JP4937846B2 - Steel wire for reinforcing rubber products excellent in corrosion fatigue resistance and manufacturing method thereof - Google Patents
Steel wire for reinforcing rubber products excellent in corrosion fatigue resistance and manufacturing method thereof Download PDFInfo
- Publication number
- JP4937846B2 JP4937846B2 JP2007164830A JP2007164830A JP4937846B2 JP 4937846 B2 JP4937846 B2 JP 4937846B2 JP 2007164830 A JP2007164830 A JP 2007164830A JP 2007164830 A JP2007164830 A JP 2007164830A JP 4937846 B2 JP4937846 B2 JP 4937846B2
- Authority
- JP
- Japan
- Prior art keywords
- steel wire
- steel
- corrosion fatigue
- fatigue resistance
- rubber products
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/06—Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
- D07B1/0606—Reinforcing cords for rubber or plastic articles
- D07B1/0666—Reinforcing cords for rubber or plastic articles the wires being characterised by an anti-corrosive or adhesion promoting coating
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/30—Inorganic materials
- D07B2205/3021—Metals
- D07B2205/3067—Copper (Cu)
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/30—Inorganic materials
- D07B2205/3021—Metals
- D07B2205/3085—Alloys, i.e. non ferrous
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/30—Inorganic materials
- D07B2205/3021—Metals
- D07B2205/3085—Alloys, i.e. non ferrous
- D07B2205/3089—Brass, i.e. copper (Cu) and zinc (Zn) alloys
Landscapes
- Ropes Or Cables (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
本発明は、ゴム製品の補強に用いられる、耐腐食疲労特性に優れたゴム製品補強用鋼線及びその製造方法に関するものである。 The present invention relates to a steel wire for reinforcing a rubber product, which is used for reinforcing a rubber product and excellent in corrosion fatigue resistance, and a method for producing the same.
従来より、タイヤ、ベルト、ホース等のゴム製品の補強用素材としてスチール素線が広く用いられている。このような、ゴム製品中に埋設されたスチール素線には、使用時に連続的に外力が作用する。更に、ゴム組成物を通して水分、空気が透過、侵入するため、スチール素線の表面は腐食環境に曝されることになる。したがって、スチール素線には、腐食環境下で応力が作用するため、腐食疲労により破断し、これにより、ゴム製品の強度が低下する。 Conventionally, steel strands have been widely used as reinforcing materials for rubber products such as tires, belts and hoses. Such a steel wire embedded in the rubber product is continuously subjected to an external force during use. Furthermore, since moisture and air permeate and penetrate through the rubber composition, the surface of the steel strand is exposed to a corrosive environment. Therefore, since stress acts on the steel wire in a corrosive environment, it breaks due to corrosion fatigue, thereby reducing the strength of the rubber product.
そのため、ゴム組成物に埋設されるスチール素線は、高い破断強度とともに耐久寿命の改善が必要であり、耐腐食疲労特性の向上が要求されている。従来のゴム製品補強用鋼線及びスチールコードの耐腐食疲労特性改善技術として、鋼材中にLa、Ceを添加し、鋼材そのものの耐腐食疲労特性を改善する技術が提案されている(例えば、特許文献1参照)。また、表面処理による方法として、スチール素線表面に有機被膜処理を行う技術(例えば、特許文献2参照)、表面のめっき被膜のピンホール欠陥を限定する技術(例えば、特許文献3参照)が提案されている。更に、スチールコード素線表層部に圧縮の残留応力の付与と潤滑油塗布する方法も提案されている(例えば、特許文献4参照)。しかし、これらの従来技術では、ゴム製品補強用鋼線についての十分な耐腐食疲労寿命の改善効果は得られていはいない。 Therefore, the steel wire embedded in the rubber composition needs to have an improved durability life as well as a high breaking strength, and is required to improve corrosion fatigue resistance. As a conventional technique for improving the corrosion fatigue resistance of steel wires and steel cords for reinforcing rubber products, a technique has been proposed in which La and Ce are added to the steel material to improve the corrosion fatigue resistance of the steel material itself (for example, patents). Reference 1). Further, as a method by surface treatment, a technique for performing an organic film treatment on the surface of a steel wire (for example, see Patent Document 2) and a technique for limiting pinhole defects in a plating film on the surface (for example, see Patent Document 3) are proposed. Has been. Furthermore, a method of applying compressive residual stress to the surface portion of the steel cord strand and applying a lubricating oil has also been proposed (see, for example, Patent Document 4). However, in these conventional techniques, a sufficient effect of improving the corrosion-resistant fatigue life of the steel wire for reinforcing rubber products has not been obtained.
本発明は、上述のような問題に鑑みてなされたものであり、ゴム製品の強度と、耐久寿命を確保することを目的とし、耐腐食疲労特性に優れたゴム製品補強用鋼線及びその製造方法を提供するものである。 The present invention has been made in view of the above-described problems, and aims to ensure the strength and durability of rubber products, and the steel wire for reinforcing rubber products excellent in corrosion fatigue resistance and the production thereof. A method is provided.
本発明者らは、ゴム製品の内部に水分及び酸素が侵入した腐食環境を想定し、種々の有機系被膜、無機被膜を表面に形成したゴム製品補強用鋼線の耐腐食疲労特性を、被膜組成、厚さを変えて評価した。その結果、金属と酸素を主成分とした化合物からなる無機被膜を表面に一定の厚さ形成することで、ゴム製品補強用鋼線の耐腐食疲労特性が著しく改善されることを明らかにした。更に、この耐腐食疲労特性が改善された補強材をゴム中に埋設することで、ゴム製品の形状、強度を維持し、耐久寿命が改善されることを知見した。本発明は、このような知見に基づいてなされたものであり、その要旨は以下のとおりである。なお、成膜処理時の素線の通線本数は1本とは限らず、複数本を同時に処理することも可能である。 Assuming a corrosive environment in which moisture and oxygen have penetrated into the rubber product, the present inventors have shown the corrosion fatigue resistance characteristics of steel wires for reinforcing rubber products on which various organic coatings and inorganic coatings are formed. The composition and thickness were changed for evaluation. As a result, it was clarified that the corrosion fatigue resistance of steel wires for reinforcing rubber products is remarkably improved by forming an inorganic coating composed of a compound mainly composed of metal and oxygen with a certain thickness on the surface. Furthermore, it has been found that by embedding a reinforcing material with improved corrosion fatigue resistance in rubber, the shape and strength of the rubber product can be maintained and the durability life can be improved. This invention is made | formed based on such knowledge, The summary is as follows. Note that the number of wires that pass through the film forming process is not limited to one, and a plurality of wires can be processed simultaneously.
(1)直径が0.1〜0.4mmのスチール素線の表面にめっき層を有し、更に該めっき層の表面に、Zr、Ti、Si、Mo、Co、Ni、の1種又は2種以上と酸素を主成分とする化合物からなる10nm以上、1000nm以下の厚さの被膜層を有することを特徴とする耐腐食疲労特性に優れたゴム製品補強用鋼線。 (1) It has a plating layer on the surface of a steel strand having a diameter of 0.1 to 0.4 mm, and further, one or two of Zr, Ti, Si, Mo, Co, Ni on the surface of the plating layer A steel wire for reinforcing rubber products having excellent corrosion fatigue resistance, comprising a coating layer having a thickness of 10 nm or more and 1000 nm or less composed of a compound containing at least a seed and oxygen as a main component.
(2)めっき層がCuを55〜75質量%含むことを特徴とする上記(1)に記載の耐腐食疲労特性に優れたゴム製品補強用鋼線。 (2) The steel wire for reinforcing rubber products according to (1) above, wherein the plating layer contains 55 to 75% by mass of Cu.
(3)被膜層が金属酸化物、金属水酸化物の一方又は双方であり、該被膜層中の金属種と酸素の合計に対する金属種の比率が、原子%で、30〜70%であることを特徴とする上記(1)又は(2)に記載の耐腐食疲労特性に優れたゴム製品補強用鋼線。 (3) The coating layer is one or both of a metal oxide and a metal hydroxide, and the ratio of the metal species to the total of metal species and oxygen in the coating layer is 30% to 70% in atomic%. (1) or (2), wherein the steel wire for reinforcing rubber products is excellent in corrosion fatigue resistance.
(4)上記(1)〜(3)の何れか1項に記載のスチール素線が、質量%で、C:0.4〜1.1%、Si:0.2〜1.5%、Mn:0.2〜1.0%を含有し、P:0.02%以下、S:0.02%以下に制限し、残部がFe及び不可避的不純物からなることを特徴とする耐腐食疲労特性に優れたゴム製品補強用鋼線。 (4) The steel strand according to any one of (1) to (3) above is in mass%, C: 0.4 to 1.1%, Si: 0.2 to 1.5%, Corrosion-resistant fatigue characterized by containing Mn: 0.2-1.0%, P: 0.02% or less, S: 0.02% or less, the balance being Fe and inevitable impurities Steel wire for reinforcing rubber products with excellent characteristics.
(5)スチール素線が、さらに、質量%で、Cr:0.05〜0.5%、Cu:0.05〜0.3%、Ni:0.05〜0.5%、Mo:0.05〜0.3%、V:0.05〜0.5%、W:0.05〜0.3%、Co:0.01〜0.1%の1種又は2種以上を含有することを特徴とする上記(4)に記載の耐腐食疲労特性に優れたゴム製品補強用鋼線。 (5) The steel strand is further mass%, Cr: 0.05 to 0.5%, Cu: 0.05 to 0.3%, Ni: 0.05 to 0.5%, Mo: 0 0.05 to 0.3%, V: 0.05 to 0.5%, W: 0.05 to 0.3%, Co: 0.01 to 0.1%, or one or more The steel wire for reinforcing rubber products having excellent corrosion fatigue resistance as described in (4) above.
(6)上記(1)〜(5)の何れか1項に記載のゴム製品補強用鋼線が複数本撚り合わされてなる撚り線であることを特徴とする耐腐食疲労特性に優れたゴム製品補強用撚り鋼線。 (6) A rubber product excellent in corrosion fatigue resistance, characterized in that it is a stranded wire formed by twisting a plurality of steel wires for reinforcing rubber products according to any one of (1) to (5) above. Stranded steel wire for reinforcement.
(7)上記(1)〜(3)の何れか1項に記載のゴム製品補強用鋼線の製造方法であって、スチール素線の表面に設けためっき層の表面に、金属フッ化物錯体を用いた液相析出法により、Zr、Ti、Si、Mo、Co、Ni、の1種又は2種以上と酸素を主成分とする化合物を形成することを特徴とする耐腐食疲労特性に優れたゴム製品補強用鋼線の製造方法。 (7) A method for manufacturing a steel wire for reinforcing rubber products according to any one of (1) to (3) above, wherein a metal fluoride complex is formed on the surface of the plating layer provided on the surface of the steel wire. Excellent in anti-corrosion fatigue characteristics characterized by forming a compound mainly composed of oxygen and one or more of Zr, Ti, Si, Mo, Co, Ni by a liquid phase precipitation method using A method of manufacturing steel wires for reinforcing rubber products.
(8)スチール素線が上記(4)又は(5)に記載の成分組成を有することを特徴とする上記(7)に記載の耐腐食疲労特性に優れたゴム製品補強用鋼線の製造方法。 (8) The method for producing a steel wire for reinforcing a rubber product according to (7), wherein the steel wire has the component composition as described in (4) or (5) above and has excellent corrosion fatigue resistance characteristics .
(9)陽極を金属フッ化錯体溶液中に浸漬し、表面にめっき層を有するスチール素線を陰極として前記金属フッ化錯体溶液中を連続的に通過させ、電流密度を1〜10A/dm2の範囲で被膜を形成する工程と、引き続き、80℃〜200℃の温度域で乾燥する工程からなることを特徴とする上記(7)又は(8)に記載の耐腐食疲労特性に優れたゴム製品補強用鋼線の製造方法。 (9) The anode is immersed in the metal fluoride complex solution, and the steel strand having a plating layer on the surface is used as the cathode to continuously pass through the metal fluoride complex solution, and the current density is 1 to 10 A / dm 2. The rubber having excellent corrosion fatigue resistance as described in (7) or (8) above, which comprises a step of forming a film in the range of, and a step of subsequently drying in a temperature range of 80 ° C. to 200 ° C. Manufacturing method of steel wire for product reinforcement.
本発明の被膜層により、ゴム組成物内に埋設された環境下でも耐腐食疲労特性に優れ、ゴム製品の形状、強度を維持することが可能なゴム製品補強用鋼線を提供することが可能となる。また、本発明の金属フッ化物錯体を用いた液相析出法によれば、耐腐食疲労特性を向上させることが可能な、被膜層を有するゴム製品補強用鋼線の製造方法を提供することができる。また、めっき層中のCu含有率を55〜75%とすることで安定した伸線加工が可能になり、工業的に安定して製造することができる。以上のように、耐腐食疲労特性に優れたゴム製品補強用鋼線及びその製造方法を提供できる本発明は、産業上の貢献が極めて顕著である。 With the coating layer of the present invention, it is possible to provide a steel wire for reinforcing rubber products that has excellent corrosion fatigue resistance even in an environment embedded in a rubber composition and can maintain the shape and strength of the rubber product. It becomes. Further, according to the liquid phase precipitation method using the metal fluoride complex of the present invention, it is possible to provide a method for producing a steel wire for reinforcing rubber products having a coating layer, which can improve corrosion fatigue resistance. it can. Moreover, the stable wire drawing process is attained by making Cu content rate in a plating layer into 55 to 75%, and it can manufacture stably industrially. As described above, the industrial contribution of the present invention, which can provide a steel wire for reinforcing rubber products excellent in corrosion fatigue resistance and a method for producing the same, is extremely remarkable.
本発明者らは、ゴム組成物内部でのゴム製品補強用鋼線の耐腐食疲労特性の改善について詳細に検討した。その結果、ゴム組成物内部への水分及び空気の浸入による腐食環境において、ゴム製品補強用鋼線の表面に被膜層を形成し、耐食性を改善することによりゴム製品の耐久性が向上することを明らかにした。そこで、本発明者は検討を行い、ゴム中に侵入した水分、酸素によって、スチール素線が酸化しないように、ガス、水分バリヤ性の高い被膜を表面に形成し、耐食性の改善に成功するとともに、その被膜層の形態の適正条件を見出した。 The present inventors have studied in detail the improvement of the corrosion fatigue resistance of the steel wire for reinforcing rubber products inside the rubber composition. As a result, in a corrosive environment due to the intrusion of moisture and air into the rubber composition, the durability of the rubber product is improved by forming a coating layer on the surface of the steel wire for reinforcing the rubber product and improving the corrosion resistance. Revealed. Therefore, the present inventor has examined and succeeded in improving the corrosion resistance by forming a coating film having a high gas and moisture barrier property on the surface so that the steel wire is not oxidized by moisture and oxygen that have penetrated into the rubber. The proper condition of the form of the coating layer was found.
図1は本発明のゴム製品補強用鋼線の横断面模式図である。中心部はスチール素線1であり、その周りにめっき層2が存在し、さらにその表面に金属と酸素を主成分とする被膜層3が10〜1000nmの範囲の厚さで形成されている。ここで、金属と酸素が主成分とは、原子%で、金属種と酸素の比率が、化合物全体の60%以上であることを意味する。
FIG. 1 is a schematic cross-sectional view of a steel wire for reinforcing rubber products according to the present invention. The central portion is a
本発明の素線は冷間加工により製造され、例えば、ダイス伸線により製造する場合0.1mmより細くなると加工工程が多くなり、作業が繁雑になるとともに生産性が大幅に低下するために0.1mmを線径の下限とした。一方、線径が0.4mmより太くなると素線の強度が低下し、補強材としての効果が小さくなるために0.4mmを上限とした。 The strand of the present invention is manufactured by cold working. For example, when manufacturing by die drawing, if it becomes thinner than 0.1 mm, the number of processing steps increases, and the work becomes complicated and the productivity is greatly reduced. .1 mm was taken as the lower limit of the wire diameter. On the other hand, when the wire diameter is thicker than 0.4 mm, the strength of the wire is lowered, and the effect as a reinforcing material is reduced.
本発明の、スチール素線の表面に設けられためっき層の表面に形成される、被膜層に含まれる金属種は、Zr、Ti、Si、Mo、Co、Niの何れか単独であっても良く、複数の金属種であっても良い。これらの金属種は、いずれも耐腐食疲労特性の改善の効果があり、金属種を、Zr、Ti、Si、Mo、Co、Niの1種又は2種以上のとすることにより、ゴム製品補強用鋼線の耐食性改善効果が明瞭に認められる。また、これらの金属種がゴム製品補強用鋼線の耐腐食疲労特性の改善効果をもたらすメカニズムは、金属種が被膜層の上に形成されるゴムと強固な化学結合を形成するため、ゴム製品補強用鋼線として使用する際の耐腐食疲労特性の改善が顕著であると推定される。なお、ゴムとの強固な化学結合という観点から、特に好適な金属種はZrとTiである。また、これらの金属種の酸化物又は水酸化物からなる被膜の金属種は、X線光電子分光法(XPSという。)、オージェ電子分光分析(AESという。)、赤外線分光法によって同定することができる。 The metal species contained in the coating layer formed on the surface of the plating layer provided on the surface of the steel strand of the present invention may be any one of Zr, Ti, Si, Mo, Co, and Ni. It may be a plurality of metal species. All of these metal species have the effect of improving the corrosion fatigue resistance. By making the metal species one or more of Zr, Ti, Si, Mo, Co, and Ni, reinforcement of rubber products The effect of improving the corrosion resistance of steel wires is clearly recognized. The mechanism by which these metal species improve the corrosion fatigue resistance of steel wires for reinforcing rubber products is because the metal species forms a strong chemical bond with the rubber formed on the coating layer. It is estimated that the improvement in corrosion fatigue resistance is remarkable when used as a reinforcing steel wire. From the viewpoint of strong chemical bonding with rubber, particularly preferred metal species are Zr and Ti. In addition, the metal species of the coating composed of oxides or hydroxides of these metal species can be identified by X-ray photoelectron spectroscopy (referred to as XPS), Auger electron spectroscopy (referred to as AES), and infrared spectroscopy. it can.
被膜層を構成する金属種と酸素を主成分とする化合物とは、金属種の酸化物、水酸化物の一方か、又は酸化物と水酸化物との混合物を意味する。なお、被膜層が、金属種の水酸化物を含むのは、液相析出法によって形成された酸化物に含まれる水分が、乾燥後も残留することがあるためである。 The metal species constituting the coating layer and the compound containing oxygen as a main component means either an oxide of a metal species, a hydroxide, or a mixture of an oxide and a hydroxide. The reason why the coating layer contains the metal type hydroxide is that moisture contained in the oxide formed by the liquid phase deposition method may remain even after drying.
被膜層の厚さは、ゴム製品補強用鋼線の耐腐食疲労特性に大きく影響する。被膜層の厚さを変え、図2に示す応力負荷方式の回転曲げ疲労試験により、耐腐食疲労特性を評価した。耐腐食疲労試験は、腐食試験めっき線(試験片)4の曲率部先端を0.1%NaCl水溶液の腐食試験液5中に20mm浸漬させ、回転数を3000rpmとして行った。耐腐食疲労寿命は、負荷応力σを300MPaとして破断までの回転数(寿命)で評価した。負荷応力は、以下の式により求めた。
σ=1.19×d×E/C
L=2.19×C
ここで、σは負荷応力(MPa)、dはスチール素線の線径(mm)、Eはスチール素線の竪弾性係数であり、2.09×105MPaとした。また、Cはチャック間距離(mm)、Lは試験片長さ(mm)である。
The thickness of the coating layer greatly affects the corrosion fatigue resistance of the steel wire for rubber product reinforcement. The thickness of the coating layer was changed, and the corrosion fatigue resistance characteristics were evaluated by a rotational bending fatigue test using the stress loading method shown in FIG. In the corrosion fatigue test, the tip of the curvature portion of the corrosion test plating wire (test piece) 4 was immersed in a corrosion test solution 5 of a 0.1% NaCl aqueous solution at a rotation speed of 3000 rpm. The corrosion fatigue life was evaluated by the number of rotations (life) until breakage with a load stress σ of 300 MPa. The load stress was determined by the following formula.
σ = 1.19 × d × E / C
L = 2.19 × C
Here, σ is the load stress (MPa), d is the wire diameter (mm) of the steel wire, E is the elastic modulus of the steel wire, and is 2.09 × 10 5 MPa. C is the distance between chucks (mm), and L is the length of the test piece (mm).
結果を図3に示す。図3の被膜厚さ(nm)と腐食疲労寿命(min)との関係の結果から明らかなように、被膜層の厚さが10nmより薄い場合は耐腐食疲労特性改善効果が不十分になることがある。一方、1000nmより厚い被膜を形成した場合には耐腐食疲労特性改善効果は飽和し、一部では被膜表面に割れや剥離が発生することがあり、耐腐食疲労特性が低下する場合がある。したがって、金属酸化物、金属水酸化物の一方又は双方からなる被膜層の厚さを10nm〜1000nmとすることが好ましい。より好ましくは20〜500nmである。 The results are shown in FIG. As is clear from the results of the relationship between the film thickness (nm) and the corrosion fatigue life (min) in FIG. 3, when the thickness of the coating layer is less than 10 nm, the effect of improving the corrosion fatigue resistance is insufficient. There is. On the other hand, when a film thicker than 1000 nm is formed, the effect of improving the corrosion fatigue resistance is saturated, and in some cases, the surface of the film may be cracked or peeled off, and the corrosion fatigue resistance may be lowered. Therefore, the thickness of the coating layer made of one or both of metal oxide and metal hydroxide is preferably 10 nm to 1000 nm. More preferably, it is 20-500 nm.
ここで、金属種と酸素からなる化合物の被膜層の厚さはゴム製品補強用鋼線表面からXPS又はオージェ電子分光分析(AESという。)による表面分析を行い、深さ方向の濃度分布(デプスプロファイルという。)を測定することによって評価することができる。即ち、酸素が存在する表面からの深さが被膜層の厚さである。 Here, the thickness of the coating layer of the compound composed of the metal species and oxygen is analyzed by XPS or Auger electron spectroscopy (AES) from the surface of the steel wire for reinforcing rubber products, and the concentration distribution in the depth direction (depth) It can be evaluated by measuring a profile). That is, the depth from the surface where oxygen is present is the thickness of the coating layer.
また、走査型電子顕微鏡(SEMという。)又は透過型電子顕微鏡によってスチール素線、めっき層、被膜層を観察して、その厚さを測定しても良い。この場合は、次の何れかの方法で行えば良い。1つは、収束イオンビーム(FIB)を用いて鋼線の長さ方向に垂直に切断し、その面をSEMによって観察する方法である。もう一つは、被膜層を含む薄膜サンプルを作成し、透過電子顕微鏡により3000〜100000倍の倍率で組織観察を行う方法である。 Further, the thickness of the steel wire, the plating layer, and the coating layer may be measured by observing the steel element wire, the plating layer, and the coating layer with a scanning electron microscope (referred to as SEM) or a transmission electron microscope. In this case, any of the following methods may be used. One is a method in which a focused ion beam (FIB) is used to cut perpendicularly to the length direction of the steel wire and the surface is observed by SEM. The other is a method in which a thin film sample including a coating layer is prepared and the structure is observed with a transmission electron microscope at a magnification of 3000 to 100000 times.
金属種と酸素を含む化合物である被膜層の形成方法としては、スパッタリング法、CVD法の気相法、ゾルゲル法等の液相法がある。このうち、気相法では真空環境を形成するために高価な設備が必要となる問題がある。一方、液相法のうち、ゾルゲル法は塗布後焼成が必要であり、そのためにクラックの発生や素材からの金属の拡散の影響を受ける。また、揮発成分を含むため、緻密な被膜の形成は困難である。 As a method for forming a coating layer that is a compound containing a metal species and oxygen, there are a liquid phase method such as a sputtering method, a CVD gas phase method, and a sol-gel method. Among these, the vapor phase method has a problem that expensive equipment is required to form a vacuum environment. On the other hand, among the liquid phase methods, the sol-gel method requires baking after coating, and is therefore affected by the occurrence of cracks and the diffusion of metal from the material. Moreover, since it contains a volatile component, it is difficult to form a dense film.
そこで、本発明では液相法の一つである金属フッ化物錯体溶液を用いた液相析出法により、被膜層を形成する。これにより、緻密な被膜層を短時間に形成でき、しかも、被膜層の厚さを精度良く制御することが可能である。 Therefore, in the present invention, the coating layer is formed by a liquid phase deposition method using a metal fluoride complex solution, which is one of the liquid phase methods. Thereby, a dense coating layer can be formed in a short time, and the thickness of the coating layer can be accurately controlled.
金属フッ化物錯体としては珪素フルオロケイ錯体、チタンフルオロ錯体、ジルコンフルオロ錯体、モリブデンフルオロ錯体、ニオブフルオロ錯体、亜鉛フルオロ錯体等の水溶液や塩化チタン、塩化ニッケル、塩化コバルト等とフッ化水素アンモニウムの混合水溶液を処理液として使用できる。 Metal fluoride complexes include silicon fluorosilica complex, titanium fluorocomplex, zircon fluorocomplex, molybdenum fluorocomplex, niobium fluorocomplex, zinc fluorocomplex and other aqueous solutions, and mixtures of titanium chloride, nickel chloride, cobalt chloride, etc. and ammonium hydrogen fluoride. An aqueous solution can be used as the treatment liquid.
本発明では、液相析出法により連続してスチール素線の表面に短時間で被膜層を形成させるため、陽極を金属フッ化物錯体水溶液中に浸漬し、その中を、スチール素線を陰極として通過させながら、通電して連続処理する。生産性を向上させるためには、複数のスチール素線を同時に走行させ、それぞれ、電流密度と線速を制御することが好ましい。 In the present invention, in order to form a coating layer on the surface of a steel wire continuously in a short time by a liquid phase deposition method, the anode is immersed in an aqueous metal fluoride complex solution, and the steel wire is used as a cathode. While passing, energize and process continuously. In order to improve productivity, it is preferable to run a plurality of steel strands simultaneously and control the current density and the wire speed, respectively.
複数本のスチール素線を同時に処理する際には、通電時のスチール素線1本当たりの電流密度を1A/dm2以上とすることが好ましい。電流密度が1A/dm2未満の場合は被膜層の成膜速度が遅く、生産性を損なうことがある。一方、電流密度を10A/dm2より大きくするとスチール素線の円周方向及び長手方向の被膜層の厚さが不均一となり、局部的に被膜が形成されない部分が発生することがある。したがって、スチール素線1本当たりの電流密度を1〜10A/dm2の範囲とすることが好ましい。 When processing a plurality of steel strands at the same time, the current density per steel strand during energization is preferably 1 A / dm 2 or more. When the current density is less than 1 A / dm 2, the film formation rate of the coating layer is slow, and productivity may be impaired. On the other hand, when the current density is larger than 10 A / dm 2, the thickness of the coating layer in the circumferential direction and the longitudinal direction of the steel element wire becomes non-uniform, and a portion where the coating is not locally formed may occur. Therefore, it is preferably in the range of current density per one steel wire of 1 to 10 A / dm 2.
陽極には耐食性が要求されるため、Ti板に酸化イリジウムあるいは白金をコーティングした電極を用いることが好ましい。 Since the anode is required to have corrosion resistance, it is preferable to use an electrode in which a Ti plate is coated with iridium oxide or platinum.
被膜層の形成後、乾燥温度が80℃未満では、生成した被膜層の乾燥が不十分になることがある。これにより、被膜層に水分が残留すると、金属種と酸素との化合物からなる被膜層が安定して生成しにくくなる。一方、乾燥温度を200℃超にするとスチール素線の強度が低下することがある。したがって、乾燥温度は80〜200℃の範囲であることが好ましい。 If the drying temperature is less than 80 ° C. after the formation of the coating layer, the generated coating layer may be insufficiently dried. As a result, when moisture remains in the coating layer, a coating layer made of a compound of a metal species and oxygen becomes difficult to be generated stably. On the other hand, when the drying temperature is higher than 200 ° C., the strength of the steel strand may be lowered. Therefore, the drying temperature is preferably in the range of 80 to 200 ° C.
スチール素線の表面にはめっき層を設けても良い。このめっき層は、所定の線径に加工するための潤滑性の改善、耐食性の向上を目的として形成される。めっき層は、Cu、Zn、Sn、Co、Niの1種又は2種以上からなることが好ましい。 A plating layer may be provided on the surface of the steel wire. This plating layer is formed for the purpose of improving the lubricity for processing into a predetermined wire diameter and improving the corrosion resistance. The plating layer is preferably made of one or more of Cu, Zn, Sn, Co, and Ni.
特に、めっき層中には、Cuを含有することが好ましい。このCuの濃度が55%以下の場合、0.1〜0.4mmまでスチール素線を冷間加工する工程で、加工性が低下することがある。これにより、断線が多く発生する傾向が見られ、まためっき層の耐食性も低下することがあるため、腐食疲労寿命が若干低下する。一方、75%を超えるCu濃度の場合も冷間加工時の延伸性が低下することがあり、伸線性が悪化するために伸線速度の低下、ダイス寿命の低下や、断線の発生の増加の原因となることがある。さらに、めっき層のカソード反応が促進されガルバニック腐食特性がやや劣化し、耐腐食疲労特性が若干低下する。したがって、めっき層中のCu濃度は、55〜75%であることが好ましい。より好ましくは60〜70%である。 In particular, the plating layer preferably contains Cu. When the Cu concentration is 55% or less, the workability may be lowered in the step of cold working the steel strand to 0.1 to 0.4 mm. As a result, there is a tendency for many disconnections to occur, and the corrosion resistance of the plating layer may be reduced, so that the corrosion fatigue life is slightly reduced. On the other hand, even when the Cu concentration exceeds 75%, the stretchability during cold working may be reduced, and the drawability deteriorates, so the drawing speed decreases, the die life decreases, and the occurrence of disconnection increases. It can be a cause. Furthermore, the cathodic reaction of the plating layer is promoted, the galvanic corrosion characteristics are slightly deteriorated, and the corrosion fatigue resistance characteristics are slightly lowered. Therefore, the Cu concentration in the plating layer is preferably 55 to 75%. More preferably, it is 60 to 70%.
また、スチール素線は単線でゴム補強線として使用することも可能であるが、複数本撚り合わせて補強体とすることで高い靱性が得られ、効果的にゴムの補強を行うこともできる。 In addition, although the steel wire can be used as a rubber reinforcing wire by a single wire, high toughness can be obtained by twisting a plurality of wires to make a reinforcing body, and rubber can be effectively reinforced.
スチール素線の表面のめっき層の形成は、常法で行えば良い。めっき層がCuを含む組成であれば湿式めっき、乾式めっき及び化学的気層成長法(CVD)、物理的気層成長法(PVD)等製造方法が適用可能であり、その方法は特に限定されない。また、湿式のブラスめっきを行っても良く、電気Cuめっきと電気Znめっきを順次行い層状のめっき層を熱拡散によりブラス化する方法も採用可能である。また、めっき層がCuを含む組成である場合、Cu以外の組成についても特に限定されるものではなく、Zn、Co、Ni等を含む複合成分系のめっき組成が適用可能である。 The plating layer on the surface of the steel wire may be formed by a conventional method. If the plating layer has a composition containing Cu, manufacturing methods such as wet plating, dry plating, chemical vapor deposition (CVD), and physical vapor deposition (PVD) are applicable, and the method is not particularly limited. . Further, wet brass plating may be performed, and a method of brassing the layered plating layer by thermal diffusion by sequentially performing electric Cu plating and electric Zn plating may be employed. Further, when the plating layer has a composition containing Cu, the composition other than Cu is not particularly limited, and a composite component plating composition containing Zn, Co, Ni, or the like is applicable.
次に、スチール素線の成分について説明する。なお、%は質量%である。 Next, the components of the steel strand will be described. In addition,% is the mass%.
C:0.4〜1.1%
Cはスチール素線の強度に対して最も大きな影響を及ぼす成分であり、0.4%より少ないとゴム製品補強用鋼線としての充分な強度が確保できないことがある。一方、1.1%を超えて含有すると粒界に初析セメンタイトが生成し、冷間加工性が低下することがある。そのため、C量は0.4〜1.1%であることが好ましい。
C: 0.4 to 1.1%
C is a component that has the greatest influence on the strength of the steel wire, and if it is less than 0.4%, sufficient strength as a steel wire for reinforcing rubber products may not be ensured. On the other hand, if it exceeds 1.1%, pro-eutectoid cementite is formed at the grain boundary, and cold workability may be lowered. Therefore, the C content is preferably 0.4 to 1.1%.
Si:0.2〜1.5%
Siは鋼材製造の製鋼工程で、脱酸成分として添加されるとともに固溶強化による強度向上効果があり0.2%以上を含有することが好ましい。一方、1.5%を超えて添加すると鋼材が脆くなり加工性や熱処理性が低下することがある。また、表面に生成したスケールがスチール素線表面に残存すると、加工時のトラブルの原因になることがある。したがって、Si量は0.2〜1.5%とすることが好ましい。
Si: 0.2 to 1.5%
Si is a steelmaking process for producing steel materials, and is added as a deoxidizing component and has an effect of improving strength by solid solution strengthening, and preferably contains 0.2% or more. On the other hand, if added over 1.5%, the steel material becomes brittle and the workability and heat treatment properties may be reduced. Further, if the scale generated on the surface remains on the surface of the steel wire, it may cause trouble during processing. Therefore, the Si amount is preferably 0.2 to 1.5%.
Mn:0.2〜1.0%
MnはSiと同様に製鋼工程で、脱酸成分として添加されるとともに強度を高める効果がある。この効果を得るには、Mnを0.2%以上添加することが好ましい。一方、Mnは焼入性を上げると共に偏析し易い元素であり、1.0%を超えて添加すると、ベイナイト等の過冷組織が生成し易くなり、鋼材が脆くなり、加工性が低下することがある。したがって、Mn量は0.2〜1.0%とすることが好ましい。
Mn: 0.2 to 1.0%
Similar to Si, Mn is added as a deoxidizing component in the steelmaking process, and has the effect of increasing strength. In order to obtain this effect, it is preferable to add 0.2% or more of Mn. On the other hand, Mn is an element that increases hardenability and easily segregates, and if added over 1.0%, a supercooled structure such as bainite is likely to be generated, the steel material becomes brittle, and workability is reduced. There is. Therefore, the Mn content is preferably 0.2 to 1.0%.
P、S:0.02%以下
P、Sは鋼中に不可避的に含有される不純物元素であって、極力低することによりスチール素線の加工性を改善することから0.02%以下に制限することが好ましい。
P and S: 0.02% or less P and S are impurity elements inevitably contained in the steel, and improve the workability of the steel wire by reducing it as much as possible. It is preferable to limit.
更に、耐腐食疲労特性を向上させるために、Cr、Cu、Ni、W、Mo、Coの1種又は2種以上を含有させても良い。 Furthermore, in order to improve the corrosion fatigue resistance, one or more of Cr, Cu, Ni, W, Mo, and Co may be included.
Cr:0.05〜0.5%
鋼材中のCrは鋼の耐食性を向上させる元素であると共にパーライトラメラを微細にし、強度を高める効果がある。この効果を得るには、Crを0.05%以上添加することが好ましい。一方、Crを0.5%超えて添加するとスケール剥離性が悪化することがあり、また、変態が遅延するため、熱処理時に過冷組織(ベイナイトやマルテンサイト)が生成し易くなり、加工性が悪化することがある。このためCr添加量を0.05〜0.5%とすることが好ましい。
Cr: 0.05-0.5%
Cr in the steel is an element that improves the corrosion resistance of the steel and has the effect of making the pearlite lamella fine and increasing the strength. In order to obtain this effect, it is preferable to add 0.05% or more of Cr. On the other hand, when Cr is added in excess of 0.5%, the scale peelability may be deteriorated, and since the transformation is delayed, a supercooled structure (bainite or martensite) is easily generated during heat treatment, and the workability is improved. May get worse. For this reason, it is preferable to make Cr addition amount 0.05-0.5%.
更に、Cu、Ni、W、Mo、Coは耐腐食疲労特性を向上させる効果を有する元素であるため、1種又は2種以上を添加しても良い。これら元素の効果は、単に鋼材の耐食性の向上のみでなく、被膜層の形成と、スチール素線への添加による相乗効果を発現し、より大きな耐腐食疲労特性改善効果が得られる。 Furthermore, since Cu, Ni, W, Mo, and Co are elements having an effect of improving the corrosion fatigue resistance, one kind or two or more kinds may be added. The effect of these elements not only improves the corrosion resistance of the steel material, but also exhibits a synergistic effect by forming the coating layer and adding it to the steel strand, and a greater effect of improving the corrosion resistance property can be obtained.
Cu:0.05〜0.3%
Cuは緻密で安定な錆層をスチール素線表面に形成することで耐腐食疲労特性を改善する効果がある。この効果を得るためには0.05%以上の添加が好ましいが、0.3%を超えて添加すると粒界に偏析し、熱間圧延時に表面割れを発生し易くなるために0.3%を上限とすることが好ましい。
Cu: 0.05-0.3%
Cu has the effect of improving corrosion fatigue resistance by forming a dense and stable rust layer on the surface of the steel wire. In order to obtain this effect, addition of 0.05% or more is preferable, but if added over 0.3%, segregation occurs at the grain boundaries, and surface cracks are likely to occur during hot rolling, so 0.3% Is preferably the upper limit.
Ni:0.05〜0.5%
Niは鋼中に固溶すると、伸線加工性及び加工後のスチール素線の靱性を改善する効果がある。また、Niが表層に濃化すると、耐腐食疲労特性を改善する効果もある。これらの効果を得るためには0.05%以上の添加が必要であるが0.5%を超えて添加するとスケールの剥離性が悪化することがある。これにより、伸線加工性の低下が懸念される。また、表層濃化による耐腐食疲労特性の改善の効果も飽和するため、経済的にも不合理となる。以上のことから0.5%を上限とすることが好ましい。
Ni: 0.05-0.5%
When Ni is dissolved in steel, it has an effect of improving the wire drawing workability and the toughness of the steel wire after processing. Further, when Ni is concentrated on the surface layer, there is an effect of improving the corrosion fatigue resistance. In order to obtain these effects, addition of 0.05% or more is necessary. However, if it exceeds 0.5%, the peelability of the scale may be deteriorated. Thereby, we are anxious about the fall of wire drawing workability. Moreover, since the effect of improving the corrosion fatigue resistance by surface concentration is saturated, it becomes economically unreasonable. From the above, the upper limit is preferably 0.5%.
Mo:0.05〜0.3%
Moは、Wと同様に、腐食溶解時に腐食反応抑制作用のあるモリブデン酸イオンを表面に生成し、耐孔食性を向上させる元素である。この効果を得るためには0.05%以上の添加が好ましい。しかし、0.3%を超えて添加するとその効果が飽和するため、0.3%を上限とすることが好ましい。
Mo: 0.05-0.3%
Mo, like W, is an element that improves the pitting corrosion resistance by generating molybdate ions having a corrosion reaction suppressing action on the surface during corrosion dissolution. In order to obtain this effect, addition of 0.05% or more is preferable. However, if the addition exceeds 0.3%, the effect is saturated, so it is preferable to make 0.3% the upper limit.
V:0.05〜0.5%
Vは、微細な炭化物を形成し、鋼の結晶微細化と析出強化による高強度化の作用がある。この効果を得るためには0.05%以上の添加が好ましい。一方、0.5%を超えて添加すると伸線加工性を悪化させることがあるために0.5%を上限とすることが好ましい。
V: 0.05-0.5%
V forms fine carbides and has the effect of increasing the strength by refining steel crystals and strengthening precipitation. In order to obtain this effect, addition of 0.05% or more is preferable. On the other hand, if added over 0.5%, the wire drawing workability may be deteriorated, so 0.5% is preferably the upper limit.
W:0.05〜0.3%
WもMoと同様、腐食溶解時に腐食反応抑制作用のあるタングステン酸イオンを表面に生成し、耐孔食性を向上させる元素である。この効果を得るためには0.05%以上の添加が好ましい。しかし、0.3%を超えて添加すると熱間加工性を劣化させることがあるために0.3%を上限とすることが好ましい。
W: 0.05-0.3%
W, like Mo, is an element that improves the pitting corrosion resistance by generating tungstate ions having a corrosion reaction suppressing action on the surface during corrosion dissolution. In order to obtain this effect, addition of 0.05% or more is preferable. However, if added over 0.3%, the hot workability may be deteriorated, so 0.3% is preferable as the upper limit.
Co:0.01〜0.1%
Coも耐腐食疲労特性を向上すると共に伸線加工性、撚り線加工性を向上させる効果がある。これらの効果を得るには0.01%以上の添加が好ましい。しかし、Coは高価な元素であり、0.3%を超えて添加しても効果が飽和することから0.3%を上限とすることが好ましい。
Co: 0.01 to 0.1%
Co also has the effect of improving corrosion fatigue resistance and improving wire drawing workability and stranded wire workability. To obtain these effects, addition of 0.01% or more is preferable. However, Co is an expensive element, and even if added in excess of 0.3%, the effect is saturated, so 0.3% is preferable as the upper limit.
他の微量元素については特に限定しないが、不可避的不純物元素として、脱酸剤であるAlを0.05%以下、原料のスクラップから混入するSnを0.001%以下含有することがある。 Although it does not specifically limit about another trace element, 0.05% or less of Al which is a deoxidizer as an inevitable impurity element, and 0.001% or less of Sn mixed from the raw material scrap may be contained.
以上、本発明の特に好ましい実施形態について詳述したが、上記のようにして得られる本発明のゴム製品補強用鋼線は疲労特性が改善されると共に安定した生産が可能であり、各種のゴム製品、例えばタイヤ、ベルト、ホースなどの補強材として好適に用いることができる。 As described above, the particularly preferable embodiment of the present invention has been described in detail. The steel wire for reinforcing rubber products of the present invention obtained as described above has improved fatigue characteristics and can be stably produced. It can be suitably used as a reinforcing material for products such as tires, belts and hoses.
以下、本発明を実施例により更に具体的に説明するが、スチール素線の直径、被膜層に含有される金属種、被膜層の厚さ以外の態様、即ち、スチール素線の成分組成、製造方法、めっき組成、被膜層の生成条件については、以下の実施例の態様に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but aspects other than the diameter of the steel strand, the metal species contained in the coating layer, and the thickness of the coating layer, that is, the component composition and production of the steel strand. The method, the plating composition, and the conditions for forming the coating layer are not limited to the embodiments described below.
表1に示す各種鋼材成分からなる5.5mmの熱間圧延鋼線を原材料とした。鋼線表面のスケールを酸洗で除去した後に乾式伸線を行い、1.2mmまで冷間伸線してスチール素線とした。その後、950〜1000℃の温度に加熱し、550〜630℃の範囲で均一なパーライト組織が得られるようにパテンティング処理により恒温変態させた。引き続き電気銅めっきと電気亜鉛めっきあるいは電気錫めっきを連続して実施し、Cu−ZnあるいはCu−Snめっきとした。さらに一部の実施例ではZnめっきの上に電気Co、あるいは電気Niまたは電気Moめっきを行いCu−Zn−CoあるいはCu−Zn−NiおよびCu−Zn−Moからなるめっき層を形成し、これにより、それぞれのスチール素線の表面に設けられるめっき厚さを調整し、流動床炉にて580℃で10s保持する熱拡散処理を行いブラスめっきとした。Cu濃度とめっき厚は、Cuめっきの厚さとZnめっきの厚さによって変化させた。 A 5.5 mm hot rolled steel wire made of various steel components shown in Table 1 was used as a raw material. After removing the scale on the surface of the steel wire by pickling, dry drawing was performed and cold drawing was performed to 1.2 mm to obtain a steel strand. Thereafter, the mixture was heated to a temperature of 950 to 1000 ° C. and subjected to constant temperature transformation by a patenting treatment so that a uniform pearlite structure was obtained in the range of 550 to 630 ° C. Subsequently, electrolytic copper plating and electrolytic zinc plating or electrolytic tin plating were successively performed to obtain Cu—Zn or Cu—Sn plating. Further, in some embodiments, electric Co, or electric Ni or electric Mo plating is performed on the Zn plating to form a plating layer made of Cu—Zn—Co or Cu—Zn—Ni and Cu—Zn—Mo. Thus, the plating thickness provided on the surface of each steel wire was adjusted, and thermal plating treatment was performed at 580 ° C. for 10 s in a fluidized bed furnace to obtain brass plating. The Cu concentration and the plating thickness were changed depending on the thickness of the Cu plating and the thickness of the Zn plating.
このブラスめっきを表面に設けたスチール素線を湿式伸線により0.08〜0.45mmまで伸線し、ブラスめっきスチール素線(ブラスめっき素線ともいう。)を得た。更に、これらのブラスめっき素線への成膜処理は、液相析出法によって行った。即ち、ヘキサフルオロ錯塩水溶液、金属塩化物とフッ化水素アンモニウムの混合水溶液に、フッ化アンモニウム、フッ酸、アンモニウム水を用いてpHが3〜4となるように調整した液に陽極を浸漬し、ブラスめっき素線を陰極として通電しながら液中を走行さ、被膜を形成させた。 The steel wire provided with the brass plating on the surface was drawn to 0.08 to 0.45 mm by wet drawing to obtain a brass-plated steel wire (also referred to as a brass-plated wire). Furthermore, the film-forming process to these brass plating strands was performed by the liquid phase precipitation method. That is, the anode was immersed in a solution adjusted to have a pH of 3 to 4 using ammonium fluoride, hydrofluoric acid, and aqueous ammonium in a mixed aqueous solution of hexafluoro complex salt, metal chloride and ammonium hydrogen fluoride, The film was formed by running in the liquid while energizing with the brass plating wire as the cathode.
更に具体的には、0.5mol/lヘキサフルオロ珪酸アンモニウム水溶液で酸化珪素被膜を、0.1mol/lヘキサフルオロチタン酸アンモニウム水溶液、0.1mol/l塩化チタンと0.3mol/lフッ化水素アンモニウムの混合水溶液で酸化チタン被膜を、0.01mol/lヘキサフルオロジルコン酸アンモニウム水溶液、0.01mol/lで酸化ジルコニア被膜を0.5mol/lヘキサフルオロモリブデン酸アンモニウム水溶液で酸化モリブデン被膜を、0.1mol/l塩化ニッケルと0.3mol/lフッ化水素アンモニウムの混合水溶液で酸化ニッケル被膜を、0.1mol/l塩化コバルトと0.3mol/lフッ化水素アンモニウムの混合水溶液で酸化コバルト被膜を成膜した。複合被膜の場合は2回処理を行った。陽極にはTi板にイリジウムをコーティングした電極を用いた。被膜層の厚さは、ブラスめっき素線を陰極としたカソード電解により、電流密度、処理時間を変えて調整した。また、成膜後は直ちに65〜220℃の温度範囲で乾燥処理を行い、ブラスめっき素線の表面に、金属酸化物、金属水酸化物の一方又は双方からなる被膜層を形成し、ゴム製品補強用鋼線を得た。 More specifically, a silicon oxide film is coated with 0.5 mol / l ammonium hexafluorosilicate aqueous solution, 0.1 mol / l ammonium hexafluorotitanate aqueous solution, 0.1 mol / l titanium chloride and 0.3 mol / l hydrogen fluoride. Titanium oxide film with mixed aqueous solution of ammonium, 0.01 mol / l ammonium hexafluorozirconate aqueous solution, 0.01 mol / l zirconia oxide film with 0.5 mol / l ammonium hexafluoromolybdate aqueous solution and molybdenum oxide film with 0 mol A nickel oxide film is mixed with a mixed aqueous solution of 1 mol / l nickel chloride and 0.3 mol / l ammonium hydrogen fluoride, and a cobalt oxide film is mixed with a mixed aqueous solution of 0.1 mol / l cobalt chloride and 0.3 mol / l ammonium hydrogen fluoride. A film was formed. In the case of the composite coating, the treatment was performed twice. As the anode, an electrode obtained by coating a iridium on a Ti plate was used. The thickness of the coating layer was adjusted by cathodic electrolysis using a brass-plated element wire as a cathode while changing the current density and the treatment time. Also, immediately after the film formation, a drying treatment is performed in a temperature range of 65 to 220 ° C., and a coating layer made of one or both of a metal oxide and a metal hydroxide is formed on the surface of the brass-plated element wire, thereby producing a rubber product. A steel wire for reinforcement was obtained.
ブラスめっき素線の表面に形成された、被膜層の金属種と酸素からなる化合物の生成状況、成分、厚さはX線光電子分光法と赤外線分光法により同定した。 The production state, components, and thickness of the compound composed of the metal species and oxygen of the coating layer formed on the surface of the brass plating wire were identified by X-ray photoelectron spectroscopy and infrared spectroscopy.
このゴム製品補強用鋼線を図2に示す応力負荷方式の回転曲げ疲労試験により曲率部先端を0.1%NaCl水溶液中に20mm浸漬させ、回転数3000rpmで耐腐食疲労試験を行った。腐食疲労寿命は負荷応力300MPaとして破断までの回転数(寿命)で評価した。 The steel wire for reinforcing rubber products was immersed in a 0.1% NaCl aqueous solution by 20 mm at the tip of the curvature portion by a stress loading type rotating bending fatigue test shown in FIG. 2, and a corrosion fatigue resistance test was conducted at a rotational speed of 3000 rpm. The corrosion fatigue life was evaluated by the number of revolutions (life) until breakage with a load stress of 300 MPa.
従来材としては表1Aの成分の熱間圧延線材を本発明と同様な工程により乾式伸線とパテンティング処理、ブラスめっき処理を行い、更に湿式伸線により、めっき表層に被膜処理を行わないスチール素線を製造し、腐食疲労寿命を評価した。 As a conventional material, a hot-rolled wire having the components shown in Table 1A is subjected to dry wire drawing, patenting treatment and brass plating treatment in the same process as in the present invention, and further, steel that does not perform coating treatment on the plating surface layer by wet wire drawing. A strand was manufactured and the corrosion fatigue life was evaluated.
表2に記載の如く、本発明のNo.1〜33のゴム製品補強用鋼線の腐食疲労寿命は、比較例34、39〜44の被膜層を有さないゴム製品補強用鋼線に比べて、約30〜70%の寿命改善が図られることがわかる。 As described in Table 2, No. 1 of the present invention. Corrosion fatigue life of steel wires for reinforcing rubber products of 1 to 33 is about 30 to 70% longer than that of steel wires for reinforcing rubber products of Comparative Examples 34 and 39 to 44 having no coating layer. I understand that
比較例であるNo.35は被膜層の厚さが本発明より薄く、腐食疲労寿命の改善効果がほとんど無い例である。一方、比較例No.36は被膜層の厚さが本発明の上限を超えており、被膜の割れや剥離により耐腐食疲労特性が劣化した例である。 No. which is a comparative example. No. 35 is an example in which the thickness of the coating layer is thinner than that of the present invention and there is almost no effect of improving the corrosion fatigue life. On the other hand, Comparative Example No. No. 36 is an example in which the thickness of the coating layer exceeds the upper limit of the present invention, and the corrosion fatigue resistance is deteriorated by cracking or peeling of the coating.
スチール素線の線径が、本発明の範囲よりも細い比較例No.37では伸線加工度が大きく、比表面積の増加により耐食性が悪化した例である。一方、比較例No.38はスチール素線の線径が大きく、強度が低く腐食疲労寿命が低下した例である。 Comparative Example No. in which the wire diameter of the steel strand is thinner than the range of the present invention. No. 37 is an example in which the degree of wire drawing is large and the corrosion resistance deteriorates due to an increase in specific surface area. On the other hand, Comparative Example No. No. 38 is an example in which the diameter of the steel wire is large, the strength is low, and the corrosion fatigue life is reduced.
No.39〜41は被膜層が形成されていない比較例であり、腐食疲労寿命が著しく低下している。また、これらは、C、Si、Mnが好ましい範囲の下限未満であり、伸線後の強度が若干低下し、腐食疲労寿命に悪影響を及ぼしている。 No. Reference numerals 39 to 41 are comparative examples in which no coating layer is formed, and the corrosion fatigue life is remarkably reduced. Moreover, these are less than the minimum of the range with preferable C, Si, and Mn, the intensity | strength after wire drawing falls a little, and has a bad influence on corrosion fatigue life.
No.42〜44も被膜が形成されていない比較例であり、腐食疲労寿命が著しく低下している。また、これらは、C、Si、Mnが好ましい範囲より多く、伸線加工性が若干低下して、表面に欠陥が生じて、腐食疲労寿命に悪影響を及ぼしている。 No. 42 to 44 are comparative examples in which no coating is formed, and the corrosion fatigue life is remarkably reduced. Moreover, these have more C, Si, and Mn than the preferable range, wire drawing workability falls a little, the surface produces a defect, and has a bad influence on corrosion fatigue life.
1 スチール素線
2 めっき層
3 被膜層
4 腐食試験めっき線
5 腐食試験溶液
C チャック間距離(mm)
L 試験片長さ(m)
1
L Test piece length (m)
Claims (9)
C:0.4〜1.1%、
Si:0.2〜1.5%、
Mn:0.2〜1.0%
を含有し、
P :0.02%以下、
S :0.02%以下
に制限し、残部がFe及び不可避的不純物からなることを特徴とする耐腐食疲労特性に優れたゴム製品補強用鋼線。 The steel strand according to any one of claims 1 to 3, wherein the steel strand is in mass%.
C: 0.4 to 1.1%
Si: 0.2 to 1.5%
Mn: 0.2 to 1.0%
Containing
P: 0.02% or less,
S: Steel wire for reinforcing rubber products excellent in corrosion fatigue resistance, characterized by being limited to 0.02% or less and the balance being Fe and inevitable impurities.
Cr:0.05〜0.5%、
Cu:0.05〜0.3%、
Ni:0.05〜0.5%、
Mo:0.05〜0.3%、
V:0.05〜0.5%、
W:0.05〜0.3%、
Co:0.01〜0.1%
の1種又は2種以上を含有することを特徴とする請求項4に記載の耐腐食疲労特性に優れたゴム製品補強用鋼線。 Steel strands are also mass%,
Cr: 0.05 to 0.5%,
Cu: 0.05 to 0.3%,
Ni: 0.05 to 0.5%,
Mo: 0.05-0.3%
V: 0.05-0.5%
W: 0.05-0.3%
Co: 0.01 to 0.1%
The steel wire for reinforcing rubber products according to claim 4, wherein the steel wire is excellent in corrosion fatigue resistance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007164830A JP4937846B2 (en) | 2007-02-27 | 2007-06-22 | Steel wire for reinforcing rubber products excellent in corrosion fatigue resistance and manufacturing method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007047735 | 2007-02-27 | ||
JP2007047735 | 2007-02-27 | ||
JP2007164830A JP4937846B2 (en) | 2007-02-27 | 2007-06-22 | Steel wire for reinforcing rubber products excellent in corrosion fatigue resistance and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008240140A JP2008240140A (en) | 2008-10-09 |
JP4937846B2 true JP4937846B2 (en) | 2012-05-23 |
Family
ID=39911819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007164830A Expired - Fee Related JP4937846B2 (en) | 2007-02-27 | 2007-06-22 | Steel wire for reinforcing rubber products excellent in corrosion fatigue resistance and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4937846B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2537343T3 (en) | 2008-12-16 | 2015-06-05 | Nv Bekaert Sa | A cord that has an improved adhesion promoter coating |
JP5333331B2 (en) * | 2010-04-13 | 2013-11-06 | 新日鐵住金株式会社 | Ultra-fine plated steel wire with excellent adhesion to rubber |
JP5333332B2 (en) * | 2010-04-13 | 2013-11-06 | 新日鐵住金株式会社 | Ultra-fine plated steel wire with excellent adhesion to rubber |
JP2018119192A (en) * | 2017-01-26 | 2018-08-02 | 新日鐵住金株式会社 | Steel wire for reinforcing rubber product, steel cord for reinforcing rubber product and method for manufacturing steel wire for reinforcing rubber product |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0696795B2 (en) * | 1989-02-10 | 1994-11-30 | 邦夫 森 | Surface treatment method for brass plated steel wire and steel wire rubber bonded composite |
JP3283332B2 (en) * | 1993-04-08 | 2002-05-20 | 新日本製鐵株式会社 | High-strength ultrafine steel wire with excellent stranded wire workability and method for producing the same |
JP3905768B2 (en) * | 2002-02-13 | 2007-04-18 | 株式会社神戸製鋼所 | Brass plating material with excellent adhesion to rubber and composites thereof |
JP4104877B2 (en) * | 2002-02-14 | 2008-06-18 | トクセン工業株式会社 | Rubber reinforcing material, rubber composite and rubber reinforcing material manufacturing method |
JP3993464B2 (en) * | 2002-05-24 | 2007-10-17 | 株式会社ブリヂストン | Rubber composite material and rubber article using the same |
-
2007
- 2007-06-22 JP JP2007164830A patent/JP4937846B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008240140A (en) | 2008-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9243315B2 (en) | High-strength Zn—Al coated steel wire for bridges with excellent corrosion resistance and fatigue properties and method for manufacturing the same | |
EP2812480B1 (en) | Elongated steel element comprising a ternary or quaternary brass alloy coating and corresponding method | |
CN108239735A (en) | High tough, permanent seal cooling bridge cable 1960MPa grades of Zn-Al Alloy Coated Steel Wires of major diameter | |
JP6729722B2 (en) | Plated steel wire, method of manufacturing plated steel wire, steel cord, and rubber composite | |
JP4937846B2 (en) | Steel wire for reinforcing rubber products excellent in corrosion fatigue resistance and manufacturing method thereof | |
JP5977699B2 (en) | High-strength wire for high-strength steel wire, high-strength steel wire, high-strength galvanized steel wire, and manufacturing method thereof | |
JPWO2019004454A1 (en) | High strength steel wire | |
JPH0323674B2 (en) | ||
JP5658651B2 (en) | Steel material for rolling roll for galvanized steel sheet excellent in spalling resistance, and rolling roll for galvanized steel sheet | |
JP6248862B2 (en) | Ultra fine plated steel wire with excellent adhesion to rubber and rubber composite using the same | |
JP6825720B2 (en) | Aluminum covered steel wire and its manufacturing method | |
JP2015196937A (en) | Steel cord for rubber commodity reinforcement | |
JP2018119192A (en) | Steel wire for reinforcing rubber product, steel cord for reinforcing rubber product and method for manufacturing steel wire for reinforcing rubber product | |
JP2018119193A (en) | Rubber product reinforcement steel wire, rubber product reinforcement steel cord, and method for manufacturing rubber product reinforcement steel wire | |
JP2001271138A (en) | High strength and high carbon steel wire excellent in ductility | |
JP3330233B2 (en) | Manufacturing method of hot-dip Zn-Al plated steel wire | |
TW201925491A (en) | Aluminum-clad steel wire and method for manufacturing the same wherein the aluminum-clad steel wire includes a steel wire and an aluminum-containing layer covering at least a portion of the steel wire | |
JP2018119242A (en) | Steel cord and rubber-steel cord composite | |
JPH08296022A (en) | High strength galvanized steel wire and its production | |
JPH0417616A (en) | Production of stainless steel wire | |
JP6645349B2 (en) | Rubber-steel cord composite | |
CN111005042A (en) | Plated component | |
JPH11199999A (en) | Production of high tensile strength hot dip galvanized steel plate | |
JP2018119243A (en) | Steel cord and rubber-steel cord composite | |
JPH09109609A (en) | Tire rubber reinforcing steel cord and tire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090916 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120131 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120222 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150302 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4937846 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150302 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150302 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150302 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |