JP3750214B2 - Steel sheet for ultra-thin cans excellent in formability that does not easily cause press rupture and method for producing the same - Google Patents

Steel sheet for ultra-thin cans excellent in formability that does not easily cause press rupture and method for producing the same Download PDF

Info

Publication number
JP3750214B2
JP3750214B2 JP23973496A JP23973496A JP3750214B2 JP 3750214 B2 JP3750214 B2 JP 3750214B2 JP 23973496 A JP23973496 A JP 23973496A JP 23973496 A JP23973496 A JP 23973496A JP 3750214 B2 JP3750214 B2 JP 3750214B2
Authority
JP
Japan
Prior art keywords
less
rolling
steel sheet
hot
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23973496A
Other languages
Japanese (ja)
Other versions
JPH1060592A (en
Inventor
章男 登坂
金晴 奥田
古君  修
英雄 久々湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP23973496A priority Critical patent/JP3750214B2/en
Publication of JPH1060592A publication Critical patent/JPH1060592A/en
Application granted granted Critical
Publication of JP3750214B2 publication Critical patent/JP3750214B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、缶用鋼板およびその製造方法に関するものである。特に本発明は、極薄缶用鋼板およびその製造方法に関し、特にプレス破断の発生しがたい成形性に優れた極薄缶用鋼板の製造方法に関する。
【0002】
【従来の技術】
缶用鋼板は缶製造コストの低減のため薄肉化が図られているが、それに伴う缶強度の低下に対処するために、例えば特開昭51−131413号公報記載の技術が提案されている。これは焼鈍後の2次冷延、いわゆるダブルレヂュースにより、鋼板の硬さを確保するとともに板厚の減少を図るものであるが、熱間圧延の巻取温度を制御し、鋼中の固溶NをAlNとして固定化することにより鋼板がダブルレヂュース後に過度に硬くならないようにしている。
【0003】
しかし、この種の鋼板を深絞り加工を伴う缶成形に使用した場合、鋼板の延性が顕著に劣化するために限界絞り比が顕著に低下しているので、実際の成形においてプレス割れなどの問題を生じやすく、材質的に必ずしも十分満足できるものではなかった。
【0004】
一方、缶用鋼板の成形時に成形途中でのプレス品の破断は、近年の高速かつ連続工程においては大きなダウンタイムを生ずるために重大な問題となっている。その回避手段として、プレス成形時の潤滑性の改善、金型寸法の細部にわたる最適化、塑性加工工程の分割、および中間焼鈍による素材延性の改善などが行われているが、十分なレベルといえなかった。そればかりでなく、かかる手段によって工程が増加することは設備費の増加も伴うため大きな問題であった。
【0005】
従って、プレス破断に対して抵抗力のある原板の供給が望まれる。一般にプレス破断は原板の介在物を起因とするものであることが知られており、その低減のためには製鋼工程(特に製鋼・連続鋳造工程)で混入する内部欠陥(巨大な非金属介在物、その長さはおよそ100μm以上におよぶ)を低減することが重要である。
しかし巨大非金属介在物の連続鋳造の過程での取り込みに関する詳細な機構については不明であり、有効な対策も未だ確立されていない。従って、製鋼技術のみでは十分な対策は望めない。かかる事情を考慮すると、材質的に介在物、特に巨大介在物の存在に対して鈍感な缶用鋼板の提供が望まれるが、かかる発想に基づいた提案は未だ見られない。なお、鋼板の製造過程で偶発的に生じた疵なども巨大介在物と同様の害を与えるが、これについての有効な対策についての提案もなされていない。
【0006】
【発明が解決しようとする課題】
本発明は、上記のプレス成形時の問題点を解決し、さらに鋼板の薄肉化・硬質化が進んだ状況であっても、十分に高い成功率でプレス加工が行える鋼板およびその製造方法を提供するものである。
特に本発明の課題は、プレス破断の生じがたい極薄缶用鋼板およびその製造方法を提供することにあり、中でも、製鋼時に鋼中に取り込まれる巨大非金属介在物の存在にもかかわらず、プレス破断の生じがたい成形性に優れた極薄缶用鋼板およびその製造方法を提供するところにある。
また本発明は、かかる極薄缶用鋼板を製造するための中間素材である新規な熱延鋼板を提供することを目的とするものである。
結局、本発明は、成形があまり厳しくない絞りの浅い缶などでは割れに至らないものであっても、非常に深い絞り成形を行い、かつ過酷な薄肉化加工を行う場合には鋼中の延伸した非金属介在物に大きな応力集中が不可避となるが、かかる場合にも破断にいたる可能性を減じ、十分に高い成功率でプレス加工が行える鋼板およびその製造方法を提供するものである。
【0007】
【課題を解決するための手段】
本発明者らは、上記の問題を解決するために、鋼中に巨大介在物が取り込まれていても、プレス成形時に破断が生じがたい鋼板及びその製造方法について検討した。種々の検討の結果、鋼板の組成成分、組織、(結晶粒径、炭化物・酸化物・硫化物の寸法、)の制御とこれら炭化物、非金属介在物の鋼板製造工程、での延伸を低く抑え、ボイドの発生を抑制することが極めて重要であることを見出し、本発明を完成したものである。本発明はかかる知見に基づき、第1に、極薄缶用鋼板を、板厚が0.3mm以下、平均結晶粒径が5〜15μmで、圧延方向に観察される50μm以上の長さの炭化物、酸化物、および硫化物の合計の密度が20個/mm以下であり、ボイドの発生が抑制されている組織とするものである。
【0008】
本発明はかかる知見に基づき、第1に、極薄缶用鋼板を、板厚が0.3mm以下、平均結晶粒径が5〜15μmで、圧延方向に平行な断面に観察される50μm以上の長さの炭化物、酸化物、および硫化物の合計の密度が20個/mm2以下の組織とするものである。
【0009】
また、缶用鋼板の組成を、重量比で、
C :0.10%以下、
Si:0.10%以下、
Mn:0.05〜1.5%、
P :0.02%以下、
S :0.015%以下、
Al:0.005〜0.150%
N :0.0005〜0.0150%
を含有し、残部がFeおよび不可避的不純物から成るものとするものである。
【0010】
さらに上記缶用鋼板の組成に、
Nb:0.003〜0.030%、
Ti:0.003〜0.040%
の1種又は2種を含有させるものである。
【0011】
本発明は、また、上記缶用鋼板を製造するために、缶用鋼板としての組成を有するスラブを熱間圧延し、仕上温度を800℃以上1000℃以下として、1.2mm以下の厚みに仕上げ、500℃〜780℃巻取温度で巻き取って熱延板を得、前記熱延板に対して85%以下の圧下率で冷間圧延を施し、再結晶温度以上850℃以下の連続焼鈍を行い、圧下率15%以下で2次冷間圧延を施すものである。
【0012】
本発明は、さらに、熱間圧延に際し、スラブを粗圧延して得た先行するシートバーと後行するシートバーをを相互に接合して連続的に仕上熱間圧延し、かつ仕上圧延に際して摩擦係数が0.20以下の潤滑圧延を行うものである。
【0013】
また、本発明は、冷延工程に供する熱延鋼板を、缶用鋼板としての組成を有するスラブを熱間圧延し、仕上温度を800℃以上1000℃以下として、1.2mm以下の厚みに仕上げ、500℃〜780℃巻取温度で巻き取って得たものとするものである。
【0014】
【発明の実施の形態】
本発明は板厚0.30mm以下の極薄缶用鋼板を対象とする。
すなわち、本発明は、飲料缶などの容器缶材料のうち、主として円筒状の深絞り成形で形成されるものであって、単純な深絞り成形の行われる場合、それにしごきを加える場合、あるいはさらに積極的に引張力を付与して薄肉化を図るような場合を想定しており、かかる場合の塑性変形の安定性を図るものである。
かかる場合には塑性変形の安定性が板厚の減少に伴って損なわれ、安定して塑性変形工程を行うことが困難になるといわれている。
この点につき、本発明者らが調査した結果、板厚が0.3mm以下の場合、特に0.20mm以下になるとプレス成形段階での塑性加工の安定性が極度に劣化することがわかった。
【0015】
また、炭化物、非金属介在物の影響を金属組織的に調査した結果、板厚が小さくなると鋼板の製造工程(特に圧延工程)において前記炭化物、非金属介在物の周囲に形成されるボイド(空隙)が深刻な破断トラブルにつながる確率が高いことが明らかとなった。このようなこの影響が大きく現れ、成形工程での破断を防止するという本発明の効果が工業的に意味を持ってくるのは鋼板板厚が0.30mm以下、特に0.20mm以下というような極薄鋼板においてである。これらの面から、本発明の対象は、0.30mm以下、特に0.20mm以下の極薄鋼板に限られる。
【0016】
本発明における鋼板の平均結晶粒径は5〜15μmとする。
結晶粒径を種々に変化させて無潤滑条件下で円筒成形試験をおこない、その限界絞り比を比較したところ、平均結晶粒径が5μm未満の材料では、降伏点が高くなり過ぎるためか、限界絞り比が低下した。
一方、平均結晶粒径が15μmを越えると軽度のオレンジピールに類似した鋼板表面の肌あれ減少を生じて逆に限界絞り比が低下した。
従って、平均結晶粒径は、5〜15μmの範囲とした。さらに好ましくは、7〜12μmの範囲である。
なお、ここで述べる平均結晶粒径はJISG0552に準拠し、円相当径で換算したものである。
この結晶粒経を有する鋼板を得るためには、後述するように、鋼成分と熱延条件(特に熱延母板の厚み)を調整すればよい。
【0017】
本発明においては、圧延方向に平行な断面に観察される50μm以上の長さの炭化物、酸化物、および硫化物の合計の密度が20個/mm2以下でなければならない。
本発明者等は本発明にかかる組成を有する鋼を種々製造条件を変化させて缶用鋼板とし、光学顕微鏡で圧延方向に平行な断面に観察される炭化物の寸法の観察を400倍で40視野以上実施した。その結果、50μm以上の長さの炭化物・非金属介在物の密度が20個/mm2以下であると、人工欠陥を付与した引張試験での延性が顕著に改善されることが明らかとなった。さらに望ましい範囲は、10個/mm2以下である。ここで炭化物等の寸法は、集合として実質的に連続である相の場合は連続体の寸法として扱うものとする。例えば、延伸した帯状の組織を有する炭化物は全体としてひとつの巨大な炭化物として扱うことにする。
【0018】
なお、人工欠陥を付与した引っ張り試験とは、通常の引張試験片の中央部に円孔を付与したものをいい、かかる試験が巨大非金属介在物を有する鋼板の引っ張り試験結果をシミュレートすることが予備試験により確認されている。すなわち、本実験の欠陥が鋼中に存在する巨大な非金属介在物と同等な効果を持つことが確認されている。
かかる析出物および炭化物の密度は、後に示すようにC量の上限規制をはじめとする鋼成分の設定、仕上圧延温度を800℃以上に保ちながら熱延母板厚みを1.0mm以下と従来に比べ薄くすることによって達成される。
【0019】
本発明は缶用鋼板としての組成を有するものであれば適用可能である。しかし、缶用鋼板としての高度の成形性、表面処理性、製造工程の安定性、さらには本発明に特有の炭化物の密度を考慮すると、以下に示す条件を満たすのがよい。以下、本発明を適用するのに適した鋼の化学成分について説明する。
【0020】
C:0.100%以下
C量は0.100%を越えると、スラブ割れの危険が増大する。また、第2層であるパーライトの分率が増加し、かつこれらが層状の組織を持つため局部延性が顕著に劣化し、缶成形に特に必要なフランジ成形性が著しく劣化する。そのためその上限を0.100%とした。なお、C量を0.10%以下にすると格段に延性が改善され、0.05%以下では最も良好となる。
なお、C量が極端に低い場合には、必要な缶強度を確保するために、高圧下率の2次圧延を施す必要が生じ、そのため本発明の条件である2次圧下率と相反する結果を生ずるおそれがあるが、顕著な結晶粒の粗大化を生じない0.0005%以上であれば問題は生じない。
【0021】
Si:0.10%以下
Siは多量に添加すると表面処理性の劣化、耐食性の劣化などの問題が生じてくるために、その上限を0.10%とした。特に優れた耐食性が要求される場合は、0.02%以下がより好適である。
【0022】
Mn:0.05〜1.5%
MnはSによる熱間割れを防止する有効な元素であり、含有するS量に応じて添加する必要がある。またMnは結晶粒を微細化する効果がある。これらの有効な効果を発揮させるためには、少くとも0.05%以上の添加が必要である。
一方Mnを多量に添加すると、耐食性が劣化傾向にあることに加え、鋼板を硬質化させフランジ加工性、ネック加工性を劣化させるため、その上限を1.5%とした。なお、より良好な成形性が要求される用途では、0.80%以下が好ましい。
【0023】
P:0.02%以下
Pは多量に含有する場合、鋼を著しく硬質化させフランジ加工性やネック加工性を劣化させると同じに、耐食性を著しく劣化させるため、その上限を0.02%とした。これらの特性が特に重要視される場合は0.01%以下とする必要がある。
【0024】
S:0.015%以下
Sはいわゆる介在物として存在し、鋼板の延性を減少させ、さらに耐食性の劣化をもたらす元素なので、その上限を0.015%とした。特に良好な加工性を要求される用途においては0.010%以下とすることが望ましい。
【0025】
Al:0.150%以下
Alを添加すると鋼中O量の低減が可能である。その効果はおおむね0.005%以上で顕著になる。しかしAl含有量が多くなるといわゆるアルミナクラスターの形成による表面性状の悪化、溶接部の極端な軟質化によるフランジ割れの発生につながるためにその上限を0.150%とした。材質の安定化という観点では0.010〜0.080%が望ましい。
【0026】
N:0.0005%以上、0.0150%以下
Nは固溶強化効果により鋼板強度を増加する。おおむね5ppm以上の添加によってこのような効果が得られる。しかし0.0150%を越えて添加した場合は鋼板の内部欠陥の発生率が高くなるために、その上限を0.0150%とした。この範囲であれば溶接部の硬度の上昇などの問題はない。なお、製造工程全体を考慮した材質の安定性という観点では、0.0005〜0.0050%がさらに好適である。
【0027】
TiおよびNb
上記成分に加え、主として組織の微細化の目的でTi,Nbの1種または2種を添加することが有効である。
Nb:0.003〜0.030%
Nbによる組織の均一化・微細化効果はおおむね0.003%以上の添加で発揮されるが、0.030%を越えて添加してもその効果が飽和し、コストアップにつながり好ましくない。加えて、再結晶温度の上昇・熱延母板の顕著な硬質化による冷延・焼鈍工程の困難化も顕著となる。これらを考慮し、さらに延性の改善の観点から好ましい範囲は0.010〜0.020%の範囲である。
【0028】
Ti:0.003〜0.040%
Tiにおいても細粒化効果が得られるのは、0.003%の添加からであり、0.040%を越えて添加しても効果が飽和することに加え、表面欠陥が増加し表面処理用の原板としてははなはだ好ましくない。特に表面の美麗性が要求される用途では0.020%以下が望ましい。
【0029】
本発明にかかる缶用鋼板は、前述のように鋼板組織における平均結晶粒径、炭化物、酸化物、硫化物などの長さとその密度を適切に調整し、さらには炭化物および前記巨大非金属介在物を含む非金属介在物の周辺のボイドの生成を抑制するように製造されなけばならない。従って本発明においては以下に示す製造条件を採用するのがよい。
【0030】
本発明の実施にあたり、まず缶用鋼板としての組成を有する鋼が溶製され、一般に連続鋳造法によってスラブとされる。このスラブは、熱間圧延機により、粗圧延および仕上げ圧延を経て、熱延板とされる。この場合において、スラブ加熱温度、粗圧延条件は、通常に採用されているものを採用すればよいが、以下に示す仕上圧延温度、熱延板の厚み、巻取温度は本発明の特性を得るために重要であり、さらには、熱間圧延においていわゆるエンドレス圧延を採用することおよびその場合の摩擦係数を調整することが本発明の効果を特に顕著にするものとなる。以下これらの重要ポイントについて説明する。
【0031】
仕上温度:800℃以上1000℃以下
仕上圧延温度を800℃以上と比較的高温にし、かつ次項目で述べる仕上板厚を1.2mm以下とすることで、最終成品の切欠き感受性を大きく低減、改善することができる。その原因については、金属組織学的な調査の結果から、鋼中の炭化物、非金属介在物の周囲に形成される歪、ボイドの発生が最小限に抑制されるているためであろうと推定される。
一方、仕上圧延温度の上限は表面のスケール疵発生防止の観点から1000℃以下とする必要がある。
なお、これらの条件は板幅全体にわたって確保されていなければならないが、材質の安定性を確保するためには、820℃以上950℃以下とするのが好適である。
【0032】
熱延板の厚み:1.20mm以下
熱延板の厚みは、その後の冷間圧延時の圧下率を低減させるため1.20mm以下とする必要がある。
種々の調査の結果、熱間圧延および冷間圧延により鋼中の非金属介在物の周囲に多くの空隙(ボイド)が形成されるが、これらの大半がその後の焼鈍では消滅せず、最終の鋼板製品に本来的に存在する欠陥となることが明らかとなった。これを最小限に抑制するにはとりわけボイドの形成を助長する冷間圧下率を低減することが有効である。
このため、従来の熱延板の2mm程度の厚みより薄い極薄熱延板を製造し、種々検討した結果、熱延板(冷延母板)の厚みを1.2mm以下、望ましくは1.0mm以下とすることによって製品板の顕著な局部延性改善効果が得られた。この特異な効果は熱延板の板厚が減少するのにしたがって次第に現われるものでなく、板厚が1.2mm以下となった場合に顕著となるものである。
このような減少の現われる詳細な機構は不明であるが、鋼板と圧延ロールの寸法比、潤滑条件の変化、およびメタルフローの変化などが影響するものと考えられる。
【0033】
巻取温度:500〜780℃
巻取温度を高く保つことで、熱延時に導入された歪を開放することができ、これにより次工程である冷間圧延時に鋼板内部に形成されるボイドの密度・寸法を小さく抑制することができる。おおむね、500℃以上とすることで上記効果は達成されるが、さらに望ましくは600℃以上である。しかし780℃以上の温度で巻き取った場合は脱スケール性が顕著に悪化することに加え、スケールに起因する疵が発生する危険性がある。
したがって巻取温度を500〜780℃とする。
【0034】
上記の熱間圧延を行なうにあたり、本発明では、熱間圧延工程における摩擦係数を0.20以下とする潤滑圧延とし、また、スラブを粗圧延して得た先行するシートバーと後行するシートバーを相互の接合して連続的に仕上圧延する方法を採用するのがよい。
【0035】
熱間圧延工程における摩擦係数:0.20以下
摩擦係数は通常の熱間圧延においては0.30以上であるのに対して、本発明ではおおむね0.20以下、望ましくは0.15以下とする。これにより顕著なプレス成形の安定性が確保できる。
上記効果の現われる詳細な機構は不明であるが、潤滑によって熱延時の鋼板の板厚方向でのメタルフローが均一化され、同時に鋼中の非金属介在物の周囲に形成される極めて不均一な変形もその規模が低減されるものと推定される。また、比較的成形性に対して有害な非金属介在物は比較的鋼板の表面直下に存在することが多いが、潤滑によってかかる部分に付加的に加わる剪断歪を軽減でき、それが最終製品の特性に対しても有利に寄与している可能性もある。
【0036】
このような潤滑圧延の有利な影響は熱延終了後の再結晶・回復が進んだ段階でも維持される。すなわち潤滑圧延を行なった場合は最終的に冷間圧延を終えた段階で非金属介在物、あるいはその周辺に形成される残留歪が小さい。さらにその効果は次工程である冷延・焼鈍・2次冷延を経た後も維持され、製品における介在物周辺のボイドの発生が軽減される。
【0037】
エンドレス圧延
このような潤滑圧延を行なうためには、圧延工程の操業安定性を確保するために先行するシートバーと後行するシートバーを仕上げ圧延機入側で接合し、連続的に圧延すること、すなわちエンドレス圧延、を行なうことが有効である。この操作を加えることにより、上記の操業安定性のみならず、コイル長手方向の材質均一性を向上させることができる。
またエンドレス圧延によって圧延材に対して適正な張力を連続して付加できるため、全幅方向にも均一な材質とすることができる。
また、上記低い摩擦係数下の潤滑圧延およびエンドレス圧延の特異な効果は熱延板の厚みの減少とともにさらに顕著になる。その原因については熱延時のロールと鋼板の幾何学的関係の寄与も考えられるが、いずれにしても、従来の板厚の厚い熱延板(冷延母板)を製造する場合には認められなかった現象であり、本発明独特のものである。
【0038】
上記により得られた熱延板に対しては、スケールの除去、冷間圧延、焼鈍および2次冷間圧延、さらに必要に応じ、めっき、塗装あるいは有機樹脂フィルムの貼り付けなどの処理が行なわれる。
このうち、スケールの除去については酸洗その他の通常の方法を採用すればよいが、冷間圧延および2次冷間圧延については本発明特有の圧下率を採用しなければならない。
【0039】
冷間圧下率:85%以下
冷間圧下率を85%以下と従来の極薄缶用鋼板にない低い範囲に限定することが本発明においては重要である。85%以下とすることで最終の製品における成形性は顕著に改善される。しかし、さらに成形性を改善するには望ましくは80%以下、より高いレベルが要求される場合は75%以下がさらに好適である。
【0040】
焼鈍:再結晶温度以上、850℃以下
焼鈍は冷間圧延で導入される歪を除去し、次工程である焼鈍後の2次冷間圧延時に生ずるボイドの発生を最小限に抑制するため重要である。再結晶温度以上で焼鈍することにより上記目的が達成される。材質改善の観点からは700℃以上の焼鈍がさらに好適である。しかし、850℃以上の焼鈍を行った場合は鋼板の強度が顕著に低下し、安定した操業が困難になる。従って焼鈍温度は再結晶温度以上、850℃以下とする。
なお、焼鈍後の冷却パターンは特に限定されないが、鋼中のCを低減するために行なう過時効処理は材質改善に有効である。
【0041】
2次冷間圧下率:15%以下
焼鈍後の冷間圧延(2次冷延)の目的は、最終製品厚みまで、板厚を低減し、同時に加工硬化により鋼板の強度を増加させることにある。しかし、かかる圧延は介在物、炭化物の周辺にきびしいボイドを形成し、鋼板の局部延性を劣化させ、介在物による破壊に対する感受性を高めるので望ましくない。
したがって、鋼板の粗度調整・形状矯正などのための最小限の圧下にすることが望ましい。おおむね15%以下とするば、実用上問題のないレベルを維持できるが、さらに望ましくは、12%以下とするのがよい。
【0042】
表面処理:
上記鋼板に対する表面処理は、通常の缶用鋼板に適用されるいずれであっても可能である。すなわち、錫めっき、クロムめっき、ニッケル・クロムめっきなどが適用可能である。またこれらのめっき後に塗装あるいは有機樹脂フィルムを貼って製缶するような処理も可能である。
【0043】
【実施例】
次に本発明実施例および比較例を挙げて本発明を差に具体的に説明する。
【実施例1】
表1に示す成分組成を含み、残部が実質的にFeからなる鋼を転炉で溶製し、この鋼スラブを表2に示す条件で熱間圧延、連続焼鈍、そして冷延を行ない、最終仕上げ板厚を0.18mmとした。そして、ハロゲンタイプの電気錫めっきラインにて12番相当の錫めっきを連続的に施してぶりきに仕上げた。
【0044】
【表1】

Figure 0003750214
【0045】
【表2】
Figure 0003750214
【0046】
このようにして得られた錫めっき鋼板にJIS13号−B試験片を用い、引張試験を行なった。
ここで極限伸びは破断時の断面積と初期断面積の比の対数、切欠き伸びは平行部の中央に2mmVノッチを機械加工して引張試験を行なったときの伸びであり、ゲージ長さは5mmとした。なお、この試験法は鋼中に巨大な非金属介在物が存在するときの成形性評価とよく対応することが確認されている。
【0047】
また、厳しい加工の一つであるストレッチ・ドロー成形時の延性低下を模擬するためにストレッチ・ドロー試験として通常の引張試験片に対し曲げ半径0.5mmの曲げ・曲げ戻し加工を2回付与た後、引張試験を行ない、曲げ・曲げ戻し変形の付与による延性の悪化量を調査した。この試験は比較的バラツキの大きい試験法であるため、N数を5として測定値の平均値をもって評価した。この値が大きいことは繰り返し曲げによる延性の劣化が著しいことを意味する。
【0048】
【表3】
Figure 0003750214
【0049】
試験結果を表3に示す。これによれば本発明にかかる平均結晶粒径、炭化物、酸化物、硫化物の合計の密度が本発明の範囲にある場合には、Cが高いために炭化物密度が高い場合に比べ極限伸び値が1.8以上と高く、また切欠き伸び値も1.5以上と高い。さらにストレッチ・ドロー模擬試験の結果も延性の悪化量が0.3%以下と小さく、従来の缶用鋼板に比べて巨大非金属介在物などの内部欠陥にある場合のプレス破断に対する抵抗力が大きくなっていることがわかる。
【0050】
また、鋼板にクロムめっきを行ない、表4に示す条件で円筒成形試験を行なった。すなわち、ブランクに対して絞り−再絞り−2次再絞り連続して施して深い円筒容器を作製し、破断を発生することなく成形できた割合で評価した。その際、成形が安定して行なえる範囲を予め調査し、その範囲の同一条件で各50個の成形を連続して行ない、成形試験には汎用の油圧式複動プレスを用い、絞り・再絞り成形いずれにもしわ押さえを使用した。成形試験は、いずれも室温で実施した。 この結果は表5最左欄に示す。本発明鋼板がより安定したプレス成形性を有していることがわかる。
【0051】
【表4】
Figure 0003750214
【0052】
ついで、缶成形を行なうにあたり、鋼板に内在する欠陥を模擬すべく、ブランク板の段階で貫通孔(ドリル穴)をあけておき、成形の際に重大な欠陥である破断にいたるかどうかを調査した。欠陥の穴の寸法と、破断発生の発生率(N=20)を表5の右2欄に示す。本発明鋼は比較鋼に比べ破断が発生しにくいことがわかる。
同様の試験を、樹脂フィルムを貼付して実施した。摩擦条件がことなるため成形可能範囲は変化するが、本発明鋼板では安定して成形できるという効果はこの条件でも発揮された。
【0053】
【表5】
Figure 0003750214
【0054】
【実施例2】
表1に示した鋼1を用いて表6に示す条件で極薄鋼板を製造し、切欠き引張を行ない、鋼板の特性を調査した。試験条件は前記実施例1と同様である。試験結果は表7に示す。本発明条件で製造した場合には、特にエンドレス圧延・潤滑圧延を実施した場合に極限伸び、切り欠け伸びが高く、明らかに材質が改善されている。
また同鋼板を用いて3ピース缶としての適性を調査すべく、円筒成形後に溶接を行ない、伸びフランジ成形性を頂角45°円錐状形状のポンチを用いて10%の拡缶試験で調査したが、フランジ割れ発生率はおおむね20%程度改善された。この効果は特に円筒の成形方向を圧延直角方向にした場合(すなわち缶の円周方向が圧延直角方向に相当)顕著に発揮された。
【0055】
【表6】
Figure 0003750214
【0056】
【表7】
Figure 0003750214
【0057】
【発明の効果】
以上のように本発明によれば、極薄缶用鋼板の組織が、鋼板中に不可避的に存在する巨大非金属介在物に対して鈍感に構成されているので、従来鋼に対してプレス破断を起しがたく、製缶工程の安定性に寄与せんとするものである。
昨今の製缶工程は極めて高速化されているため、このような破断を生じにくい鋼板の提供は多いに意義のあるところである。
また、かかる鋼板の製造方法の提案は、前記の優れた性能を有する鋼板の安定提供に多いに貢献するものであり、ひいては製缶工程の安定性に大きく寄与するものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel plate for cans and a method for producing the same. In particular, the present invention relates to a steel sheet for an ultra-thin can and a method for manufacturing the same, and more particularly to a method for manufacturing a steel sheet for an ultra-thin can excellent in formability that does not easily cause press fracture.
[0002]
[Prior art]
The steel plate for cans has been reduced in thickness to reduce can manufacturing costs, but a technique described in, for example, Japanese Patent Application Laid-Open No. 51-131413 has been proposed in order to cope with the accompanying reduction in can strength. This is intended to ensure the hardness of the steel sheet and reduce the thickness by secondary cold rolling after annealing, so-called double reduction. Is fixed as AlN so that the steel sheet does not become excessively hard after double reduction.
[0003]
However, when this type of steel plate is used for can forming with deep drawing, the ductility of the steel plate is significantly deteriorated and the limit drawing ratio is remarkably lowered. The material was not always satisfactory.
[0004]
On the other hand, the breakage of a pressed product during forming of a steel plate for cans is a serious problem because a large downtime is caused in a high-speed and continuous process in recent years. Measures to avoid this include improving lubricity during press molding, optimizing the details of mold dimensions, dividing the plastic working process, and improving material ductility by intermediate annealing, but this is a sufficient level. There wasn't. In addition, an increase in the number of processes by such means has been a serious problem because of an increase in equipment costs.
[0005]
Therefore, it is desired to supply an original plate that is resistant to press fracture. In general, it is known that press fracture is caused by inclusions in the original plate. To reduce this, internal defects (huge nonmetallic inclusions) mixed in the steelmaking process (especially steelmaking and continuous casting processes) are known. It is important to reduce the length of the film to approximately 100 μm or more.
However, the detailed mechanism regarding the uptake of large non-metallic inclusions during the continuous casting process is unknown, and effective measures have not yet been established. Therefore, sufficient measures cannot be expected with steelmaking technology alone. In consideration of such circumstances, it is desired to provide a steel plate for cans that is insensitive to the presence of inclusions, particularly giant inclusions, but no proposal based on such an idea has yet been found. In addition, flaws that occur accidentally in the manufacturing process of steel sheets cause the same damage as giant inclusions, but no proposal has been made for effective countermeasures.
[0006]
[Problems to be solved by the invention]
The present invention provides a steel sheet that can solve the above-described problems during press forming and that can be pressed at a sufficiently high success rate even when the thickness and hardness of the steel sheet are advanced, and a method for manufacturing the same. To do.
In particular, an object of the present invention is to provide a steel sheet for an ultrathin can that is difficult to cause press breakage and a method for producing the same, and in particular, despite the presence of giant non-metallic inclusions incorporated into the steel during steelmaking. An object of the present invention is to provide a steel sheet for an ultrathin can excellent in formability that is difficult to cause press breakage and a method for producing the same.
Another object of the present invention is to provide a novel hot-rolled steel sheet which is an intermediate material for producing such a steel sheet for ultrathin cans.
Eventually, the present invention does not lead to cracking in shallow cans where the forming is not so strict, even if it is very deep drawn and is subjected to severe thinning, drawing in steel Although a large stress concentration is unavoidable in the non-metallic inclusions, a steel sheet capable of being pressed with a sufficiently high success rate and a manufacturing method thereof are provided by reducing the possibility of breaking.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have studied a steel plate and a method for manufacturing the same that are less likely to break during press forming even when a large inclusion is incorporated in the steel. As a result of various examinations, Composition component, Control of the structure, (crystal grain size, carbide / oxide / sulfide dimensions) and the steel and steel manufacturing process of these carbides and non-metallic inclusions are kept low, Suppressing the generation of voids Was found to be extremely important, and the present invention has been completed. Based on this knowledge, the present invention is based on such knowledge. First, a carbide having a thickness of not more than 0.3 mm, an average crystal grain size of 5 to 15 μm, and a length of 50 μm or more observed in the rolling direction. , Oxide and sulfide total density is 20 / mm 2 And Generation of voids is suppressed It is an organization.
[0008]
Based on such knowledge, the present invention firstly has a steel sheet for an ultrathin can having a thickness of 0.3 mm or less, an average crystal grain size of 5 to 15 μm, and a thickness of 50 μm or more observed in a cross section parallel to the rolling direction. The total density of carbides, oxides and sulfides of length is 20 / mm 2 The organization is as follows.
[0009]
In addition, the composition of the steel plate for cans by weight ratio,
C: 0.10% or less,
Si: 0.10% or less,
Mn: 0.05 to 1.5%,
P: 0.02% or less,
S: 0.015% or less,
Al: 0.005 to 0.150%
N: 0.0005 to 0.0150%
And the balance consists of Fe and inevitable impurities.
[0010]
Furthermore, in the composition of the steel plate for cans,
Nb: 0.003-0.030%,
Ti: 0.003-0.040%
1 type or 2 types are included.
[0011]
In addition, in order to produce the above steel plate for cans, the present invention hot-rolls a slab having a composition as a steel plate for cans and finishes it at a finishing temperature of 800 ° C. to 1000 ° C. to a thickness of 1.2 mm or less. The steel sheet is wound at a coiling temperature of 500 ° C. to 780 ° C. to obtain a hot rolled sheet, cold rolled at a reduction rate of 85% or less with respect to the hot rolled sheet, and continuously annealed at a recrystallization temperature of 850 ° C. or lower. The secondary cold rolling is performed at a rolling reduction of 15% or less.
[0012]
The present invention further provides a hot rolling process in which a preceding sheet bar obtained by roughly rolling a slab and a subsequent sheet bar are joined to each other and hot-rolled continuously. Lubrication rolling with a coefficient of 0.20 or less is performed.
[0013]
Moreover, this invention hot-rolls the slab which has a composition as a steel plate for cans for the hot-rolled steel plate used for a cold rolling process, and finishes it in thickness of 1.2 mm or less by setting finishing temperature to 800 to 1000 degreeC. It is obtained by winding at a winding temperature of 500 ° C to 780 ° C.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is directed to a steel sheet for an ultrathin can having a thickness of 0.30 mm or less.
That is, the present invention is mainly formed by cylindrical deep drawing among container can materials such as beverage cans, and when simple deep drawing is performed, when ironing is added thereto, or further It is assumed that the thickness is reduced by positively applying a tensile force, and the stability of plastic deformation in such a case is intended.
In such a case, it is said that the stability of plastic deformation is lost as the plate thickness decreases, making it difficult to perform the plastic deformation step stably.
As a result of investigations by the present inventors, it has been found that when the plate thickness is 0.3 mm or less, particularly when it is 0.20 mm or less, the stability of the plastic working in the press forming stage is extremely deteriorated.
[0015]
Further, as a result of metallographic investigation of the influence of carbides and non-metallic inclusions, voids (voids) formed around the carbides and non-metallic inclusions in the steel sheet manufacturing process (especially rolling process) when the plate thickness is reduced. ) Has a high probability of leading to serious fracture troubles. Such an effect appears greatly, and the effect of the present invention to prevent breakage in the forming process is industrially meaningful. The steel plate thickness is 0.30 mm or less, particularly 0.20 mm or less. It is in an ultrathin steel plate. From these aspects, the object of the present invention is limited to an ultrathin steel plate of 0.30 mm or less, particularly 0.20 mm or less.
[0016]
The average crystal grain size of the steel sheet in the present invention is 5 to 15 μm.
Cylindrical molding tests were conducted under non-lubricated conditions with various changes in the crystal grain size, and when the limit drawing ratio was compared, the material with an average crystal grain size of less than 5 μm might have a high yield point. The aperture ratio decreased.
On the other hand, when the average crystal grain size exceeds 15 μm, the surface roughness of the steel plate surface similar to that of a light orange peel is reduced and the limit drawing ratio is decreased.
Therefore, the average crystal grain size is in the range of 5 to 15 μm. More preferably, it is the range of 7-12 micrometers.
In addition, the average crystal grain diameter described here is based on JISG0552 and is converted by the equivalent circle diameter.
In order to obtain a steel plate having this crystal grain size, the steel components and hot rolling conditions (particularly the thickness of the hot rolled mother plate) may be adjusted as described later.
[0017]
In the present invention, the total density of carbide, oxide, and sulfide having a length of 50 μm or more observed in a cross section parallel to the rolling direction is 20 / mm. 2 Must be:
The present inventors changed the production conditions of the steel having the composition according to the present invention into a steel plate for cans, and observed the size of carbides observed in a cross section parallel to the rolling direction with an optical microscope at 400 times and 40 fields of view. This was done. As a result, the density of carbide / non-metallic inclusions having a length of 50 μm or more is 20 / mm. 2 It became clear that the ductility in the tensile test to which an artificial defect was imparted was significantly improved as follows. A more desirable range is 10 pieces / mm. 2 It is as follows. Here, the dimension of carbide or the like is treated as the dimension of a continuous body in the case of a phase that is substantially continuous as a set. For example, a carbide having an elongated belt-like structure is treated as one huge carbide as a whole.
[0018]
The tensile test with an artificial defect refers to a normal tensile test piece with a circular hole in the center, and this test simulates the tensile test result of a steel sheet with huge non-metallic inclusions. Has been confirmed by preliminary tests. That is, it has been confirmed that the defect of this experiment has the same effect as a huge nonmetallic inclusion existing in steel.
The density of such precipitates and carbides is conventionally set to a steel sheet thickness of 1.0 mm or less while maintaining the finish rolling temperature at 800 ° C. or higher while setting the steel components including the upper limit of the C amount as shown later. This is achieved by making it thinner.
[0019]
The present invention is applicable as long as it has a composition as a steel plate for cans. However, considering the high formability as a steel plate for cans, surface treatment, stability of the manufacturing process, and the density of carbides specific to the present invention, the following conditions should be satisfied. Hereinafter, the chemical components of steel suitable for applying the present invention will be described.
[0020]
C: 0.100% or less
If the amount of C exceeds 0.100%, the risk of slab cracking increases. Further, the fraction of pearlite, which is the second layer, is increased, and since these have a layered structure, the local ductility is remarkably deteriorated, and the flange formability particularly necessary for can molding is remarkably deteriorated. Therefore, the upper limit was made 0.100%. If the C content is 0.10% or less, the ductility is remarkably improved, and if it is 0.05% or less, the ductility is the best.
In addition, when the amount of C is extremely low, it is necessary to perform secondary rolling at a high pressure reduction rate in order to ensure the necessary can strength, and therefore, the result is in conflict with the secondary reduction rate which is a condition of the present invention. However, there is no problem if it is 0.0005% or more which does not cause remarkable coarsening of crystal grains.
[0021]
Si: 0.10% or less
When Si is added in a large amount, problems such as surface treatment deterioration and corrosion resistance deterioration occur, so the upper limit was made 0.10%. When particularly excellent corrosion resistance is required, 0.02% or less is more preferable.
[0022]
Mn: 0.05 to 1.5%
Mn is an effective element for preventing hot cracking due to S, and needs to be added according to the amount of S contained. Mn also has the effect of refining crystal grains. In order to exert these effective effects, it is necessary to add at least 0.05% or more.
On the other hand, when Mn is added in a large amount, the corrosion resistance tends to deteriorate, and the steel plate is hardened to deteriorate the flange workability and the neck workability. Therefore, the upper limit is set to 1.5%. In applications where better moldability is required, 0.80% or less is preferable.
[0023]
P: 0.02% or less
When P is contained in a large amount, the upper limit is set to 0.02% in order to remarkably deteriorate the corrosion resistance as well as significantly harden the steel and deteriorate the flange workability and neck workability. When these characteristics are particularly important, it is necessary to be 0.01% or less.
[0024]
S: 0.015% or less
S is an element that exists as a so-called inclusion, reduces the ductility of the steel sheet, and further causes deterioration of corrosion resistance, so the upper limit was made 0.015%. In applications that require particularly good workability, it is desirable that the content be 0.010% or less.
[0025]
Al: 0.150% or less
When Al is added, the amount of O in steel can be reduced. The effect becomes remarkable at about 0.005% or more. However, when the Al content is increased, the surface properties are deteriorated due to the formation of so-called alumina clusters and the occurrence of flange cracking due to the extreme softening of the welded portion. Therefore, the upper limit is made 0.150%. From the viewpoint of stabilizing the material, 0.010 to 0.080% is desirable.
[0026]
N: 0.0005% or more and 0.0150% or less
N increases the strength of the steel sheet due to the solid solution strengthening effect. Such an effect can be obtained by adding approximately 5 ppm or more. However, when the content exceeds 0.0150%, the rate of occurrence of internal defects in the steel sheet increases, so the upper limit was made 0.0150%. Within this range, there is no problem such as an increase in the hardness of the weld. In addition, 0.0005 to 0.0050% is more preferable from the viewpoint of the stability of the material considering the entire manufacturing process.
[0027]
Ti and Nb
In addition to the above components, it is effective to add one or two of Ti and Nb mainly for the purpose of refining the structure.
Nb: 0.003 to 0.030%
The effect of homogenizing and refining the structure by Nb is generally exhibited by addition of 0.003% or more, but even if added over 0.030%, the effect is saturated, leading to an increase in cost, which is not preferable. In addition, the difficulty of the cold rolling / annealing process due to the increase in the recrystallization temperature and the remarkable hardening of the hot-rolled mother board becomes significant. Considering these, a preferable range from the viewpoint of improving ductility is a range of 0.010 to 0.020%.
[0028]
Ti: 0.003-0.040%
The effect of refinement can be obtained even in the case of Ti by addition of 0.003%, and even if added over 0.040%, the effect is saturated, and surface defects are increased, resulting in surface treatment. As an original plate, it is not preferable. Particularly in applications where surface aesthetics are required, 0.020% or less is desirable.
[0029]
As described above, the steel plate for can according to the present invention appropriately adjusts the average crystal grain size, the length of carbides, oxides, sulfides and the like in the steel plate structure and the density thereof, and further the carbides and the giant nonmetallic inclusions. It must be manufactured to suppress the formation of voids around non-metallic inclusions. Therefore, in the present invention, it is preferable to employ the following manufacturing conditions.
[0030]
In carrying out the present invention, first, a steel having a composition as a steel plate for cans is melted and generally formed into a slab by a continuous casting method. This slab is subjected to rough rolling and finish rolling by a hot rolling mill to form a hot rolled sheet. In this case, the slab heating temperature and the rough rolling conditions may be those normally employed, but the finish rolling temperature, hot-rolled sheet thickness, and winding temperature shown below obtain the characteristics of the present invention. Therefore, it is important to adopt so-called endless rolling in hot rolling and to adjust the friction coefficient in that case, and the effect of the present invention becomes particularly remarkable. These important points will be described below.
[0031]
Finishing temperature: 800 ° C or higher and 1000 ° C or lower
By setting the finishing rolling temperature to a relatively high temperature of 800 ° C. or higher and the finishing plate thickness described in the next item to 1.2 mm or less, the notch sensitivity of the final product can be greatly reduced and improved. The cause of this is estimated from the results of metallographic investigations that the formation of carbides and non-metallic inclusions around steel and strain and voids are minimized. The
On the other hand, the upper limit of the finish rolling temperature needs to be 1000 ° C. or less from the viewpoint of preventing generation of scale flaws on the surface.
In addition, although these conditions must be ensured over the whole board width, in order to ensure stability of a material, it is suitable to set it as 820 degreeC or more and 950 degrees C or less.
[0032]
Hot rolled sheet thickness: 1.20 mm or less
The thickness of the hot-rolled sheet needs to be 1.20 mm or less in order to reduce the rolling reduction during the subsequent cold rolling.
As a result of various investigations, many voids (voids) are formed around non-metallic inclusions in steel by hot rolling and cold rolling, but most of these do not disappear by subsequent annealing, and the final It became clear that this was a defect inherent in steel sheet products. In order to suppress this to a minimum, it is particularly effective to reduce the cold rolling reduction that promotes the formation of voids.
For this reason, as a result of manufacturing an ultrathin hot-rolled sheet thinner than a conventional hot-rolled sheet having a thickness of about 2 mm and various studies, the thickness of the hot-rolled sheet (cold-rolled mother plate) is 1.2 mm or less, preferably 1. By making it 0 mm or less, a remarkable local ductility improvement effect of the product plate was obtained. This unique effect does not gradually appear as the thickness of the hot-rolled sheet decreases, but becomes prominent when the sheet thickness is 1.2 mm or less.
Although the detailed mechanism in which such a decrease appears is unknown, it is considered that the dimensional ratio between the steel sheet and the rolling roll, the change in the lubrication condition, the change in the metal flow, and the like influence the influence.
[0033]
Winding temperature: 500-780 ° C
By keeping the coiling temperature high, the strain introduced during hot rolling can be released, thereby reducing the density and size of voids formed inside the steel sheet during cold rolling, which is the next step. it can. In general, the above effect is achieved by setting the temperature to 500 ° C. or higher, but more desirably 600 ° C. or higher. However, when it is wound at a temperature of 780 ° C. or higher, the descaling property is remarkably deteriorated, and there is a risk that wrinkles due to the scale are generated.
Accordingly, the coiling temperature is set to 500 to 780 ° C.
[0034]
In performing the above hot rolling, in the present invention, lubrication rolling is performed with a friction coefficient of 0.20 or less in the hot rolling process, and the preceding sheet bar obtained by rough rolling the slab and the following sheet It is preferable to adopt a method in which the bars are joined to each other and finish-rolled continuously.
[0035]
Friction coefficient in hot rolling process: 0.20 or less
The friction coefficient is 0.30 or more in normal hot rolling, but is generally 0.20 or less, preferably 0.15 or less in the present invention. Thereby, remarkable stability of press molding can be secured.
The detailed mechanism in which the above effects appear is unknown, but the metal flow in the thickness direction of the steel sheet during hot rolling is made uniform by lubrication, and at the same time, it is extremely uneven formed around the nonmetallic inclusions in the steel. It is estimated that the scale of deformation is also reduced. In addition, non-metallic inclusions that are relatively harmful to formability are often present directly under the surface of the steel sheet, but the shear strain that is additionally applied to such parts by lubrication can be reduced, which is the result of the final product. There is also a possibility that it contributes advantageously to the characteristics.
[0036]
Such advantageous effects of lubrication rolling are maintained even at the stage where recrystallization / recovery has progressed after hot rolling. That is, when lubrication rolling is performed, the residual strain formed in the non-metallic inclusions or the periphery thereof is small when the cold rolling is finally finished. Furthermore, the effect is maintained even after passing through the next process of cold rolling, annealing, and secondary cold rolling, and the generation of voids around inclusions in the product is reduced.
[0037]
Endless rolling
In order to perform such lubricating rolling, joining the preceding sheet bar and the succeeding sheet bar at the entry side of the finish rolling mill in order to ensure the operational stability of the rolling process, that is, continuously rolling, It is effective to perform endless rolling. By adding this operation, not only the operational stability but also material uniformity in the coil longitudinal direction can be improved.
Moreover, since appropriate tension can be continuously applied to the rolled material by endless rolling, a uniform material can be formed in the entire width direction.
Further, the unique effects of lubrication rolling and endless rolling under the above low friction coefficient become more remarkable as the thickness of the hot-rolled sheet decreases. The cause may be due to the geometrical relationship between the roll and the steel sheet during hot rolling, but in any case, it is recognized when manufacturing a conventional hot rolled sheet (cold rolled mother board) with a large thickness. This phenomenon is not present and is unique to the present invention.
[0038]
The hot-rolled sheet obtained as described above is subjected to treatments such as scale removal, cold rolling, annealing and secondary cold rolling, and further plating, painting, or organic resin film pasting as necessary. .
Of these, pickling and other ordinary methods may be employed for removing the scale, but for cold rolling and secondary cold rolling, the rolling reduction characteristic of the present invention must be employed.
[0039]
Cold reduction rate: 85% or less
In the present invention, it is important to limit the cold reduction rate to 85% or less and a low range not found in conventional steel sheets for ultrathin cans. By setting it to 85% or less, the formability in the final product is remarkably improved. However, 80% or less is desirable for further improving the moldability, and 75% or less is more suitable when a higher level is required.
[0040]
Annealing: Recrystallization temperature or higher, 850 ° C or lower
Annealing is important because it removes strain introduced in cold rolling and minimizes the generation of voids that occur during secondary cold rolling after annealing, which is the next step. By annealing at a recrystallization temperature or higher, the above object is achieved. From the viewpoint of improving the material, annealing at 700 ° C. or higher is more preferable. However, when annealing at 850 ° C. or more is performed, the strength of the steel sheet is significantly reduced, and stable operation becomes difficult. Accordingly, the annealing temperature is set to the recrystallization temperature or higher and 850 ° C. or lower.
In addition, although the cooling pattern after annealing is not specifically limited, the overaging process performed in order to reduce C in steel is effective for material improvement.
[0041]
Secondary cold reduction ratio: 15% or less
The purpose of cold rolling after annealing (secondary cold rolling) is to reduce the plate thickness to the final product thickness and simultaneously increase the strength of the steel plate by work hardening. However, such rolling is not desirable because it forms severe voids around the inclusions and carbides, degrades the local ductility of the steel sheet, and increases the susceptibility to destruction by inclusions.
Therefore, it is desirable to make the minimum reduction for the roughness adjustment and shape correction of the steel sheet. If it is about 15% or less, it is possible to maintain a practically no problem level, but more preferably 12% or less.
[0042]
surface treatment:
The surface treatment for the steel plate can be any one applied to a normal steel plate for cans. That is, tin plating, chrome plating, nickel / chrome plating, and the like are applicable. Further, after such plating, a treatment such as painting or applying an organic resin film to make a can is also possible.
[0043]
【Example】
Next, the present invention will be specifically described with reference to examples of the present invention and comparative examples.
[Example 1]
A steel containing the composition shown in Table 1 and the balance being substantially Fe is melted in a converter, and this steel slab is hot-rolled, continuously annealed, and cold-rolled under the conditions shown in Table 2. The finished plate thickness was 0.18 mm. Then, tin plating corresponding to No. 12 was continuously applied on a halogen-type electric tin plating line to finish the tin plate.
[0044]
[Table 1]
Figure 0003750214
[0045]
[Table 2]
Figure 0003750214
[0046]
A tensile test was performed on the tin-plated steel sheet obtained in this manner using a JIS No. 13-B test piece.
Here, the ultimate elongation is the logarithm of the ratio of the sectional area at break and the initial sectional area, the notch elongation is the elongation when a 2 mmV notch is machined in the center of the parallel part and a tensile test is performed, and the gauge length is It was 5 mm. It has been confirmed that this test method corresponds well with the formability evaluation when huge nonmetallic inclusions are present in the steel.
[0047]
In addition, bending and unbending with a bending radius of 0.5 mm were applied twice to a normal tensile test piece as a stretch / draw test in order to simulate a reduction in ductility during stretch / draw molding, which is one of the severe processes. Later, a tensile test was conducted to investigate the amount of deterioration of ductility due to the application of bending / unbending deformation. Since this test is a test method with relatively large variations, the N number was set to 5 and the average value of the measured values was evaluated. A large value means that the ductility is significantly deteriorated by repeated bending.
[0048]
[Table 3]
Figure 0003750214
[0049]
The test results are shown in Table 3. According to this, when the average crystal grain size according to the present invention, the total density of carbides, oxides and sulfides is within the range of the present invention, the ultimate elongation value is higher than when the carbide density is high because C is high. Is as high as 1.8 or more, and the notch elongation value is as high as 1.5 or more. Furthermore, the results of the stretch-draw simulation test show that the amount of deterioration in ductility is as small as 0.3% or less, and the resistance to press rupture is greater when there are internal defects such as giant non-metallic inclusions than conventional steel plates for cans. You can see that
[0050]
Further, chromium plating was performed on the steel sheet, and a cylindrical forming test was performed under the conditions shown in Table 4. That is, the blank was subjected to drawing-redrawing-secondary redrawing continuously to produce a deep cylindrical container, and evaluation was performed at a rate at which molding could be performed without causing breakage. At that time, the range in which molding can be performed stably is investigated in advance, 50 moldings are continuously performed under the same conditions in the range, and a general-purpose hydraulic double-acting press is used for the molding test. A wrinkle presser was used for all the drawing. All molding tests were conducted at room temperature. The results are shown in the leftmost column of Table 5. It can be seen that the steel sheet of the present invention has more stable press formability.
[0051]
[Table 4]
Figure 0003750214
[0052]
Next, when performing can forming, through holes (drill holes) are made at the blank plate stage in order to simulate the defects inherent in the steel sheet, and it is investigated whether or not the breakage is a serious defect during forming. did. The size of the defect hole and the occurrence rate of breakage (N = 20) are shown in the right two columns of Table 5. It can be seen that the steel of the present invention is less likely to break than the comparative steel.
A similar test was conducted with a resin film attached. Although the formable range changes due to different frictional conditions, the steel sheet of the present invention has the effect that it can be stably formed even under these conditions.
[0053]
[Table 5]
Figure 0003750214
[0054]
[Example 2]
Using the steel 1 shown in Table 1, an ultrathin steel plate was manufactured under the conditions shown in Table 6, notched and tensioned, and the properties of the steel plate were investigated. The test conditions are the same as in Example 1. The test results are shown in Table 7. When manufactured under the conditions of the present invention, especially when endless rolling / lubricated rolling is performed, the ultimate elongation and the notch elongation are high, and the material is clearly improved.
In addition, in order to investigate the suitability as a three-piece can using the same steel plate, welding was performed after cylindrical forming, and stretch flange formability was investigated by a 10% can expansion test using a punch having a conical shape with an apex angle of 45 °. However, the incidence of flange cracking was improved by about 20%. This effect was particularly prominent when the forming direction of the cylinder was the direction perpendicular to the rolling (that is, the circumferential direction of the can corresponds to the direction perpendicular to the rolling).
[0055]
[Table 6]
Figure 0003750214
[0056]
[Table 7]
Figure 0003750214
[0057]
【The invention's effect】
As described above, according to the present invention, the structure of the steel sheet for ultrathin cans is configured to be insensitive to giant nonmetallic inclusions inevitably present in the steel sheet, so that the press fracture relative to conventional steel It is difficult to cause a problem and contributes to the stability of the can manufacturing process.
Since the recent can-making process has been extremely accelerated, the provision of such a steel sheet that is less prone to breakage is of great significance.
Moreover, the proposal of the manufacturing method of this steel plate contributes much to the stable provision of the steel plate which has the said outstanding performance, and contributes greatly to stability of a can manufacturing process by extension.

Claims (6)

重量比で、C:0.10%以下、Si:0.10%以下、Mn:0.05〜1.5%、P:0.02%以下、S:0.015%以下、Al:0.005〜0.150%、N:0.0005〜0.0150%を含有し、残部がFeおよび不可避的不純物からなり、板厚が0.3mm以下、平均結晶粒経が5〜15μmで、圧延方向に平行な断面に観察される50μm以上の長さの炭化物、酸化物、および硫化物の合計の密度が20個/mm以下であり、ボイドの発生が抑制されていることを特徴とするプレス破断の発生しがたい成形性の優れた極薄缶用鋼板。By weight ratio, C: 0.10% or less, Si: 0.10% or less, Mn: 0.05 to 1.5%, P: 0.02% or less, S: 0.015% or less, Al: 0 0.005 to 0.150%, N: 0.0005 to 0.0150%, the balance being Fe and inevitable impurities, the plate thickness is 0.3 mm or less, the average grain size is 5 to 15 μm, The total density of carbide, oxide, and sulfide having a length of 50 μm or more observed in a cross section parallel to the rolling direction is 20 pieces / mm 2 or less, and the generation of voids is suppressed. An ultra-thin steel plate with excellent formability that is resistant to press rupture. 重量比でさらにNb:0.003〜0.030%、Ti:0.003〜0.040%の1種又は2種を含有することを特徴とする請求項1記載のプレス破断の発生しがたい成形性の優れた極薄缶用鋼板。  The occurrence of press fracture according to claim 1, further comprising one or two of Nb: 0.003 to 0.030% and Ti: 0.003 to 0.040% by weight ratio. Steel sheet for ultra-thin cans with excellent formability. ボイドの発生の抑制が、素材を熱間圧延するに際し、仕上温度を800℃以上1000℃以下として摩擦係数0.20以下の潤滑圧延によって1.2mm以下の厚みに仕上げ、500℃〜780℃の巻取温度で巻き取ることによって行われ、さらに冷間圧延するに際し、圧下率85%以下で1次冷間圧延を施し、再結晶温度以上850℃以下の連続焼鈍処理を行い、圧下率15%以下で2次冷間圧延することに行われることを特徴とする請求項1又は2記載のプレス破断の発生しがたい成形性の優れた極薄缶用鋼板。  When suppressing the generation of voids, when the material is hot-rolled, the finishing temperature is set to 800 ° C. or more and 1000 ° C. or less, and finished to a thickness of 1.2 mm or less by lubrication rolling with a friction coefficient of 0.20 or less, and 500 ° C. to 780 ° C. It is carried out by winding at the coiling temperature, and when cold rolling is further performed, the primary cold rolling is performed at a reduction rate of 85% or less, the continuous annealing treatment at a recrystallization temperature of 850 ° C. or less is performed, and the reduction rate is 15%. 3. The steel sheet for an ultrathin can excellent in formability that does not easily cause a press break according to claim 1 or 2, wherein the steel sheet is subjected to secondary cold rolling. 重量比で、C:0.10%以下、Si:0.10%以下、Mn:0.05〜1.5%、P:0.02%以下、S:0.015%以下、Al:0.005〜0.150%、N:0.0005〜0.0150%を含有し、残部がFeおよび不可避的不純物からなる缶用鋼板スラブを熱間圧延し、仕上温度を800℃以上1000℃以下として、1.2mm以下の厚みに仕上げ、500℃〜780℃の巻取温度で巻き取って熱延板を得、前記熱延板に対して85%以下の圧下率で冷間圧延を施し、再結晶温度以上850℃以下の連続焼鈍処理を行い、圧下率15%以下で2次冷間圧延し、板厚が0.3mm以下、平均結晶粒経が5〜15μmで、圧延方向に平行な断面に観察される50μm以上の長さの炭化物、酸化物、および硫化物の合計の密度が20個/mm 以下とすることを特徴とするプレス破断の発生しがたい成形性の優れた極薄缶用鋼板の製造方法。By weight ratio, C: 0.10% or less, Si: 0.10% or less, Mn: 0.05 to 1.5%, P: 0.02% or less, S: 0.015% or less, Al: 0 0.005 to 0.150%, N: 0.0005 to 0.0150%, with the balance being hot rolled from a steel plate slab for cans consisting of Fe and unavoidable impurities, with a finishing temperature of 800 ° C to 1000 ° C As above, finish to a thickness of 1.2 mm or less, wind up at a winding temperature of 500 ° C. to 780 ° C. to obtain a hot-rolled sheet, and cold-roll at a rolling reduction of 85% or less with respect to the hot-rolled sheet, Continuous annealing at a recrystallization temperature of 850 ° C. or less, secondary cold rolling at a rolling reduction of 15% or less , sheet thickness of 0.3 mm or less, average grain size of 5 to 15 μm, parallel to the rolling direction The total density of carbide, oxide, and sulfide with a length of 50 μm or more observed in the cross section is 0 / mm 2 or less and a manufacturing method of the generated hard moldability excellent ultra-thin steel sheet for cans of a press break, characterized by. 缶用鋼板スラブは、重量比でさらにNb:0.003〜0.030%、Ti:0.003〜0.040%の1種又は2種を含有することを特徴とする請求項4記載のプレス破断の発生しがたい成形性の優れた極薄缶用鋼板の製造方法。  The steel plate slab for cans further contains one or two of Nb: 0.003 to 0.030% and Ti: 0.003 to 0.040% by weight. A method for producing a steel sheet for an ultra-thin can with excellent formability that is difficult to cause press rupture. 熱間圧延に際し、スラブを粗圧延して得た先行するシートバーと後行するシートバーを相互に接合して連続的に仕上熱間圧延し、かつ仕上圧延摩擦係数が0.20以下の潤滑圧延とすることを特徴とする請求項4または5に記載のプレス破断の発生しがたい成形性の優れた極薄缶用鋼板の製造方法。Upon hot rolling, a sheet bar of the rear row and the sheet bar the preceding obtained by rough rolling the slab joined to each other and rolled continuously finishing hot, and the finish rolling friction coefficient of 0.20 or less 6. The method for producing a steel sheet for an ultrathin can having excellent formability that is difficult to cause press fracture according to claim 4 or 5, wherein the rolling is lubricated.
JP23973496A 1996-08-22 1996-08-22 Steel sheet for ultra-thin cans excellent in formability that does not easily cause press rupture and method for producing the same Expired - Fee Related JP3750214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23973496A JP3750214B2 (en) 1996-08-22 1996-08-22 Steel sheet for ultra-thin cans excellent in formability that does not easily cause press rupture and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23973496A JP3750214B2 (en) 1996-08-22 1996-08-22 Steel sheet for ultra-thin cans excellent in formability that does not easily cause press rupture and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1060592A JPH1060592A (en) 1998-03-03
JP3750214B2 true JP3750214B2 (en) 2006-03-01

Family

ID=17049143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23973496A Expired - Fee Related JP3750214B2 (en) 1996-08-22 1996-08-22 Steel sheet for ultra-thin cans excellent in formability that does not easily cause press rupture and method for producing the same

Country Status (1)

Country Link
JP (1) JP3750214B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4525450B2 (en) * 2004-04-27 2010-08-18 Jfeスチール株式会社 High strength and high ductility steel sheet for cans and method for producing the same
JP5526483B2 (en) 2008-03-19 2014-06-18 Jfeスチール株式会社 Steel plate for high-strength can and manufacturing method thereof

Also Published As

Publication number Publication date
JPH1060592A (en) 1998-03-03

Similar Documents

Publication Publication Date Title
JP3249760B2 (en) Manufacturing method of ultra-thin steel sheet for cans
JP5971434B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability, in-plane stability and bendability of stretch flangeability, and manufacturing method thereof
JP5453884B2 (en) Steel plate for high-strength container and manufacturing method thereof
JP5434212B2 (en) Steel plate for high-strength container and manufacturing method thereof
US20110076177A1 (en) High-strength steel sheet for cans and method for manufacturing the same
WO2018151318A1 (en) Steel sheet
KR100259402B1 (en) Method for making a steel sheet suitable as a material for can making
WO2016157878A1 (en) Steel sheet for cans and method for manufacturing steel sheet for cans
JP4244486B2 (en) Steel plate for high-strength can and manufacturing method thereof
JP2009079255A (en) High-tensile-strength cold-rolled steel sheet and method for manufacturing the same
JP2001107187A (en) High strength steel sheet for can and its producing method
JP5359709B2 (en) Steel plate for drawn cans and plated steel plate for drawn cans
JP3750214B2 (en) Steel sheet for ultra-thin cans excellent in formability that does not easily cause press rupture and method for producing the same
JP3596037B2 (en) Manufacturing method of steel plate for can-making
JPH1060542A (en) Production of steel sheet for can
KR102587650B1 (en) Steel sheet for cans and method of producing same
JP7323094B1 (en) High-strength steel plate and its manufacturing method
JP3293001B2 (en) Method of manufacturing high strength galvannealed hot-rolled steel sheet with excellent stretch flangeability
JPH09241744A (en) Production of steel sheet for can by annealing obviated process
WO2023162190A1 (en) Steel sheet, member, methods for manufacturing same, method for manufacturing hot-rolled steel sheet for cold-rolled steel sheet, and method for manufacturing cold-rolled steel sheet
CN110506135B (en) Steel sheet, method for producing same, bottle cap, and DRD can
JPH1088233A (en) Production of steel sheet for can
JP3048739B2 (en) Method for producing high strength alloyed hot-dip galvanized steel sheet with excellent stretch flangeability
JP3596036B2 (en) Manufacturing method of steel plate for can-making
JPH1053836A (en) Hot rolled high strength steel sheet for high working excellent in fatigue characteristic and thermosoftening resistance by hot rolling continuous process and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050627

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees