加える
時の温度によっても著しく変化するものであるから加工
温度を充分に管理して線引加工を行うことが重要である
When the stainless steel wire produced in this manner is subjected to wire drawing, the austenitic structure changes to a martensitic structure, increasing hardness and strength. The degree of change from austenite to martensitic structure varies depending on the amount of elements such as nickel, chromium, and carbon that make up the stainless steel.For the spring circumferential wire, nickel 8
%, 18% chromium, 0.07% carbon, and 18-8 stainless steel is the most common. When using this component as a spring wire material, the amount of martensite generated by processing is 60% or more.
A tissue mechanical property of 90% is most suitable. In order to generate this amount of martensite, it is sufficient to stretch the wire to a finished diameter that is approximately 1/2 to 1/4 of the diameter of the generatrix in a normal temperature environment. The amount of martensite is 60%
If it is less than 90%, the strength will be insufficient, and if it is less than 90%, it will become brittle, which is not preferable. The degree to which martensite is formed from austenite varies significantly depending not only on the degree of processing but also on the temperature at the time of processing, so it is important to adequately control the processing temperature during wire drawing.

このように種々の特長ある製法によって製造したばね用
ステンレス鋼線は、表面的にも好潤滑性を有しているた
めその後の成形加工性もよく、又出来上ったばねも通電
性、耐食性そして強度的にも最適の製品と云える。
Stainless steel wires for springs manufactured using these various unique manufacturing methods have good lubricity on the surface, making them easy to form afterward, and the finished springs also have good electrical conductivity, corrosion resistance, and It can be said to be the optimal product in terms of strength.

[実施例コ 次に実施例によって、本発明を具体的に説明する。[Example code] Next, the present invention will be specifically explained with reference to Examples.

実施例及び比較例 第1表に示す元素を含むオーステナイト系ステンレス鋼
材を用いて次の各種の方法でステンレス鋼線を製造した
Examples and Comparative Examples Stainless steel wires were manufactured using austenitic stainless steel materials containing the elements shown in Table 1 by the following various methods.

A・ (従来方法:母線への表面硬化処理、張力付加を
おこなわない) 溶体化処理した直径1.5mmφのボビン巻きした母線
に5.0μmのニッケルメッキを施した後直径を1/3
の0.5mm迄線引き加工し、これをコイルばねに加工
した。
A. (Conventional method: No surface hardening treatment or application of tension to the busbar) After applying 5.0μm nickel plating to the solution-treated busbar wound on a bobbin with a diameter of 1.5mmφ, the diameter was reduced to 1/3.
The wire was drawn to 0.5 mm and processed into a coil spring.

B: (従来方法:母線への表面硬化処理、張力付加を
おこなわない) 強度の伸線加工を施した1、5mmφの硬引線を5.0
μ印の厚さのニッケルメッキを施した後溶体化処理を行
い、直径を1/3の0.5mm迄線引き加工を行った。
B: (Conventional method: No surface hardening treatment or application of tension to the generatrix) 1.5mmφ hard drawn wire with strong wire drawing process
After applying nickel plating to the thickness indicated by μ, solution treatment was performed, and wire drawing was performed to a diameter of 1/3, ie, 0.5 mm.

C: (本発明方法) 溶体化処理した直径1.61mmφのボビン巻した母線
に軽度の圧延加工を加えて1.5mmφに仕上げながら
5.0μmの厚さでニッケルメッキを施し、直径を1/
3の0.5mmφ迄線引き加工を行いこれをコイルばね
に加工した。なおメツキ時には30眩程度のバックテン
ションを加えた。軽度の圧延加工後の母線の硬度は28
0Hv、ニッケルメッキ層の硬度は190Hvてあった
C: (Method of the present invention) A bobbin-wound generatrix with a diameter of 1.61 mmφ that has been solution-treated is lightly rolled to a diameter of 1.5 mm, and then nickel plated to a thickness of 5.0 μm to reduce the diameter by 1/1.
3 was drawn to a diameter of 0.5 mm and processed into a coil spring. In addition, back tension of about 30 dazzles was added during the metsuki. The hardness of the generatrix after light rolling is 28
The hardness of the nickel plating layer was 190Hv.

D: (本発明方法) 溶体化処理した直径1.5mmφのボビン巻きした母線
に軽度の圧延加工を加えて1.4mmφに仕上げながら
厚み2μmの半光沢ニッケルメッキを施しその上に2μ
印の銅メツキを施し更にその上に2μmの光沢ニッケル
メッキを施して後直径を1/3の0.50mmφ迄線引
き加工を行い、これをコイルばねに加工した。なおメツ
キ時には30kg程度のパックテンションを加えた。軽
度の圧延加工後の母線の硬度は290Hv、ニッケルメ
ッキ層の硬度は200Hvであった。
D: (Method of the present invention) A bobbin-wound generatrix with a diameter of 1.5 mm that has been solution-treated is lightly rolled to a diameter of 1.4 mm, and a 2 μm thick semi-bright nickel plating is applied thereon.
Copper plating with the mark was applied, and then 2 μm bright nickel plating was applied thereon, and the wire was then drawn to 1/3 of the diameter, 0.50 mmφ, and this was processed into a coil spring. In addition, about 30 kg of pack tension was added during the metsuki. The hardness of the bus bar after light rolling was 290 Hv, and the hardness of the nickel plating layer was 200 Hv.

ここで使用されためっき処理ラインを第3図に示す。図
中1は母線、2は圧延ローラー 3は弓き出しキャプス
タン、4は前処理層、5は半光沢ニッケルめっき層、6
は銅めっき層、7は光沢ニッケルめっき層、8は引出し
キャプスタン、9はめっき後のステンレス鋼線を示す。
The plating line used here is shown in FIG. In the figure, 1 is the bus bar, 2 is the rolling roller, 3 is the bowed capstan, 4 is the pretreatment layer, 5 is the semi-bright nickel plating layer, 6
7 shows a copper plating layer, 7 shows a bright nickel plating layer, 8 shows a drawer capstan, and 9 shows a stainless steel wire after plating.

第2表は、これら諸テスト品を線引き加工した後の機械
的性質と表面観察による平坦率を調査したものである。
Table 2 shows the mechanical properties and flatness of these test products after wire drawing and surface observation.

この表から従来法と本発明法とを比較すると平坦率で明
らかに本発明品Cの平坦率か特に小さく潤滑性の良好な
ことが判る。また、本発明品Cは、強度が高いにも拘ら
ず絞り率か大きい。更に本発明品りも、従来品A及びB
に比較して平坦率は小さく、絞り率が大きく、潤滑性及
び靭性か優れていることが判る。
From this table, when comparing the conventional method and the method of the present invention, it is clear that the flatness ratio of the product C of the present invention is particularly small and has good lubricity. In addition, although the product C of the present invention has high strength, the drawing ratio is large. Furthermore, the product of the present invention is similar to conventional products A and B.
It can be seen that the flatness ratio is smaller, the reduction ratio is larger, and the lubricity and toughness are superior compared to the above.

第3表には、メツキ工程で生じたスパーク疵を5000
mの長さについて30μ以上の深さの疵を別ラインで伸
線加工時に渦電流探傷器で確認したものである。
Table 3 shows spark defects caused in the plating process at 5,000
Flaws with a depth of 30 μm or more were confirmed using an eddy current flaw detector during wire drawing on a separate line.

明らかに硬質線をメツキしたちのBはスパーク疵か著し
く多く認められ、溶体化処理したものを軽度の圧延加工
してめっき作業を行ったものC及びDではスパーク疵は
認められなかった。それは線が伸直化されたためと、且
つパックテンションか加わりメツキライン上を真直ぐな
状態で走行するためと考えられる。スパークの残存疵は
、ばね成形加工時の折損を生しる問題をのこす。
Significantly more spark defects were observed in B, which was clearly plated with hard wire, and no spark defects were observed in C and D, which were solution-treated and lightly rolled and then plated. This is thought to be because the line has been straightened and because pack tension is added to the line so that it runs straight on the line. Residual spark defects may cause breakage during spring forming.

第4表に、各テスト材の導電率を測定し比較した値を示
す。
Table 4 shows the measured and compared values of the electrical conductivity of each test material.

銅メツキした本発明品りは明らかに導電率の向上が認め
られる。
The conductivity of the copper-plated product of the present invention is clearly recognized to be improved.

[ばねコイリング性] A、C,Dを供試材として、第1図に示す如きばねを2
000個制作し自由長りの分布を測定した結果第2図に
示す如き分布が得られた。
[Spring coiling property] Using A, C, and D as test materials, two springs as shown in Fig.
As a result of manufacturing 000 pieces and measuring the free length distribution, a distribution as shown in FIG. 2 was obtained.

この結果Cが最もバラツキが少なく、次はDて、AはC
とDに比較してばらつきが幾分大きかった。
As a result, C has the least variation, next is D, and A is C.
The dispersion was somewhat larger than that for D and D.

〔塩水噴霧テストによる耐食性〕[Corrosion resistance by salt spray test]

A及びDを供試材としてJIS z2371による塩水
噴霧試験を行った。その結果を表−5に示す。
A salt spray test according to JIS z2371 was conducted using A and D as test materials. The results are shown in Table-5.

この結果から判る通り、Dの発明品、すなわち半光沢ニ
ッケル+銅+光沢ニッケルの複合メッキ品は従来のニッ
ケル単独のメッキ品に比較して明らかに、赤錆の初期発
生迄の時間が長く、しかもその後の全錆の程度も少なく
耐食性が優れていると云える。
As can be seen from this result, the product invented by D, that is, the composite plated product of semi-bright nickel + copper + bright nickel, clearly takes a longer time to develop red rust than the conventional plated product with nickel alone. It can be said that the degree of total rust after that is small and the corrosion resistance is excellent.

以上説明したごとく、本発明は製造工程上における品質
も安定し、これによって作り出すステンレス線の電導性
、耐食性か向上し、又最終製品であるばねの形状も安定
した良い製品か作り出されることになる。
As explained above, the quality of the present invention is stable during the manufacturing process, and as a result, the conductivity and corrosion resistance of the stainless steel wire produced are improved, and the shape of the final product spring is also stable and good quality. .

以下、本発明の効果を以下の実験例により確認した。Hereinafter, the effects of the present invention were confirmed by the following experimental examples.

実験例1(表面硬さと疵との関係) 電極棒の重さを750grとし2.0mmφのワイヤー
を10m/minのスピードでIHr走らせた場合にス
テンレスワイヤーの表面硬さを変えて疵の発生状況を調
査した(電極棒との摩擦疵のみ調査)。
Experimental Example 1 (Relationship between surface hardness and flaws) When the electrode rod weighs 750 gr and a 2.0 mmφ wire is run at a speed of 10 m/min by IHr, the surface hardness of the stainless steel wire is changed and flaws occur. (only friction scratches with the electrode rod were investigated).

対象とした疵の種類は「50μm以上の目玉」、「巾1
00μm以上のカキキズ」、[連続した巾50、czn
以上のキズ(100rnで1ケと見る)」、「スパーク
疵(大小を問わす)」である。
The types of flaws targeted were “eyeballs of 50 μm or more” and “width 1
"Oyster scratches of 00 μm or more", [continuous width 50, czn
These are the above flaws (seen as 1 flaw per 100 rn), and spark flaws (regardless of size).

疵は明らかに電極棒よりもステンレス肌がより硬くなる
と急激に減少してHvで100程度の差がある場合には
殆んど無くなり、逆にHv50程軟かくなっただけで急
激に増加することか判る(第4図参照)。
Obviously, the number of scratches decreases rapidly when the stainless steel skin becomes harder than the electrode rod, almost disappears when there is a difference of about 100 in Hv, and conversely increases rapidly when the stainless steel skin becomes softer by only about 50 Hv. (See Figure 4).

実験例2(バックテンションの大きさと疵との関係) 実際のメツキラインに2.0mmφを10m/alin
で走らせてテストした。溶体化処理材ではバックテンシ
ョンかゆるい場合には陰極棒でのスパーク疵や途中のガ
イドとの接触紙がかなり認められる。
Experimental example 2 (relationship between back tension size and flaw) 2.0mmφ was applied to the actual plating line at 10m/alin.
I ran it and tested it. In solution-treated materials, if the back tension is too loose, spark defects at the cathode rod and paper contact with guides along the way can be seen.

硬化処理材の方が溶体化処理材よりも明らかに疵ハ少す
くこの場合でもバックテンションの大きい方が疵は減少
し、30 kgで殆んど無くなる(第5図参照)。なお
、硬化処理をダイスで引き抜きこの場合に要する引抜き
力をそのままバックテンションに利用する場合には減面
率20%で90kg程度のバックテンションになる。
The hardened material clearly has fewer scratches than the solution treated material, and even in this case, the larger the back tension, the fewer the defects, and they are almost gone at 30 kg (see Figure 5). Note that if the hardening treatment is performed by pulling out with a die and the pulling force required in this case is used as it is for back tension, the back tension will be about 90 kg with an area reduction rate of 20%.

実験例3(硬化処理におけるニッケルの素地への最大め
り込み率) 析出ニッケルの硬さをHv220としステンレス母線の
表面硬度を変化させてこれにニッケルメッキを施し、減
面率20%の引抜加工で硬化処理を施した場合、ニッケ
ルのステンレス素地への最大めり込み率を金属顕微鏡観
察で求めた。この結果母線の硬さか概ねHv230以上
であればめり込み率は小さく、逆にメツキ層への素地の
めり込みか幾分認められるようになる。素地への二・ン
ケルのめり込みの程度を見る「最大めり込み率」とは次
の如き内容である。すなわち素地へニッケルかめり込む
のをプラス、逆にニッケルへ素地がめり込むのをマイナ
スの符号で表わし、いずれにもめりこまないのをOて表
わした。即ちめっき直後はOであるが、これに伸線加工
を加えて行くと、いずれかがめり込みながら、加工度が
増加するにつれてめっき層の厚みの絶対値を漸次減少し
て行く。
Experimental Example 3 (Maximum penetration rate of nickel into the base material during hardening treatment) The hardness of the precipitated nickel was set to Hv220, the surface hardness of the stainless steel bus bar was changed, nickel plating was applied to this, and the hardening was performed by drawing with an area reduction rate of 20%. When the treatment was applied, the maximum penetration rate of nickel into the stainless steel substrate was determined using a metallurgical microscope. As a result, if the hardness of the generatrix is approximately Hv230 or higher, the penetration rate will be small, and on the contrary, some penetration of the substrate into the plating layer will be observed. The ``maximum penetration rate'', which measures the degree of penetration of the second layer into the substrate, is as follows. That is, the penetration of nickel into the substrate is represented by a plus sign, the penetration of the substrate into nickel is represented by a minus sign, and the failure to sink into either is represented by O. That is, immediately after plating, it is O, but when wire drawing is added to this, some of the wires sink in, and as the degree of processing increases, the absolute value of the thickness of the plating layer gradually decreases.

最大めり込み率とは、初めのめつき厚みに対し、その時
の伸線加工によっていずれかの方向に最も深くめり込ん
だ所を横断面上でさがし出して、その割合で呼ぶ。例え
ば、第7図の記号A、BSCを用いて表現すると(1−
B/A) X100又は(1−C/A)X100−最大
めり込み率となる。
The maximum penetration rate is the ratio of the initial plating thickness to the deepest penetration in either direction due to the wire drawing process on a cross section. For example, if expressed using symbols A and BSC in Figure 7, (1-
B/A)X100 or (1-C/A)X100-maximum penetration rate.

ただし、IBI≦IAI≦IcIの条件有A−B>Cの
場合−めっき層への素地のめり込み、A−B<Cの場合
+素地へのめつきのめり込み、この状態を実際の顕微鏡
写真で示す第8図〜第11図になる。
However, if there is a condition of IBI≦IAI≦IcI, in the case of A-B>C - the base plate sinks into the plating layer, and when A-B<C + the plating sinks into the base plate, this state is shown in an actual micrograph. Figures 8 to 11 are shown.

しかし、この考え方は、伸線加工の初期段階、すなわち
減面率が50%(伸線前の母線の直径に対して約7割程
の直径となる加工)程度までの範囲で適用できるもので
、表面潤滑性はこの段階までの加工で概ね決定される。
However, this concept can be applied to the initial stage of wire drawing, that is, up to a reduction in area of 50% (processing that results in a diameter that is approximately 70% of the diameter of the generatrix before wire drawing). The surface lubricity is largely determined by the processing up to this stage.

それ以上の伸線加工となると、素線及びニッケルめっき
層のそれぞれの加工効果の違いや、めっき層が非常に薄
くなっていくことから、相互へのめり込み上体か複雑と
なり、−律に律することはできなくなる。第8図はめっ
き直後の母線の横断面の顕微鏡写真を示す。
If the wire drawing process exceeds that level, the processing effect of the wire and the nickel plating layer will be different, and the plating layer will become very thin, so it will become complicated because it will sink into each other. will no longer be possible. FIG. 8 shows a micrograph of the cross section of the generatrix immediately after plating.

第9図はめっき層と素地の硬さがほぼ同じ状態、第10
図はニッケルめっきがステンレス素線よりも硬い場合(
従来品)、第11図はステンレス素線がニッケルめっき
よりも硬い場合(本発明品)のめっき線をそれぞれ15
%(第9図)、35%(第10図) 35%(第11図
)の減免率の伸線加工を施したものの顕微鏡写真である
。なおニッケルめっきとステンレス素線との硬度差はそ
れぞれHvで±70程度のものである。
Figure 9 shows a state in which the hardness of the plating layer and the substrate are almost the same;
The figure shows a case where nickel plating is harder than stainless steel wire (
Figure 11 shows the plated wire (conventional product) and the plated wire in which the stainless steel wire is harder than the nickel plating (product of the present invention).
% (Fig. 9), 35% (Fig. 10), and 35% (Fig. 11). Note that the difference in hardness between the nickel plating and the stainless steel wire is approximately ±70 in Hv.

実施例4(水素脆性に対する表面硬化処理の影響) ステンレス線の表面には、ハンドリング中の汚れ、酸化
皮膜、油脂分などの耐着がある場合、それ等を完全に除
去しておかないと、その後のニッケルメッキの密着性に
悪い影響か生じ剥離する場合もある。
Example 4 (Influence of surface hardening treatment on hydrogen embrittlement) If the surface of the stainless steel wire has dirt, oxide film, oil, etc. that are resistant to adhesion during handling, it is necessary to completely remove them. This may adversely affect the adhesion of the subsequent nickel plating, resulting in peeling.

従って、ステンレス線の表面清浄には優れた電解処理法
が採用されなければならない。最近の最も優れている電
解清浄法を採用する場合、即ち、処理する線とは無接触
で、電解洗浄を強力に行う無接触交番電解法があるが、
この場合通常の陰極又は陽極電解洗浄法に比して10倍
〜20倍の大電流密度が採用出来るのでそれだけ強力な
表面処理が可能である。しかし一方においては、素材か
陰極となる場合、その表面から発生する水素の量は極め
て多く、通常の接触陰極電解法で発生する程度の水素量
では、比較的鈍感と云われている溶体化したオーステナ
イト系ステンレス線の場合ても、充分に留意する必要か
ある。更にまた、その後の伸線加工でα−マルテンサイ
トを発生するオーステナイト系ステンレス鋼線の場合、
水素が侵入すれば、その量は僅かでも脆化への水素の影
響は大きくなる。ステンレス表面から水素か内部に侵入
する侵入路としては溶体化されたステンレスでは再結晶
後のフレッシュな結晶粒界が大きな役割を果たしている
Therefore, an excellent electrolytic treatment method must be used to clean the surface of stainless steel wire. When using the most recent electrolytic cleaning method, there is a non-contact alternating electrolytic method that performs powerful electrolytic cleaning without contacting the wire being treated.
In this case, a current density 10 to 20 times higher than that of ordinary cathodic or anodic electrolytic cleaning methods can be used, so that stronger surface treatment is possible. However, on the other hand, when a material becomes a cathode, the amount of hydrogen generated from its surface is extremely large, and the amount of hydrogen generated in normal catalytic cathode electrolysis is said to be relatively insensitive. Even in the case of austenitic stainless steel wire, it is necessary to be careful. Furthermore, in the case of austenitic stainless steel wire that generates α-martensite during subsequent wire drawing,
If hydrogen enters, even if the amount is small, the effect of hydrogen on embrittlement becomes large. In solution-treated stainless steel, fresh grain boundaries after recrystallization play a major role as an entry route for hydrogen to enter the interior from the stainless steel surface.

従って、表面に露出している結晶粒界を押し潰して、水
素の侵入路を減少せしめることが内部に侵入する水素を
減少せしめることに大いに寄与することになる。一般に
強度の加工をおこなえば、その後のめっきによる水素脆
性が起こりやすいと言われているが、本発明程度の加工
では問題はない。
Therefore, crushing the grain boundaries exposed on the surface and reducing the paths for hydrogen to penetrate will greatly contribute to reducing the amount of hydrogen penetrating into the interior. It is generally said that if strong processing is performed, hydrogen embrittlement is likely to occur due to subsequent plating, but there is no problem with processing to the extent of the present invention.

そこで、本発明ではステンレス表面を圧延ローラーで圧
延し、結晶粒界を押し潰すわけであるが、その実験例に
よる効果を次に示す。
Therefore, in the present invention, the stainless steel surface is rolled with a rolling roller to crush the grain boundaries, and the effects of this experiment will be described below.

まず3.8關φの溶体化したステンレス線を硫酸200
gzJの浴組成で無接触交番電解清浄法を採用し60 
A / c−の電流密度で30秒処理した母線と、4 
、05 mmφの溶体化処理したステンレス線をローラ
ーダイスで3.8順φ迄圧延し、これを前述した方法と
全く同じ条件で処理した線の2種類に厚み3μmのニッ
ケルメッキ処理を施し、両者の水素の吸蔵量を測定比較
し、更にこれらの線を1.8mm迄連続伸線機で伸線し
、これらの線の捻回値及び絞り率を測定比較した。それ
らの結果を第12図、第13図、第14図に示す。図か
ら、本発明法はガスの吸収は少なく、捻回値と絞り率の
向上が認められる。
First, a solution-treated stainless steel wire with a diameter of 3.8 mm was heated with 200 ml of sulfuric acid.
Using a non-contact alternating electrolytic cleaning method with a bath composition of gzJ, 60
Busbars treated for 30 s at a current density of A/c-, and 4
A solution-treated stainless steel wire with a diameter of 0.05 mm was rolled to a diameter of 3.8 with a roller die, and then treated under exactly the same conditions as the method described above, two types of wire were plated with nickel to a thickness of 3 μm, and both The amount of hydrogen absorbed was measured and compared, and these wires were drawn using a continuous wire drawing machine to a thickness of 1.8 mm, and the twist values and drawing ratios of these wires were measured and compared. The results are shown in FIGS. 12, 13, and 14. From the figure, it can be seen that the method of the present invention absorbs less gas and improves the twist value and narrowing ratio.

第1表 供試材の化学成分(wt%) 表3 スパーク疵の調査結果 表4 導電率 参考ニステンレス=2.4Table 1 Chemical composition of sample material (wt%) Table 3 Spark flaw investigation results Table 4 conductivity Reference stainless steel = 2.4

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法に係るステンレス鋼線からなるコイ
ルばねの一例を示す図、第2図はこのコイルばねの自由
長のバラツキを示す分布図、第3図は本発明方法に係る
めっき処理ラインの模型図、第4図はステンレス鋼線の
表面硬さ(Hv)と疵の数との関係を示す図及び実験の
模型図、第5図はパックテンション(kg )と疵の筒
数との関係を示す図、第6図はステンレス鋼線の表面硬
さ(Hv)と素地への最大めり込み率(%)との関係を
示す図、第7図はめっき粒子の素地へのめり込み状態を
示す図、第8図ないし第11図は、めっき粒子の素地へ
の異なるめり込み状態を示す表面層近傍の金属組織の顕
微鏡写真、第12図ないし第14図は本発明のステンレ
ス鋼線の水素ガス含有率、素線の捻回値、素線の絞り率
%をそれぞれ従来のステンレス鋼線と比較して示す図で
ある。 出願人代理人 弁理士 鈴 江 武 彦第 図 一イ固 数 第 2図 ハラクチ〉ジョン(に9) 第6図 てδ 図 第11図 ←濱9駿−升イ りさw−ぐのへ− ¥−に4例将升匣 色
Fig. 1 is a diagram showing an example of a coil spring made of stainless steel wire according to the method of the present invention, Fig. 2 is a distribution diagram showing variations in the free length of this coil spring, and Fig. 3 is a plating treatment according to the method of the present invention. Figure 4 is a diagram showing the relationship between the surface hardness (Hv) of stainless steel wire and the number of flaws, and a model diagram of the experiment. Figure 5 is a diagram showing the relationship between the pack tension (kg) and the number of flaws. Figure 6 is a diagram showing the relationship between the surface hardness (Hv) of stainless steel wire and the maximum penetration rate (%) into the base, and Figure 7 is a diagram showing the state of penetration of plating particles into the base. Figures 8 to 11 are micrographs of the metal structure near the surface layer showing different states of penetration of the plating particles into the substrate, and Figures 12 to 14 are the hydrogen gas-containing stainless steel wires of the present invention. FIG. 3 is a diagram showing the ratio, twist value of the strands, and drawing rate % of the strands in comparison with conventional stainless steel wires. Applicant's representative Patent attorney Suzue Takehiko Number 2 Harakuchi〉 John (Ni9) Figure 6 δ Figure 11 ← Hama 9 Shun - Masu Irisa w - Gunohe - ¥ - 4 cases of general color

Claims (5)

【特許請求の範囲】[Claims] (1)オーステナイト系ステンレス鋼線に溶体化処理を
施す工程と、溶体化処理した上記鋼線に、表面硬化処理
を施す工程と、表面硬化処理を施した鋼線に張力を付加
した状態でニッケルめっき処理をおこなう工程と、ニッ
ケルめっきした鋼線を仕上伸線処理する工程とを具備し
たステンレス鋼線の製造方法。
(1) A step of solution-treating an austenitic stainless steel wire, a step of surface-hardening the solution-treated steel wire, and a step of applying nickel to the surface-hardened steel wire under tension. A method for producing stainless steel wire, which includes a plating process and a finish drawing process of a nickel-plated steel wire.
(2)オーステナイト系ステンレス鋼線に溶体化処理を
施す工程と、溶体化処理した上記鋼線に、表面硬化処理
を施す工程と、表面硬化処理を施した鋼線に張力を付加
した状態で、半光沢ニッケルめっき、銅めっき、光沢ニ
ッケルめっきを順におこなう工程と、このようにめっき
層を形成した鋼線を仕上伸線処理する工程とを具備した
ステンレス鋼線の製造方法。
(2) A step of applying solution treatment to the austenitic stainless steel wire, a step of applying surface hardening treatment to the solution treated steel wire, and a state in which tension is applied to the surface hardened steel wire, A method for producing a stainless steel wire, comprising a step of sequentially performing semi-bright nickel plating, copper plating, and bright nickel plating, and a step of finishing wire drawing the steel wire on which the plating layer has been formed.
(3)溶体化処理する鋼線は、下引き伸線加工されてい
る請求項1または2に記載のステンレス鋼線の製造方法
(3) The method for manufacturing a stainless steel wire according to claim 1 or 2, wherein the steel wire to be subjected to solution treatment is subjected to underdrawing wire drawing processing.
(4)鋼線の表面硬化処理は、この処理で得られる鋼線
の表面硬度が、ニッケルめっき処理で得られるニッケル
めっき層の硬度よりも高くなるようにおこなわれる請求
項1ないし3のいずれかに記載のステンレス鋼線の製造
方法。
(4) The surface hardening treatment of the steel wire is performed in such a manner that the surface hardness of the steel wire obtained by this treatment is higher than the hardness of the nickel plating layer obtained by the nickel plating treatment. The method for manufacturing stainless steel wire described in .
(5)仕上伸線処理は、鋼線の組織中にα′マルテンサ
イトが60〜90%含まれるようにおこなわれる請求項
1ないし4のいずれかに記載のステンレス鋼線の製造方
法。
(5) The method for manufacturing a stainless steel wire according to any one of claims 1 to 4, wherein the finishing wire drawing treatment is performed so that 60 to 90% of α' martensite is contained in the structure of the steel wire.
JP2118569A 1990-05-10 1990-05-10 Manufacturing method of stainless steel wire Expired - Fee Related JPH0713258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2118569A JPH0713258B2 (en) 1990-05-10 1990-05-10 Manufacturing method of stainless steel wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2118569A JPH0713258B2 (en) 1990-05-10 1990-05-10 Manufacturing method of stainless steel wire

Publications (2)

Publication Number Publication Date
JPH0417616A true JPH0417616A (en) 1992-01-22
JPH0713258B2 JPH0713258B2 (en) 1995-02-15

Family

ID=14739847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2118569A Expired - Fee Related JPH0713258B2 (en) 1990-05-10 1990-05-10 Manufacturing method of stainless steel wire

Country Status (1)

Country Link
JP (1) JPH0713258B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023563A (en) * 2006-07-21 2008-02-07 Nippon Seisen Co Ltd Stainless steel wire for spring
CN103233254A (en) * 2013-04-11 2013-08-07 西安菲尔特金属过滤材料有限公司 Preparation method of corrosion resistant alloy fiber
CN109277502A (en) * 2018-11-08 2019-01-29 南京工业大学 A kind of bimetallic complex spring and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350001A (en) * 1976-10-20 1978-05-08 Suzuki Metal Industry Co Ltd Stainless steel wire for manufacture of springs having fine moulding characteristic and corrosion resistance
JPS6216278A (en) * 1985-07-15 1987-01-24 Csk Corp Data writing method for recording medium
JPS63169572U (en) * 1987-04-24 1988-11-04

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350001A (en) * 1976-10-20 1978-05-08 Suzuki Metal Industry Co Ltd Stainless steel wire for manufacture of springs having fine moulding characteristic and corrosion resistance
JPS6216278A (en) * 1985-07-15 1987-01-24 Csk Corp Data writing method for recording medium
JPS63169572U (en) * 1987-04-24 1988-11-04

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023563A (en) * 2006-07-21 2008-02-07 Nippon Seisen Co Ltd Stainless steel wire for spring
CN103233254A (en) * 2013-04-11 2013-08-07 西安菲尔特金属过滤材料有限公司 Preparation method of corrosion resistant alloy fiber
CN103233254B (en) * 2013-04-11 2015-05-13 西安菲尔特金属过滤材料有限公司 Preparation method of corrosion resistant alloy fiber
CN109277502A (en) * 2018-11-08 2019-01-29 南京工业大学 A kind of bimetallic complex spring and preparation method thereof

Also Published As

Publication number Publication date
JPH0713258B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
US7938949B2 (en) Method for producing a hardened profiled structural part
JP4369416B2 (en) Spring steel wire rod with excellent pickling performance
JPH0199714A (en) Manufacture of steel wire for reinforcing rubber product and steel wire thereof
JPH0790267B2 (en) Steel wire and method for manufacturing the same
DE3726518C2 (en)
CN110832096A (en) High-strength steel wire
EP3359703A1 (en) An elongated steel wire with a metal coating for corrosion resistance
JP2013081982A (en) Extra-fine steel wire having excellent delamination-resistance characteristics and method for manufacturing the same
JPH0417616A (en) Production of stainless steel wire
JP4937846B2 (en) Steel wire for reinforcing rubber products excellent in corrosion fatigue resistance and manufacturing method thereof
JPH0323674B2 (en)
JP6558255B2 (en) High-strength ultrafine steel wire and method for producing the same
JP2769842B2 (en) Manufacturing method of alloy plated steel wire
JP3312103B2 (en) High strength hot rolled steel sheet
JP2756003B2 (en) High strength steel cord excellent in corrosion fatigue resistance and method of manufacturing the same
JP3057372B2 (en) Method for producing Zn-Al alloy-plated steel wire excellent in corrosion resistance and fatigue resistance
US20140079957A1 (en) Process for tin coating a metallic substrate, process for hardening a tin layer and wire having a tin coating
JP3017910B2 (en) Method of manufacturing spring products
JPH04183893A (en) Zn-ni alloy plated steel wire and its production
WO2010070742A1 (en) Titanium material and method for producing titanium material
JP3750214B2 (en) Steel sheet for ultra-thin cans excellent in formability that does not easily cause press rupture and method for producing the same
JP3330233B2 (en) Manufacturing method of hot-dip Zn-Al plated steel wire
Węgrzynkiewicz THE PROBLEM WITH THE ZINC COATING DIVERSIFICATION OF THE HOT-DIP GALVANIZED STEEL
JPS61287932A (en) Reinforcement for rubber
JP5602657B2 (en) Rubber article reinforcing wire manufacturing method and rubber article reinforcing wire

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 14

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees