JP2013081982A - Extra-fine steel wire having excellent delamination-resistance characteristics and method for manufacturing the same - Google Patents

Extra-fine steel wire having excellent delamination-resistance characteristics and method for manufacturing the same Download PDF

Info

Publication number
JP2013081982A
JP2013081982A JP2011222992A JP2011222992A JP2013081982A JP 2013081982 A JP2013081982 A JP 2013081982A JP 2011222992 A JP2011222992 A JP 2011222992A JP 2011222992 A JP2011222992 A JP 2011222992A JP 2013081982 A JP2013081982 A JP 2013081982A
Authority
JP
Japan
Prior art keywords
steel wire
plating
wire
less
pickling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011222992A
Other languages
Japanese (ja)
Other versions
JP5879897B2 (en
Inventor
Makoto Kosaka
誠 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2011222992A priority Critical patent/JP5879897B2/en
Publication of JP2013081982A publication Critical patent/JP2013081982A/en
Application granted granted Critical
Publication of JP5879897B2 publication Critical patent/JP5879897B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Extraction Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the delamination resistance characteristics in an extra-fine steel wire which is obtained by executing the cold wire drawing of a high-carbon steel wire having a pearlite structure, and has the tensile strength of ≥3,000 MPa, and has a substantially circular section with its wire diameter being 50-380 μm.SOLUTION: Copper plating or brass plating is provided on a surface of an extra-fine steel wire. A projection part is formed, in which a boundary line between the steel wire of the cross section of the extra-fine steel wire and the plating enters inwardly in a projection shape from a substantially circular shape of the basic cross section of the steel wire. The depth of the projection part is ≤1.0 μm. The maximum length of cracks present in the projection part of the plating is ≤0.8 μm, and the angle formed between the crack propagating direction and the radial direction of the cross section of the steel wire is ≥35°.

Description

本発明はタイヤ、ベルトコード、高圧ホース等、ゴム及び有機材料の補強用に使用されているスチールコードなどの高強度極細鋼線に関するものである。   The present invention relates to high-strength ultrafine steel wires such as tires, belt cords, high-pressure hoses, etc., steel cords used for reinforcing rubber and organic materials.

一般に、極細鋼線は、熱間圧延後、調整冷却された直径4.0〜5.5mm程度の高炭素線材を、鋼線の延性劣化に応じて中間パテンティングと乾式による一次伸線加工を繰り返し、目標とする引張強さに応じた線径で最終パテンティング後、銅めっきまたはブラスめっき処理を施し、湿式伸線を行って得られる。   In general, ultra-fine steel wires are subjected to hot rolling, adjusted and cooled high carbon wire with a diameter of about 4.0 to 5.5 mm, and intermediate wire drawing and dry primary wire drawing according to the ductility deterioration of the steel wire. Repeatedly, after final patenting with a wire diameter corresponding to the target tensile strength, copper plating or brass plating treatment is performed, and wet drawing is performed.

この様にして製造された極細鋼線をタイヤ、ベルトコード、高圧ホース等の補強材として使用するために、通常撚り線加工が行われる。撚り線加工時には、極細鋼線を複数本高速で撚り合わせるため、個々の極細鋼線には断線に耐えるための延性が求められる。   In order to use the ultra-fine steel wire thus manufactured as a reinforcing material for tires, belt cords, high-pressure hoses, etc., stranded wire processing is usually performed. At the time of stranded wire processing, a plurality of ultra fine steel wires are twisted together at a high speed, so that the individual ultra fine steel wires are required to have ductility to withstand disconnection.

この様な要望に対し、従来から極細鋼線の開発がなされている。例えば特開昭60−204865号公報には、2450N/mm以上の引張強さの直径0.5mm以下の鋼線について、Mn含有量を規定してパテンティング時の過冷組織の発生を抑制し、C、Si、Mnの含有量を規定することで線材の強度及び靱延性を向上させて、撚り線断線の減少を図る技術が開示されている。 In response to such demands, the development of extra fine steel wires has been made. For example, in Japanese Patent Laid-Open No. 60-204865, for steel wires having a tensile strength of 2450 N / mm 2 or more and a diameter of 0.5 mm or less, the Mn content is defined to suppress the formation of supercooled structures during patenting. And the technique which improves the intensity | strength and tough ductility of a wire rod by prescribing | regulating content of C, Si, and Mn, and aims at reduction of a strand wire break is disclosed.

しかし近年、タイヤの軽量化・高性能化の要望に応えて、スチールコードのハイテンション化が急速に進展し、引張強さで3000MPa超のものが主流になってきている。鋼線の引張強さが高くなると、一般に延性が低下し、デラミネーションと呼ばれる縦割れが発生し、撚り線加工中に断線し易くなる傾向がある。   However, in recent years, in response to demands for weight reduction and high performance of tires, steel cords have been rapidly increased in tension, and those with a tensile strength exceeding 3000 MPa are becoming mainstream. When the tensile strength of a steel wire increases, ductility generally decreases, vertical cracks called delamination occur, and there is a tendency that breakage tends to occur during stranded wire processing.

そこで、近年では引張強さで3000MPaを越えるような高強度でも延性を確保し、断線しにくい極細鋼線を得るために、以下のように種々の開発がなされている。   Therefore, in recent years, various developments have been made as described below in order to obtain ductile steel with a high strength exceeding 3000 MPa in tensile strength and to obtain an ultrafine steel wire that is difficult to break.

特許文献1では、パテンティングの際の加熱温度上限を規定し、冷却段階開始以降パーライト変態前に線材の表層部温度がその内部温度よりも低くなる時期を設け、表層部の平均パーライトノジュールサイズが内部よりも0.3μm以上小さい組織とすることで鋼線の捻回特性を向上させる技術を提案している。   In Patent Document 1, the upper limit of the heating temperature at the time of patenting is defined, and the time when the surface layer temperature of the wire becomes lower than the internal temperature after the start of the cooling stage and before the pearlite transformation is set, and the average pearlite nodule size of the surface layer is A technique for improving the twisting characteristics of a steel wire by making the structure smaller by 0.3 μm or more than the inside is proposed.

特許文献2では、パテンティング時のオーステナイト化温度からの強制冷却段階において、一度500〜560℃まで冷却した後、復熱させてからパーライト変態を行わせることで、伸線材の横断面(以下、C断面ともいう。)におけるフェライト粒の長軸長さ(Da)、短軸長さ(Db)の積(Da×Db)を一定値以下に制御し、高強度材での縦割れ(デラミネーション)を抑制する技術を提案している。   In patent document 2, in the forced cooling stage from the austenitizing temperature at the time of patenting, after cooling once to 500 to 560 ° C., the pearlite transformation is performed after reheating, whereby the cross section of the wire drawing material (hereinafter, Longitudinal cracks (delamination) in high-strength materials by controlling the product (Da x Db) of the major axis length (Da) and minor axis length (Db) of ferrite grains in C section) ) Has been proposed.

特許文献3では、鋼線に含まれるボイドの最大径を鋼線のせん断降伏応力との関係で上限を規定し、かつ表層の引張残留応力値とその周方向のバラツキの上限値をそれぞれ規定することで耐デラミネーション特性に優れた鋼線を製造する技術を提案している。   In Patent Literature 3, the upper limit of the maximum void diameter contained in the steel wire is defined in relation to the shear yield stress of the steel wire, and the upper limit value of the tensile residual stress value of the surface layer and the variation in the circumferential direction thereof are defined. Therefore, we have proposed a technology for manufacturing steel wires with excellent delamination resistance.

特許文献4には、最終パテンティング材の強度と(初析フェライトの面積/セメンタイトの面積)の値、およびパテンティング後の伸線加工方法を規定することで、鋼線表面の引張残留応力を線径に応じた値以下に抑え、デラミネーションを抑制する技術を提案している。   Patent Document 4 specifies the strength of the final patenting material, the value of (area of pro-eutectoid ferrite / area of cementite), and the wire drawing method after patenting. We have proposed a technology that suppresses delamination by keeping the value below the wire diameter.

また、一般にこれまで伸線中あるいは伸線後において鋼線が時効することは、延性に悪影響を及ぼすものと考えられており、伸線加工中の発熱を極力抑制する方法や、ダイス/鋼線間の摩擦係数を小さくすることが多く提案されている。   In general, aging of steel wires during or after wire drawing is considered to have an adverse effect on ductility. Methods for suppressing heat generation during wire drawing as much as possible, Many proposals have been made to reduce the coefficient of friction.

例えば特許文献5では、5℃以下の温度の湿式潤滑剤の中で伸線を行うことにより、伸線中の発熱を抑制することによって鋼線の時効を抑え、鋼線の捻回値が向上する(耐デラミネーション特性が向上する)方法が提案されている。
また、特許文献6では、ダイス/鋼線間の摩擦係数を0.07未満とすることで伸線中の発熱を抑制することが提案されている。
For example, in Patent Document 5, by performing wire drawing in a wet lubricant at a temperature of 5 ° C. or lower, the heat generation during wire drawing is suppressed, thereby suppressing the aging of the steel wire and improving the twist value of the steel wire. There has been proposed a method of improving the delamination resistance characteristics.
Patent Document 6 proposes to suppress heat generation during wire drawing by setting the coefficient of friction between the die and the steel wire to less than 0.07.

特開平11−241280号公報Japanese Patent Application Laid-Open No. 11-241280 特開平11−199978号公報Japanese Patent Laid-Open No. 11-199978 特開2001−279380号公報JP 2001-279380 A 特開2001−279381号公報JP 2001-279281 A 特開2002−28716号公報JP 2002-28716 A 特開平11−309509号公報JP-A-11-309509

本発明者らは、3000MPa超の高強度材に対する上述の諸技術の適用について検討した。鋼組織の調整や表面の引張残留応力の抑制によっては、捻回時のデラミネーションを抑制するといった明確な効果は必ずしも得ることは出来なかった。
本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、表面を起点とする鋼線のデラミネーションを抑制し、延性の高い極細鋼線を供給しようとするものである。
The present inventors examined application of the above-described techniques to a high-strength material exceeding 3000 MPa. By adjusting the steel structure and suppressing the residual tensile stress on the surface, it was not always possible to obtain a clear effect of suppressing delamination during twisting.
The present invention has been made in view of such circumstances, and an object of the present invention is to suppress the delamination of the steel wire starting from the surface and to supply an ultrathin steel wire having high ductility. It is.

極細鋼線は、前述のようにパテンティングして、酸洗した後の鋼線表面に銅めっきまたはブラスめっきを施し、それを湿式伸線して製造される。本発明者らは、従来着目されていなかった、めっきと鋼線母材の界面の形態について調査し、そのデラミネーションとの関連について検討した。
その結果、めっきが鋼線内部に突起状に入り込んでいる個所が多数存在すること、その突起の存在形態が耐デラミネーション特性に大きく影響することを見出し、さらに、突起について詳細に検討した結果、上記の課題を解決できる本発明に到達したものであり、その趣旨とするところは次の通りである。
The ultra fine steel wire is manufactured by applying the copper plating or the brass plating to the surface of the steel wire after patenting and pickling as described above, and then wet-drawing it. The present inventors investigated the form of the interface between the plating and the steel wire base material, which has not been noticed in the past, and examined the relationship with the delamination.
As a result, it has been found that there are many places where the plating penetrates into the inside of the steel wire, the existence form of the protrusion has a great influence on the delamination resistance characteristics, and further, as a result of examining the protrusion in detail, The present invention has been achieved to solve the above-mentioned problems, and the gist of the present invention is as follows.

(1) C:0.75〜1.10%,Si:0.5〜2.0%,Mn:0.2〜2.0%を含有し、パーライト組織を有する鋼線材を冷間伸線加工して得られた、引張強度が3000MPa以上であり、線径が50〜380μmの円形断面を有する極細鋼線であって、
該鋼線の表面に銅めっきまたはブラスめっきを有し、極細鋼線の横断面における鋼線母材と前記めっきの境界線が、基本となる極細鋼線横断面の外周円よりも内側に突起状に入り込んでおり、それによって形成されためっきの突起の最大深さが1.0μm以下であり、前記突起内に存在するき裂の最大長さが0.8μm以下であるとともに前記き裂の進展方向と極細鋼線横断面の半径方向とのなす角が35°以上であることを特徴とする耐デラミネーション特性に優れた極細鋼線。
(2) 上記(1)に記載の極細鋼線において、該鋼線における横断面表面の周方向に沿って存在する前記突起部の単位周長あたりの平均個数が、0.5個/μm以下であることを特徴とする耐デラミネーション特性に優れた極細鋼線。
(3) C:0.75〜1.1%,Si:0.5〜2.0%,Mn:0.2〜2.0%を含有し、パーライト組織を有する鋼線材を一次伸線し、最終パテンティングし、酸洗した後、銅めっきまたはブラスめっきを施し、湿式伸線を行う上記(1)または(2)に記載の耐デラミネーション特性に優れた極細鋼線の製造方法において、
前記最終パテンティングの際の再加熱時の炉内温度を800〜1050℃に、加熱時間を在炉時間で10分以下にそれぞれ制御し、最終パテンティング後の酸洗を、15〜30質量%で温度が20〜45℃の塩酸を用い、酸洗時間が120分以下の条件で行って、該酸洗後の鋼線の表面粗さRmaxの最大値(Rmax)maxが4.5μm以下となるようにし、湿式伸線前の銅またはブラスめっき厚を1〜10μmとすることを特徴とする極細鋼線の製造方法。
(1) C: 0.75 to 1.10%, Si: 0.5 to 2.0%, Mn: 0.2 to 2.0%, cold drawn steel wire having a pearlite structure An ultrafine steel wire having a circular cross section with a tensile strength of 3000 MPa or more and a wire diameter of 50 to 380 μm obtained by processing,
The surface of the steel wire has copper plating or brass plating, and the boundary between the steel wire base material and the plating in the cross section of the ultra fine steel wire protrudes inward from the outer circumference circle of the basic ultra fine steel wire cross section. The maximum depth of the plating protrusion formed thereby is 1.0 μm or less, the maximum length of the crack existing in the protrusion is 0.8 μm or less, and An ultra fine steel wire with excellent delamination resistance, characterized in that the angle formed between the direction of progress and the radial direction of the cross section of the ultra fine steel wire is 35 ° or more.
(2) In the ultra fine steel wire according to (1) above, an average number per unit circumferential length of the protrusions present along the circumferential direction of the cross-sectional surface of the steel wire is 0.5 piece / μm or less An ultra-fine steel wire with excellent delamination resistance characteristics.
(3) C: 0.75 to 1.1%, Si: 0.5 to 2.0%, Mn: 0.2 to 2.0%, and a steel wire having a pearlite structure is primarily drawn. In the method for producing an ultrafine steel wire having excellent delamination resistance as described in (1) or (2) above, which is subjected to final patenting, pickling, copper plating or brass plating, and wet wire drawing.
The temperature in the furnace at the time of reheating at the time of the final patenting is controlled to 800 to 1050 ° C., the heating time is controlled to 10 minutes or less in the in-furnace time, and the pickling after the final patenting is 15 to 30% by mass. In this case, hydrochloric acid having a temperature of 20 to 45 ° C. is used and the pickling time is 120 minutes or less, and the maximum value (Rmax) max of the surface roughness Rmax of the steel wire after the pickling is 4.5 μm or less. A method for producing an ultra fine steel wire, characterized in that the thickness of copper or brass plating before wet drawing is 1 to 10 μm.

本発明のように、鋼線表面への銅めっきまたはブラスめっきの突起状の入り込みおよびその中のき裂の形態を規制することにより、3000MPa以上の引張強さを有しながら、延性の高い極細鋼線とすることができ、撚り線加工時のデラミネーションの発生を抑制して、断線の発生を低減できるため、産業上その効果は極めて大きい。   As in the present invention, by controlling the protrusion of copper plating or brass plating on the surface of the steel wire and the form of cracks therein, it has an ultrafine high ductility while having a tensile strength of 3000 MPa or more. Since it can be made of steel wire and the occurrence of delamination during twisted wire processing can be suppressed and the occurrence of disconnection can be reduced, the effect is extremely large in industry.

極細鋼線のC断面のめっきの状態を概略的に示した図である。It is the figure which showed roughly the state of plating of the C cross section of an ultra fine steel wire. 極細鋼線のC断面のめっきの食い込み状態を模式的に示す図である。It is a figure which shows typically the biting state of plating of the C cross section of an ultra fine steel wire. 耐デラミネーション性の評価試験装置により得られるトルクカーブの一例を示す図である。It is a figure which shows an example of the torque curve obtained by the evaluation test apparatus of delamination resistance. 酸洗後の鋼線の表面状態を模式的に示す図である。It is a figure which shows typically the surface state of the steel wire after pickling. 酸洗し、めっきした後の鋼線の縦断面の状態を模式的に示す図である。It is a figure which shows typically the state of the longitudinal cross-section of the steel wire after pickling and plating. 耐デラミネーション性の評価試験装置の概要を模式的に示す図である。It is a figure which shows typically the outline | summary of the evaluation test apparatus of delamination resistance.

極細鋼線は、前述のようにパテンティングして、酸洗した後の鋼線表面に銅めっきまたはブラスめっきを施し、それを湿式伸線して製造される。本発明者らは、従来着目されていなかった、めっきと鋼線母材の界面の形態について調査し、そのデラミネーションとの関連について検討した。
検討に当たっては、パテンティング時の加熱条件やブラスめっきの厚みなどを変更して、多数の極細鋼線を製造し、各鋼線からサンプルを切り出して、その横断面(C断面)を電子顕微鏡(SEM)で詳細に観察した。また、作成した極細鋼線の耐デラミネーション性評価試験を実施して、各鋼線の耐デラミネーション性を評価して、めっきの断面形状と耐デラミネーション特性との関連を調べた。
The ultra fine steel wire is manufactured by applying the copper plating or the brass plating to the surface of the steel wire after patenting and pickling as described above, and then wet-drawing it. The present inventors investigated the form of the interface between the plating and the steel wire base material, which has not been noticed in the past, and examined the relationship with the delamination.
In the examination, the heating conditions at the time of patenting and the thickness of the brass plating were changed to produce a large number of ultrafine steel wires, samples were cut out from each steel wire, and the cross section (C cross section) was taken with an electron microscope ( SEM) was observed in detail. Moreover, the delamination resistance evaluation test of the produced ultrafine steel wire was carried out, the delamination resistance of each steel wire was evaluated, and the relationship between the cross-sectional shape of the plating and the delamination resistance characteristics was investigated.

極細鋼線のめっきと鋼線母材の界面の観察では、図1の表面拡大図(a)に概略を示すように、極細鋼線の横断面における鋼線母材とめっき1の境界線が、基本となる極細鋼線横断面の外周円よりも鋼線母材2の内部に突起状に食い込んで、鋼線母材2の内部に向けてめっきによる突起3が形成されている個所が多数存在することが見出された。なお、それ以外の箇所はめっき1が非常に薄く残るだけの状態になっているため、めっきによる突起3は明りょうに区別できる状態になっている。
そして、さらに突起3について詳細に観察したところ、図2に示すように、突起3の中には、表面から突起部内部に向かうき裂4が存在するものがあること、き裂4には、図2(a)、(b)に示すように表面から鋼線の中心方向に向かって伸びるものと、図2(c)に示すように表面から斜めに伸びるものとがあることが見出された。
In the observation of the interface between the ultrafine steel wire plating and the steel wire preform, as shown schematically in the enlarged surface (a) of FIG. 1, the boundary between the steel wire preform and the plating 1 in the cross section of the ultrafine steel wire is There are many places where protrusions 3 are formed by plating into the inside of the steel wire base material 2 rather than the outer peripheral circle of the basic ultrafine steel wire cross section, and are formed toward the inside of the steel wire base material 2. It was found to exist. In addition, since the plating 1 remains in a state where the plating 1 remains very thin in other portions, the protrusions 3 formed by the plating are clearly distinguishable.
Further, when the projection 3 was observed in detail, as shown in FIG. 2, some of the projections 3 have cracks 4 from the surface to the inside of the projections. As shown in FIGS. 2 (a) and 2 (b), it has been found that there are those extending from the surface toward the center of the steel wire and those extending obliquely from the surface as shown in FIG. 2 (c). It was.

そこで、突起や突起内に存在するき裂の形態とデラミネーションとの関係についてさらに調べた。
突起やき裂の形態については、作製した極細鋼線から得たサンプルのC断面において、その表面周方向に沿ってL(μm)の長さについてSEM観察し、長さLの範囲における突起の個数nを数えて、突起の平均個数n/Lを求めるとともに、突起の深さDを測定して突起の中の最大深さを決定した。また、突起内にき裂が存在する場合には、そのき裂の長さSとき裂の折れ込み角度θを測定した。
なお、き裂の長さSは、き裂の進展方向の長さ、すなわち、き裂の起点(幅の中心)と終点を結ぶ線の長さとし、き裂の折れ込み角度θは、図2(d)に示すように、き裂の進展方向に向かう線5と半径方向に向かう線6の間の角度とする。
Therefore, the relationship between the shape of the protrusion and the crack existing in the protrusion and delamination was further investigated.
Regarding the shape of the protrusions and cracks, the length of L (μm) was observed along the circumferential direction of the sample in the C cross section of the sample obtained from the produced ultrafine steel wire, and the number of protrusions in the range of the length L n was counted to obtain an average number n / L of protrusions, and the depth D of the protrusions was measured to determine the maximum depth in the protrusions. When a crack exists in the protrusion, the crack length S and the crack folding angle θ were measured.
Note that the crack length S is the length in the crack propagation direction, that is, the length of the line connecting the starting point (width center) and the ending point of the crack, and the crack folding angle θ is As shown to (d), it is set as the angle between the line 5 which goes to the propagation direction of a crack, and the line 6 which goes to a radial direction.

次に、別のサンブルの耐デラミネーション性評価試験を実施し、得られたトルクカーブから、極細鋼線を、デラミネーションが発生せず十分に延性があると判断されるもの(評価○)、デラミネーションが発生しほとんど延性がないと判断されるもの(評価×)の2つに分類した。   Next, the delamination resistance evaluation test of another sample was carried out, and from the obtained torque curve, the ultrafine steel wire was judged to be sufficiently ductile without causing delamination (evaluation ○), It was classified into two types (devaluation x) in which delamination occurred and it was judged that there was almost no ductility.

SEM観察から得られた突起の形態や突起中に存在するき裂の形態を、耐デラミネーション性の評価結果と関連させて検討した。その結果、評価〇を得るための条件として、突起の最大深さが1.0μm以下であり、突起中にき裂が存在する場合は、その長さが0.8μm以下で、かつ、鋼線横断面の半径方向とのなす角が35°以上であることが必要であり、さらに好ましくは、横断面表面周方向に沿って計数した銅またはブラスめっきの突起状の入り込みの単位周長あたりの平均個数が、0.5個/μm以下であることであるとの条件が得られた。   The shape of the protrusion obtained from the SEM observation and the shape of the crack existing in the protrusion were examined in relation to the evaluation result of the delamination resistance. As a result, the maximum depth of the protrusion is 1.0 μm or less as a condition for obtaining the evaluation ◯, and when the crack exists in the protrusion, the length is 0.8 μm or less, and the steel wire The angle formed by the radial direction of the cross section needs to be 35 ° or more, and more preferably, per unit peripheral length of protrusions of copper or brass plating protrusions counted along the circumferential direction of the cross section surface. The condition that the average number is 0.5 pieces / μm or less was obtained.

ここで、評価試験及び耐デラミネーション性の評価は次のようにして行った。
評価試験は、作製した極細鋼線から得たサンプル21の両端部を、図6に示す耐デラミネーション性の評価試験装置20のチャック22、23で把持し、一方のチャック23は回転しないよう固定し、他端のチャック22を10〜200回転/分の一定速度で回転して、鋼線に捻じりを加え、破断に至るまで継続することにより行った。
Here, the evaluation test and the evaluation of the delamination resistance were performed as follows.
In the evaluation test, both ends of the sample 21 obtained from the produced ultrafine steel wire are held by the chucks 22 and 23 of the delamination resistance evaluation test apparatus 20 shown in FIG. 6, and one chuck 23 is fixed so as not to rotate. Then, the chuck 22 at the other end was rotated at a constant speed of 10 to 200 revolutions / minute, the steel wire was twisted and continued until breaking.

本発明で評価の対象とする鋼線は非常に細いため、捻回中にたるんで結び目が形成され、それを起点にして鋼線の正常な特性を評価する以前に破断することもある。そのため試験中の極細鋼線のサンプル21には、固定チャック23を介して、予め測定しておいた引っ張り破断荷重の1%の荷重24による張力を付加し、その状態で他端のチャック22を回転させるようにする。   Since the steel wire to be evaluated in the present invention is very thin, a knot is formed by sagging during twisting, and it may break before the normal characteristics of the steel wire are evaluated from that point. Therefore, the sample 21 of the ultrafine steel wire under test is applied with a tension by a load 24 that is 1% of the tensile breaking load measured in advance through a fixed chuck 23, and the chuck 22 at the other end is attached in this state. Try to rotate.

試験装置のチャックには、回転角度を測るエンコーダー、トルクを測定するロードセル、及び伸び計が付いており、各試験において制御装置25に記録されたトルクカーブ(横軸:回転角[rad]、縦軸:トルク[N・m])から、次のようにして鋼線の耐デラミネーション性を評価した。   The chuck of the test apparatus is equipped with an encoder for measuring the rotation angle, a load cell for measuring torque, and an extensometer. The torque curve (horizontal axis: rotation angle [rad], vertical axis) recorded in the control apparatus 25 in each test. From the shaft: torque [N · m]), the delamination resistance of the steel wire was evaluated as follows.

図3に、評価試験によって得られるトルクカーブの一例を示すが、得られたトルクカーブにおいて、捻じり試験開始から破断に至るまでの間で、図4(b)に示すような急激な荷重低下の有無があるかどうかを判断する。
トルクカーブでの急激なトルク低下は、鋼縦割れ(デラミネーション)の発生に対応しており、これが認められた場合は鋼線の延性が殆ど無いものと判断される(評価×)。
一方、図4(a)に示すように、破断に至るまでに急激なトルク低下が認められない場合は、鋼線には表面を起点とした破断が起こらずに、最終的に安定的な延性破壊に至るまで塑性変形することを示しており、鋼線が十分に延性を有しているものと判断される(評価○)。
FIG. 3 shows an example of a torque curve obtained by the evaluation test. In the obtained torque curve, a sudden load drop as shown in FIG. Determine if there is any.
The sudden torque drop in the torque curve corresponds to the occurrence of steel vertical cracks (delamination). If this is observed, it is judged that the steel wire has almost no ductility (evaluation x).
On the other hand, as shown in FIG. 4 (a), when a sudden torque drop is not observed before breaking, the steel wire does not break starting from the surface, and finally has a stable ductility. It shows plastic deformation until failure, and it is judged that the steel wire has sufficient ductility (evaluation ○).

なお、急激なトルク低下が認められない場合でも、得られたトルクカーブにセレーション(凹凸)が認められる場合がある。鋼線表面には、トルクカーブで荷重がドロップするタイミングで表層クラックが発生していることが判っている。鋼線表面のクラックは、撚り線などの鋼線加工中、それを起点として鋼線を縦方向に伝搬し、破断に至るため、延性劣化をもたらす原因となる。したがって、急激な荷重ドロップ(デラミネーション)が発生しなくても、トルクカーブ上にセレーションが認められる場合も延性評価は(×)とした。   Even when a sudden torque drop is not recognized, serrations (unevenness) may be recognized in the obtained torque curve. It has been found that surface cracks are generated on the surface of the steel wire at the timing when the load drops at the torque curve. Cracks on the surface of the steel wire cause a ductile deterioration because the steel wire propagates in the longitudinal direction from the starting point during the processing of the steel wire such as a stranded wire and breaks. Therefore, the ductility evaluation was set to (x) even when serration was observed on the torque curve even if a sudden load drop (delamination) did not occur.

本発明は、以上のような検討結果に基づきなされたものであり、以下、本発明で規定する耐デラミネーション特性に優れた高炭素極細鋼線の要件について、順次説明する。   The present invention has been made on the basis of the above examination results, and hereinafter, the requirements for the high carbon ultrafine steel wire excellent in the delamination resistance characteristic defined in the present invention will be sequentially described.

本発明は、C:0.75〜1.10%、Si:0.5〜2.0%、Mn:0.2〜2.0%を含有し、パーライト組織を有する鋼線材を素材として用いて極細鋼線を得る。
本発明で対象とする鋼の成分をそのように限定したのは次の理由よる。なお、以下に示す成分の%は全て質量%である。
The present invention uses a steel wire material containing C: 0.75 to 1.10%, Si: 0.5 to 2.0%, Mn: 0.2 to 2.0% and having a pearlite structure as a material. To obtain extra fine steel wire.
The reason why the steel components to be used in the present invention are so limited is as follows. In addition, all% of the component shown below is the mass%.

C:Cはパテンティング処理後の引張強さの増加および伸線加工硬化率を高める効果があり、より少ない伸線加工歪で鋼線の引張強さを高めることができる。0.75%未満では合金元素を添加してもパテンティング処理後の引張強さが低く、また、伸線加工硬化率も小さいため、引張強度が3000MPaを超える高強度の極細鋼線が得られない。一方、1.10%を越えるとパテンティング処理時に初析セメンタイトが、オーステナイト粒界に析出して伸線加工性が劣化し伸線加工工程で断線が発生し易くなるため、Cの範囲を0.75〜1.10%とした。   C: C has the effect of increasing the tensile strength after the patenting treatment and increasing the drawing work hardening rate, and can increase the tensile strength of the steel wire with less drawing distortion. If it is less than 0.75%, even if an alloying element is added, the tensile strength after the patenting treatment is low, and the drawing work hardening rate is also small, so a high strength ultra fine steel wire with a tensile strength exceeding 3000 MPa can be obtained. Absent. On the other hand, if it exceeds 1.10%, pro-eutectoid cementite precipitates at the austenite grain boundary during the patenting process and wire drawing workability deteriorates, and breakage is likely to occur in the wire drawing process. .75 to 1.10%.

Si:Siはパーライト中のフェライトを強化させるためと鋼の脱酸のために必要であり、更に熱による強度低下の抑制に極めて有効な元素である。0.5%未満では上記の効果が期待できない。一方2.0%を越えると熱間圧延工程で表面脱炭が発生し易くなるため、Siの範囲を0.5〜2.0%とした。   Si: Si is an element that is necessary for strengthening ferrite in pearlite and for deoxidizing steel, and is extremely effective for suppressing a decrease in strength due to heat. If it is less than 0.5%, the above effect cannot be expected. On the other hand, if it exceeds 2.0%, surface decarburization is likely to occur in the hot rolling process, so the Si range is set to 0.5 to 2.0%.

Mn:Mnは脱酸、脱硫のために必要であるばかりでなく、鋼の焼入性を向上させパテンティング処理後の引張強さを高めるために有効な元素であるが、0.2%未満では上記の効果が得られない。一方、1.0%を越えると上記の効果が飽和し、さらにパテンティング処理時のパーライト変態を完了させるための処理時間が長くなりすぎて生産性が低下するため、Mnの範囲を0.2〜1.0%とした。   Mn: Mn is not only necessary for deoxidation and desulfurization, but also an element effective for improving the hardenability of steel and increasing the tensile strength after patenting treatment, but less than 0.2% Then, the above effect cannot be obtained. On the other hand, if it exceeds 1.0%, the above effect is saturated, and the processing time for completing the pearlite transformation during the patenting process becomes too long and the productivity is lowered. -1.0%.

本発明の極細鋼線は、以上の元素を含有し残部がFe及び不可避的不純物よりなる組成を基本とするもので、この組成で特に他の元素を添加せずに引張強度を3000MPa以上とすることができるが、さらなる強度、靭性、延性等の機械的特性の向上を目的として、Cr:0.5%以下、Ni:0.5%以下、V:0.5%以下、Co:0.5%以下,Cu:0.2%以下、Mo:0.2%以下、W:0.2%以下の1種または2種以上(ただし、合計で2%以下)含有させたとしても本発明の効果は妨げられない。   The ultra fine steel wire of the present invention is based on a composition containing the above elements with the balance being Fe and inevitable impurities, and with this composition, the tensile strength is set to 3000 MPa or more without adding other elements. However, Cr: 0.5% or less, Ni: 0.5% or less, V: 0.5% or less, Co: 0.8% for the purpose of further improving mechanical properties such as strength, toughness and ductility. Even if 5% or less, Cu: 0.2% or less, Mo: 0.2% or less, W: 0.2% or less, or 2 or more types (however, 2% or less in total) are contained in the present invention The effect of is not disturbed.

本発明では、極細鋼線の引張強度が3000MPa以上の鋼を対象とするが、引張強度が3000MPa未満の場合、もとより伸線による鋼線の延性劣化が進んでおらず、本発明を適用する場合の効果が明確でない事から対象外とした。
また、線径を50〜380μmとしたのは、タイヤ、ベルトコード、高圧ホース等、ゴム及び有機材料の補強用に使用されているスチールコードに求められる線径に基づく。
In the present invention, the tensile strength of the ultra fine steel wire is intended for steel having a tensile strength of 3000 MPa or more. Since the effect of was not clear, it was excluded.
The wire diameter of 50 to 380 μm is based on the wire diameter required for steel cords used for reinforcing rubber and organic materials, such as tires, belt cords, and high-pressure hoses.

次に、本発明において、上記の方法で観察される極細鋼線横断面(C断面)表層のブラスまたは銅めっきの鋼線母材への食い込みにより形成される突起について規定した理由を以下に述べる。   Next, in the present invention, the reason why the projections formed by the penetration of the ultrathin steel wire cross section (C cross section) surface layer brass or copper plating into the steel wire base material observed by the above method will be described below. .

なお、極細鋼線のC断面における表層のめっきの食い込みを詳細に観察するには、サンプルの表層角部のめっき部分がダレないように研磨を行って、SEM観察用の試料を作成する必要がある。
そのための方法として、サンプルを樹脂モールドして機械研磨で行う場合に当金を使用する方法や、イオンビームエッチングによる方法(例えば、特開2009−25133号公報参照)を用いることができる。
In addition, in order to observe in detail the penetration of the surface layer plating in the C cross section of the ultrafine steel wire, it is necessary to polish so that the plating portion of the surface layer corner portion of the sample does not sag and prepare a sample for SEM observation. is there.
As a method therefor, there can be used a method of using the gold when the sample is molded with a resin and mechanical polishing, or a method using ion beam etching (see, for example, JP 2009-25133 A).

機械研磨による方法では、サンプルとなる鋼線の周囲に、鋼線と同等もしくはより硬い材料を当金として鋼線に密着するように配置して樹脂モールド中に埋め込み、鋼線の端面を当金とともに、適宜湿式でのエメリーペーパー研磨やバフ研磨等を行うようにする。
また、イオンビームエッチングによる方法では、鋼線の先端が突出するように遮蔽板を鋼線に密着させて配置し、鋼線の突出部分にイオンビームを照射して、遮蔽板から先を削り取るようにする。
In the mechanical polishing method, a steel wire that is equal to or harder than the steel wire is placed in close contact with the steel wire around the sample steel wire and embedded in a resin mold, and the end surface of the steel wire is applied to the gold wire. At the same time, appropriate emery paper polishing, buffing, and the like are performed.
In the ion beam etching method, the shield plate is placed in close contact with the steel wire so that the tip of the steel wire protrudes, and the protruding portion of the steel wire is irradiated with the ion beam to scrape off the tip of the shield plate. To.

以上の様にして観測されるめっきの食い込みによる突起は、次のように形成されると考えられる。
パテンティング時の加熱により形成される表面酸化深さの不均一、およびスケールを除去するための酸による不均一な溶解などで鋼線表面には、図4に示すように、等方的な形状の凹凸7が発生している。銅またはブラスめっき1は、最終パテンティング後にこの凹凸の上に電気的に形成されるため、湿式伸線前のめっき材表面は、図5(a)に示すようにほぼ等方的な形状の凹凸7のある表面を持っている。
Protrusions due to plating bite observed as described above are considered to be formed as follows.
As shown in FIG. 4, the surface of the steel wire has an isotropic shape due to non-uniform surface oxidation depth formed by heating during patenting and non-uniform dissolution by acid to remove scale. The unevenness 7 is generated. Since the copper or brass plating 1 is electrically formed on the irregularities after final patenting, the surface of the plating material before wet wire drawing has a substantially isotropic shape as shown in FIG. It has a surface with irregularities 7.

前述のように、中間パテンティングと酸洗を繰り返した鋼線には熱処理と酸洗により方向性の無い等方的な形状を持つ凹凸が形成されているが、その後のダイスによる伸線は鋼線表面を長手方向に伸長させるとともに、径を小さくするため、表面は周方向に圧縮される。そのため、もともと表面に形成されていた等方的な形状の凹凸は、伸線とともに長手方向に延ばされて細長い溝状の形状をなすようになる(図5(b)参照)。それと同時に鋼線と比較して柔らかいブラスまたは銅のめっきは、鋼線の深さ方向(R(半径)方向)に押し込まれる形となるため、変形の仕方によっては溝状の食い込みのなかで折れ込みが発生して、突起となるものと考えられる。   As described above, the steel wire that has been repeatedly subjected to intermediate patenting and pickling has irregularities with an isotropic shape that has no directionality due to heat treatment and pickling. In order to extend the wire surface in the longitudinal direction and reduce the diameter, the surface is compressed in the circumferential direction. Therefore, the isotropic unevenness originally formed on the surface is elongated in the longitudinal direction together with the wire drawing to form a long and narrow groove shape (see FIG. 5B). At the same time, brass or copper plating, which is softer than steel wire, is pushed into the depth direction (R (radius) direction) of the steel wire, so it can be broken in a grooved bite depending on how it is deformed. It is considered that a protrusion is generated and becomes a protrusion.

この鋼線の表面内側へ押し込まれたブラスまたは銅のめっきは、その形態によっては破壊の起点として作用する確率が高くなる。C断面表層の観察で、めっきの突起部の深さが1.0μmを超える場合、その先端を起点としてき裂が発生し、縦方向(鋼線の長手方向)に容易に伝播して鋼線の破断に至ることが多い。そのため本発明ではめっきの突起部の深さの上限を1.0μmと規定した。さらにめっき突起部の深さを0.5μm以下とすることによって、めっき突起からのき裂の発生をさらに安定的に抑制することができるため、望ましくは0.5μm以下である。   The brass or copper plating pushed into the surface of the steel wire has a high probability of acting as a starting point of fracture depending on the form. When the depth of the projection of the plating exceeds 1.0 μm in the observation of the cross-sectional surface of the C cross section, a crack is generated starting from the tip and propagates easily in the longitudinal direction (longitudinal direction of the steel wire). Often leads to breakage. Therefore, in the present invention, the upper limit of the depth of the plating protrusion is defined as 1.0 μm. Furthermore, by setting the depth of the plating protrusion to 0.5 μm or less, the generation of cracks from the plating protrusion can be more stably suppressed, so the thickness is desirably 0.5 μm or less.

なお、鋼線の横断面における表面周方向に沿って計数した銅またはブラスめっきの突起の平均個数は0.5個/μm以下が望ましい。突起状の入り込みの個数が0.5個/μmを超えて多く存在する場合、その先端を起点として鋼線内部にき裂が伝播し、鋼線の縦方向に容易に伝播して鋼線の破断に至ることがより多くなる。
なお、個数を数える際の対象とする突起は、基本となる極細鋼線C断面の外周円よりも内側に0.1μm以上鋼線母材側に突出しているものとする。
また、前述のように、鋼線横断面の表面周方向に沿って20μmの長さLについて突起の個数nを数えて、突起の平均個数をn/Lとして求める。
The average number of copper or brass plating protrusions counted along the circumferential direction of the surface of the cross section of the steel wire is preferably 0.5 / μm or less. If the number of protrusion-like intrusions exceeds 0.5 / μm, cracks propagate inside the steel wire starting from the tip and easily propagate in the longitudinal direction of the steel wire. More often leads to breakage.
In addition, the protrusion used as the object at the time of counting the number is assumed to protrude 0.1 μm or more to the steel wire base material side inside the outer peripheral circle of the basic ultra fine steel wire C cross section.
Further, as described above, the number n of protrusions is counted for a length L of 20 μm along the circumferential direction of the surface of the steel wire, and the average number of protrusions is determined as n / L.

前述のように、表面のめっきが鋼線の地鉄内部に押し込まれ、めっきの折れ込みの際に、湿式伸線後の突起内にき裂が存在する場合がある。き裂の長さが0.8μm以上であった場合には、その先端の応力集中が非常に高くなることから、その先端を起点として鋼線地鉄側にき裂が伝播し、鋼線の縦方向に容易に伝播して鋼線の破断に至ることが多い。そのため、本発明ではめっきの突起内に初めから存在する折れ込みによるき裂の長さを0.8μm以下に規定した。き裂の長さを0.3μm以下とすることによって、更に安定的に鋼線への伝播を抑制することが出来るため、より望ましくは0.3μm以下である。   As described above, the surface plating is pushed into the steel core of the steel wire, and cracks may exist in the protrusions after wet drawing when the plating is folded. When the crack length is 0.8 μm or more, the stress concentration at the tip becomes very high, so that the crack propagates to the steel wire side with the tip as the starting point. In many cases, the steel wire easily propagates in the vertical direction and breaks the steel wire. For this reason, in the present invention, the length of the crack caused by the folding existing from the beginning in the plating protrusion is defined to be 0.8 μm or less. By setting the crack length to 0.3 μm or less, propagation to the steel wire can be more stably suppressed, and therefore, it is more preferably 0.3 μm or less.

また、き裂の進展方向の鋼線の半径方向に対する角度(折れ込み角度θ)が35°未満である場合、その先端を起点として鋼線内部にき裂が伝播し、鋼線の長手方向に容易に伝播して鋼線の破断に至ることが多い。そのため、本発明ではめっきの突起中に初めから存在するき裂が鋼線の半径方向とのなす角度を35°以上と規定した。この角度を60°以上とすると、より安定的に鋼線へのき裂の伝播を抑制することが出来るため、より望ましくは60°以上である。   In addition, when the angle of the crack propagation direction with respect to the radial direction of the steel wire (folding angle θ) is less than 35 °, the crack propagates inside the steel wire starting from the tip, and in the longitudinal direction of the steel wire Often propagates easily to break the steel wire. For this reason, in the present invention, the angle formed by the crack existing from the beginning in the plating projection with the radial direction of the steel wire is defined as 35 ° or more. If this angle is set to 60 ° or more, the propagation of cracks to the steel wire can be more stably suppressed. Therefore, the angle is more preferably 60 ° or more.

次に、本発明の耐デラミネーション特性に優れた極細鋼線を製造する方法について説明する。
本発明の極細鋼線は、従来と同様に、熱間圧延後、衝風により調整冷却された直径4.0〜5.5mm程度の高炭素線材を素材として用い、それに伸線加工を行って製造している。
伸線加工における1次伸線では、加工硬化による鋼線の延性劣化に応じて、中間パテンティング、酸洗によるスケール除去を行い、目標とする引張強さに応じた線径に仕上げ、最終パテンティングを行う。最終パテンティング後、酸洗により酸化スケールの除去を行い、水溶液中で銅めっきあるいはブラスめっきを施す。ブラスめっきの場合は銅めっきの上に亜鉛めっきをさらに施して500℃程度の熱による拡散で銅と亜鉛を合金化してブラスにする。めっき処理後、湿式潤滑剤にダイスを浸漬して伸線を行い、所定の強度および線径の極細鋼線を得る。
Next, a method for producing an ultrafine steel wire excellent in delamination resistance characteristics of the present invention will be described.
The ultra fine steel wire of the present invention uses a high carbon wire with a diameter of about 4.0 to 5.5 mm, which is adjusted and cooled by blast after hot rolling, as a material, and is subjected to wire drawing as in the past. Manufacture.
In primary wire drawing, depending on the ductility deterioration of the steel wire due to work hardening, intermediate patenting and scale removal by pickling are performed to finish the wire diameter according to the target tensile strength, and the final Ting. After final patenting, the oxide scale is removed by pickling and copper plating or brass plating is performed in an aqueous solution. In the case of brass plating, zinc plating is further performed on the copper plating, and copper and zinc are alloyed by diffusion by heat of about 500 ° C. to make a brass. After the plating treatment, a die is dipped in a wet lubricant and drawn to obtain an ultrafine steel wire having a predetermined strength and wire diameter.

本発明者らは、めっきの鋼線内部への食い込みを防止して、突起部の形成及び突起部内のき裂の発生を抑制するためには、めっき前の鋼線の表面性状を平滑にし、めっきの鋼線内部への食い込みを抑制することが必要との観点から、最終パテンティング時の加熱条件とその後の酸洗条件を検討した。   In order to prevent the penetration of the plating into the steel wire and suppress the formation of the protrusion and the occurrence of cracks in the protrusion, the surface properties of the steel wire before plating are smoothed. From the viewpoint that it is necessary to suppress the penetration of the plating into the steel wire, the heating conditions at the final patenting and the subsequent pickling conditions were investigated.

その結果、該酸洗後の鋼線地鉄の表面粗さについて、鋼線の周方向に測定した表面粗さRmaxの最大値(Rmax)maxが4.5μm以下となるようにすれば、上記のような突起の要件を満たすことができることを見出した。そして表面粗さをそのようにするためには、最終パテンティングの際の再加熱時の炉内温度を800〜1050℃に、加熱時間を在炉時間で10分以下にそれぞれ制御し、最終パテンティング後の酸洗を、濃度が15〜30質量%で温度が20〜45℃の塩酸を用い、酸洗時間が120分以下の条件で行うことがよいことを見出した。   As a result, if the maximum value (Rmax) max of the surface roughness Rmax measured in the circumferential direction of the steel wire is about 4.5 μm or less, the surface roughness of the steel wire ground iron after the pickling is as described above. It was found that the requirements of protrusions such as can be satisfied. In order to make the surface roughness so, the furnace temperature at the time of reheating at the time of final patenting is controlled to 800 to 1050 ° C., and the heating time is controlled to 10 minutes or less in the in-furnace time. It has been found that the pickling after the casting may be carried out using hydrochloric acid having a concentration of 15 to 30% by mass and a temperature of 20 to 45 ° C. under a condition that the pickling time is 120 minutes or less.

ここで、最終パテンティング後酸洗して得た鋼線(パテンティング材)の本発明における表面粗さについてつぎのように定義する。
パテンティング材のC断面表層を、極細鋼線と同様の方法でSEM観察する。この表面の凹凸の観察は、C断面表面の周方向8等分位置でそれぞれ行う。各視野の基準長さを20μmとして観察を行い、その範囲でJIS B0601(2001年)に準拠して表面粗さRmax(最高と最低の差異)を測定する。8等分位置のそれぞれの視野のRmax値のうちの最大値(最大高低差)を(Rmax)maxとし、それをパテンティング材の表面粗さを評価する基準とした。
Here, the surface roughness in the present invention of the steel wire (patenting material) obtained by pickling after the final patenting is defined as follows.
The C cross-section surface layer of the patenting material is observed by SEM in the same manner as for the ultrafine steel wire. The observation of the unevenness on the surface is performed at each of the eight equally spaced positions on the surface of the C cross section. Observation is performed with the standard length of each field of view as 20 μm, and the surface roughness Rmax (the maximum and minimum difference) is measured in accordance with JIS B0601 (2001). The maximum value (maximum height difference) of the Rmax values of the respective visual fields at the eight equal positions was defined as (Rmax) max, which was used as a reference for evaluating the surface roughness of the patenting material.

次に、最終パテンティングや酸洗の条件を上記のように決めた理由について説明する。
最終パテンティングの再加熱時の炉内雰囲気温度を800℃乃至1050℃とする。その温度が800℃未満の場合、工業的に採算の取れる時間内に十分に鋼材をオーステナイト化することが出来ない。また1050℃を超える温度とした場合には、表面酸化による鋼材表面の凹凸が大きくなり、その後の湿式伸線でめっきの鋼線内部への食い込みが深くなり、鋼線へのき裂の伝播が起こりやすくなる。
Next, the reason for determining the final patenting and pickling conditions as described above will be described.
The furnace atmosphere temperature at the time of reheating the final patenting is set to 800 ° C. to 1050 ° C. When the temperature is less than 800 ° C., the steel material cannot be sufficiently austenitized within an industrially profitable time. When the temperature exceeds 1050 ° C., the unevenness of the surface of the steel material due to surface oxidation becomes large, and the subsequent wet wire drawing deepens the penetration of the plating into the steel wire, and the crack propagates to the steel wire. It tends to happen.

再加熱時の加熱時間は10分以下とする。10分を超える時間で加熱を行った場合、表面酸化による鋼材表面の凹凸が大きくなり、その後の湿式伸線でめっきの鋼線内部への食い込みが深くなり、撚り線加工時などに鋼線へのき裂の伝播が起こりやすくなる。   The heating time during reheating is 10 minutes or less. When heating is performed for more than 10 minutes, the unevenness of the surface of the steel material due to surface oxidation becomes large, and subsequent wet drawing deepens the penetration of the plating into the steel wire, and into the steel wire during stranded wire processing, etc. Propagation of cracks is likely to occur.

最終パテンティング後の酸洗に用いる酸は塩酸とする。塩酸以外の工業的に使用可能な安価な酸、例えば硫酸などを使用した場合、表面に深い腐食ピットが形成されることが多く、酸洗後の鋼線の表面粗さRmaxの最大値(Rmax)maxが4.5μmを超えることが多くなる。(Rmax)maxが4.5を超えると、その後の湿式伸線でめっきの鋼線側への食い込みが深くなり、撚り線加工時などに鋼線へのき裂の伝播が起こりやすくなる。そのため、使用する酸は塩酸に限定した。   The acid used for pickling after the final patenting is hydrochloric acid. When an inexpensive industrially usable acid other than hydrochloric acid, such as sulfuric acid, is used, deep corrosion pits are often formed on the surface, and the maximum value (Rmax) of the surface roughness Rmax of the steel wire after pickling. ) Max often exceeds 4.5 μm. When (Rmax) max exceeds 4.5, the penetration of the plating into the steel wire side becomes deeper in the subsequent wet drawing, and crack propagation to the steel wire is likely to occur during stranded wire processing. Therefore, the acid used was limited to hydrochloric acid.

酸洗における塩酸の濃度、温度について、塩酸濃度20%未満、温度を20℃未満として酸洗を行った場合、酸によるスケール溶解速度が十分ではなく、工業的に採算の取れる時間内での操業が出来ない。そのため、塩酸濃度は20%以上、かつ温度は20℃以上とした。   Regarding the concentration and temperature of hydrochloric acid in pickling, when pickling is performed at a hydrochloric acid concentration of less than 20% and at a temperature of less than 20 ° C, the scale dissolution rate by the acid is not sufficient, and the operation is within an industrially profitable time. I can't. Therefore, the hydrochloric acid concentration was set to 20% or higher, and the temperature was set to 20 ° C. or higher.

また、30%を超える塩酸濃度、45℃を超える温度で酸洗を行った場合、いずれの場合も深い腐食ピットが形成されることが多く、(Rmax)maxが4.5μmを超えることが多くなる。パテンティング材の(Rmax)maxが4.5μmを超えると、その後の湿式伸線でめっきの鋼線内部への食い込みが深くなり、より線加工時などに鋼線へのき裂の伝播が起こりやすくなる。そのため、塩酸濃度を30%以下、かつ温度を45℃以下とした。さらに、酸洗を120分を超える時間で行った場合、塩酸濃度や塩酸の温度が高すぎる場合と同様に(Rmax)maxが4.5μmを超えることが多くなるため、酸洗時間は120分以下とした。   In addition, when pickling at a hydrochloric acid concentration exceeding 30% and a temperature exceeding 45 ° C., deep corrosion pits are often formed in either case, and (Rmax) max often exceeds 4.5 μm. Become. If the (Rmax) max of the patenting material exceeds 4.5 μm, the subsequent wet drawing will deepen the penetration of the plating into the steel wire, causing crack propagation to the steel wire during wire processing. It becomes easy. Therefore, the hydrochloric acid concentration is 30% or less and the temperature is 45 ° C. or less. Furthermore, when pickling is performed for a time exceeding 120 minutes, the (Rmax) max often exceeds 4.5 μm, as in the case where the hydrochloric acid concentration and the hydrochloric acid temperature are too high. It was as follows.

湿式伸線前の銅めっきあるいはブラスめっき厚も厚い場合には突起の形成に影響する。めっき厚が1μm未満の場合、湿式伸線中に潤滑切れを起こして発熱量が高くなり、鋼線の延性が劣化する。また、めっき厚が10μmを超える場合、柔らかいめっきが不定形に鋼線側へ大きく食い込むこととなり、より線加工時などに鋼線へのき裂の伝播が起こりやすくなる。以上のことから、湿式伸線前のめっき厚みは1〜10μmとした。
なお、めっき厚みは、銅、亜鉛の電気めっき時の電流密度および通電時間でそれぞれ調整することが可能である。
If the copper plating or brass plating thickness before wet wire drawing is thick, it affects the formation of protrusions. When the plating thickness is less than 1 μm, the lubrication is lost during wet wire drawing, the heat generation amount is increased, and the ductility of the steel wire is deteriorated. Further, when the plating thickness exceeds 10 μm, the soft plating greatly bites into the steel wire side in an irregular shape, and crack propagation to the steel wire is more likely to occur during wire processing. From the above, the plating thickness before wet drawing was set to 1 to 10 μm.
The plating thickness can be adjusted by the current density and energization time during the electroplating of copper and zinc.

湿式伸線の条件について、特に特定の条件に規定するものではないが、伸線に使用するダイスのアプローチ角度が全角で6〜14°、かつ、最終パテンティング後の各段の湿式伸線の減面率が、全減面率の前半10%までが各段減面率14%乃至25%、後半の90%が各段減面率30%以下とし、最終の1〜3段のダイスで、1〜5%の減面率のダブルダイススキンパスを行うことが好ましい。   The conditions of wet drawing are not particularly specified, but the approach angle of the die used for drawing is 6 to 14 ° in all angles, and the wet drawing of each stage after the final patenting is performed. The area reduction is up to 10% in the first half of the total area reduction. Each area reduction is 14% to 25%, and the latter 90% is less than 30% in each area. It is preferable to perform a double die skin pass with a reduction in area of 1 to 5%.

湿式伸線に使用するダイスアプローチ角度が全角で6°未満の場合、ダイスと鋼線の接触長が長くなり、引き抜き力が増加するとともに摩擦により発生する熱も多くなるため、鋼線の延性の劣化につながる。また、ダイスアプローチ角度が全角で14°を超える場合、表層と中心部の加工が不均一になり鋼線の延性が劣化するとともに、中心部に鋼線の強度を超える引張力が加わり、クラックが発生し易くなる。   When the die approach angle used for wet wire drawing is less than 6 °, the contact length between the die and the steel wire becomes longer, the pulling force increases and the heat generated by friction also increases. It leads to deterioration. In addition, when the die approach angle exceeds 14 ° in all angles, the surface layer and the center portion are not processed uniformly, and the ductility of the steel wire is deteriorated. It tends to occur.

湿式伸線各段の減面率について、湿式伸線の全減面率の前半10%までが、各段減面率14%未満、または25%を超えるものであった場合、素材となる高炭素鋼線材は十分に長手方向に伸長された組織ではないため、鋼線中心部にクラックを生じやすく、鋼線の延性を悪化させる。
また、全減面率の残りの90%の各段減面率について、各段減面率が30%を超える場合、表層と中心部の塑性加工が不均一となり、表面に引っ張り方向の大きな残留応力が発生し、鋼線の延性を悪化させる。
Regarding the area reduction rate of each stage of wet wire drawing, if the first 10% of the total area reduction area of wet wire drawing is less than 14% or more than 25% of each area reduction area, it will be a high material. Since the carbon steel wire is not sufficiently stretched in the longitudinal direction, cracks are likely to occur in the central portion of the steel wire, and the ductility of the steel wire is deteriorated.
In addition, for each step reduction rate of the remaining 90% of the total area reduction rate, when each step reduction rate exceeds 30%, the plastic processing of the surface layer and the central portion becomes uneven, and a large residual in the tensile direction remains on the surface. Stress is generated and the ductility of the steel wire is deteriorated.

最後に、伸線最終の1〜3段のダイスでダブルダイススキンパスを行うが、伸線最終段で1%未満また5%を超えるダブルダイススキンパスを行っても、前段までに発生した大きな引っ張り方向の残留応力を緩和することはできない。   Finally, a double die skin pass is performed with the final 1-3 stages of wire drawing, but even if a double die skin pass of less than 1% or more than 5% is performed at the final wire drawing stage, a large pulling direction has occurred up to the previous stage. The residual stress cannot be relaxed.

本発明は、以上のように構成されるものであるが、以下にその実施例を示す。なお、この実施例は、本発明の実施可能性や効果を具体的に説明するための一例であり、本発明をこれに限定するものではない。   The present invention is configured as described above, and examples thereof will be shown below. In addition, this Example is an example for demonstrating the feasibility and effect of this invention concretely, This invention is not limited to this.

極細鋼線用の素材として、A(JIS SWRA72)、B(SWRA82)、およびC量を増量したC(92C材)の5.5φの熱間圧延線材を素材として用いた。素材の鋼成分(なお、残部はFe及び不可避的不純物である。)を表1に示す。
まず、熱間圧延線材のミルスケールを塩酸により除去後、潤滑剤下地被膜処理を行った。パテンティング前の乾式伸線はアプローチ角度が全角で14°、各段減面率が20%のダイススケジュールで、50m/minの伸線速度で行った。潤滑剤には、ステアリン酸カルシウム、ステアリン酸ナトリウムなどの金属石鹸を主体としたものを用いた。伸線の際には、巻き取りのドラムおよびダイスボックスを循環水により冷却し、線温が100℃を超えないように行った。
As the material for the ultrafine steel wire, A (JIS SWRA72), B (SWRA82), and C (92C material) with increased C content were used as the material. Table 1 shows the steel components of the material (the balance is Fe and inevitable impurities).
First, after removing the mill scale of the hot-rolled wire with hydrochloric acid, the lubricant undercoating was performed. Dry wire drawing before patenting was performed at a drawing speed of 50 m / min using a die schedule with an approach angle of 14 ° in full angle and a step reduction rate of 20%. A lubricant mainly composed of metal soap such as calcium stearate and sodium stearate was used. At the time of wire drawing, the winding drum and the die box were cooled with circulating water so that the wire temperature did not exceed 100 ° C.

ついで、加熱温度、加熱時間を表2に示すように変化させてパテンティングを行い、酸洗した後にめっきを行った。酸洗は、塩酸または硫酸を用いて表2に記載の条件で行い、酸洗後の鋼線の表面粗さRmaxを周方向8等分位置で長さ20μmの範囲で測定し、その結果から最大値を(Rmax)maxとして求めた。なお、表面粗さRmaxは、JIS B0601(2001年)に準拠して求めた。   Subsequently, the heating temperature and the heating time were changed as shown in Table 2 to perform patenting, and after pickling, plating was performed. Pickling is performed using hydrochloric acid or sulfuric acid under the conditions shown in Table 2, and the surface roughness Rmax of the steel wire after pickling is measured in the range of 20 μm in length in the circumferential direction, and the result is as follows. The maximum value was determined as (Rmax) max. The surface roughness Rmax was determined according to JIS B0601 (2001).

めっきはいずれも湿式で行い、始めにCuめっき、次にZnめっきを行った。めっき厚みは重量比でCu:Znがおよそ6:3となるように電流密度を設定した。CuとZnのめっき後、ライン上で誘導加熱を行い、500℃×1secの拡散熱処理を行い、ブラス化を行い、表面の酸化被膜を硝酸で除去した。
めっき後の湿式伸線は、ダイスを水中に固体粉末の潤滑剤を界面活性剤で分散させた潤滑剤中に浸漬した状態で行った。すべての段でダイスアプローチ角度は全角で14°、各段減面率は全段20%のものを用いた。これにより、0.2〜0.35mm径の極細鋼線を得た。
All plating was performed wet, first Cu plating and then Zn plating. The current density was set so that the plating thickness was approximately 6: 3 Cu: Zn by weight. After plating Cu and Zn, induction heating was performed on the line, diffusion heat treatment at 500 ° C. × 1 sec was performed, brassing was performed, and the oxide film on the surface was removed with nitric acid.
Wet wire drawing after plating was performed in a state where the die was immersed in a lubricant in which a solid powder lubricant was dispersed with a surfactant in water. In all steps, the die approach angle was 14 ° in all angles, and each step area reduction rate was 20% in all steps. Thereby, an ultrafine steel wire having a diameter of 0.2 to 0.35 mm was obtained.

得られた各極細鋼線からサンプルを切り出し、その引張強度を測定し、耐デラミネーション性の評価試験を行った。その評価は、得られたトルクカーブを用いて前述のように行った。
また、別のサンプルから、C断面の観察用試料を作成した。試料の端面は、イオンビームエッチングによる方法により調整した。
各試料の端面の表面周方向に沿って長さL=20μmの範囲についてSEM観察して、突起の個数nを数えて、突起の平均個数n/L(/μm)を求めるとともに、突起の深さを測定し、さらに、突起内にき裂が存在する場合には、そのき裂の長さ(μm)及びき裂の折れ込み角度(°)を測定した。突起の深さや突起長さは最大のものの長さを示した。また、き裂の折れ込み角度は、き裂の中で最少のものを示した。
得られた測定結果を表2に示す。
A sample was cut out from each obtained ultrafine steel wire, its tensile strength was measured, and an evaluation test for delamination resistance was performed. The evaluation was performed as described above using the obtained torque curve.
Moreover, the sample for observation of C cross section was created from another sample. The end face of the sample was adjusted by a method using ion beam etching.
SEM observation of a range of length L = 20 μm along the surface circumferential direction of the end face of each sample, counting the number n of protrusions, obtaining the average number n / L (/ μm) of protrusions, and the depth of the protrusions Further, when a crack was present in the protrusion, the length of the crack (μm) and the crack folding angle (°) were measured. The depth of protrusion and the length of protrusion showed the maximum length. The crack folding angle was the smallest among the cracks.
The obtained measurement results are shown in Table 2.

本発明例1〜9は、本発明で規定する製造条件をすべて満足しているために、最終パテンティング・酸洗後の表面粗さRmaxの最大値(Rmax)maxが4.5μm以下となった。そのため、湿式伸線後の極細鋼線表面のめっきの突起深さ、および突起中のき裂の長さ、角度、頻度が本発明で規定する条件を満たすことが出来、耐デラミネーション特性が優れていた。   Since Examples 1 to 9 of the present invention satisfy all the production conditions specified in the present invention, the maximum value (Rmax) max of the surface roughness Rmax after final patenting and pickling is 4.5 μm or less. It was. Therefore, the depth of plating on the surface of ultra fine steel wire after wet drawing, and the length, angle, and frequency of cracks in the projection can satisfy the conditions specified in the present invention, and the delamination resistance is excellent. It was.

比較例10は、加熱時の雰囲気温度が高く、パテンティング後のスケール除去を硫酸で行ったために、また、パテンティング後の(Rmax)maxが4.5μmを超え、従って湿式伸線後の極細鋼線の表面性状が本発明で規定する条件を満たさなくなるため、耐デラミネーション特性が劣っていた。   In Comparative Example 10, the atmospheric temperature during heating was high, and scale removal after patenting was performed with sulfuric acid, and (Rmax) max after patenting exceeded 4.5 μm. Since the surface properties of the steel wire do not satisfy the conditions specified in the present invention, the delamination resistance characteristics were inferior.

比較例11は、加熱時の雰囲気温度が高く、パテンティング後のスケール除去を硫酸で、かつ長時間をかけて行ったため、パテンティング後の(Rmax)maxが4.5μmを超え、従って湿式伸線後の極細鋼線の表面性状が本発明で規定する条件を満たさなくなるため、耐デラミネーション特性が劣っていた。   In Comparative Example 11, the atmospheric temperature during heating was high, and scale removal after patenting was performed using sulfuric acid and over a long period of time. Therefore, (Rmax) max after patenting exceeded 4.5 μm, and thus wet stretching was performed. Since the surface properties of the ultra fine steel wire after the wire do not satisfy the conditions defined in the present invention, the delamination resistance property was inferior.

比較例12、14、15、16は、加熱時間が長かったため、表面酸化による鋼材の凹凸が大きく、そのため、パテンティング後の(Rmax)maxが4.5μmを超え、従って湿式伸線後の極細鋼線の表面性状が本発明で規定する条件を満たさなくなるため、耐デラミネーション特性が劣っていた。   In Comparative Examples 12, 14, 15, and 16, since the heating time was long, the unevenness of the steel material due to surface oxidation was large. Therefore, the (Rmax) max after patenting exceeded 4.5 μm, and therefore, the fineness after wet drawing was extremely fine. Since the surface properties of the steel wire do not satisfy the conditions specified in the present invention, the delamination resistance characteristics were inferior.

比較例13は、加熱時の雰囲気温度が高かったため、パテンティング後の(Rmax)maxが4.5μmを超え、従って湿式伸線後の極細鋼線の表面性状が本発明で規定する条件を満たさなくなるため、耐デラミネーション特性が劣っていた。   In Comparative Example 13, since the atmospheric temperature during heating was high, (Rmax) max after patenting exceeded 4.5 μm, and therefore the surface properties of the ultrafine steel wire after wet drawing satisfied the conditions specified in the present invention. As a result, the delamination resistance was inferior.

Figure 2013081982
Figure 2013081982

Figure 2013081982
Figure 2013081982

1 極細鋼線表面のめっきの突起以外の部分
2 極細鋼線の母材部分
3 めっきが鋼線母材部分に食い込んだことによるめっきの突起
4 突起内に存在するき裂
10 極細鋼線全体
20 耐デラミネーション性の評価試験装置
θ き裂の進展方向と極細鋼線横断面の半径方向とのなす角
DESCRIPTION OF SYMBOLS 1 Parts other than the projection of plating on the surface of an ultra fine steel wire 2 Base material part of an ultra fine steel wire 3 Protrusion of plating due to the plating biting into the steel wire base material part 4 Crack existing in the projection 10 The entire ultra fine steel wire 20 Delamination resistance evaluation test equipment θ Angle formed by crack propagation direction and radial direction of ultra fine steel wire cross section

Claims (3)

C:0.75〜1.10%,Si:0.5〜2.0%,Mn:0.2〜2.0%を含有し、パーライト組織を有する鋼線材を冷間伸線加工して得られた、引張強度が3000MPa以上であり、線径が50〜380μmの円形断面を有する極細鋼線であって、
該鋼線の表面に銅めっきまたはブラスめっきを有し、極細鋼線の横断面における鋼線母材と前記めっきの境界線が、基本となる極細鋼線横断面の外周円よりも内側に突起状に入り込んでおり、それによって形成されためっきの突起の最大深さが1.0μm以下であり、前記突起内に存在するき裂の最大長さが0.8μm以下であるとともに前記き裂の進展方向と極細鋼線横断面の半径方向とのなす角が35°以上であることを特徴とする耐デラミネーション特性に優れた極細鋼線。
C: 0.75 to 1.10%, Si: 0.5 to 2.0%, Mn: 0.2 to 2.0%, and cold drawing a steel wire having a pearlite structure The obtained ultra-thin steel wire having a circular cross section with a tensile strength of 3000 MPa or more and a wire diameter of 50 to 380 μm,
The surface of the steel wire has copper plating or brass plating, and the boundary between the steel wire base material and the plating in the cross section of the ultra fine steel wire protrudes inward from the outer circumference circle of the basic ultra fine steel wire cross section. The maximum depth of the plating protrusion formed thereby is 1.0 μm or less, the maximum length of the crack existing in the protrusion is 0.8 μm or less, and An ultra fine steel wire with excellent delamination resistance, characterized in that the angle formed between the direction of progress and the radial direction of the cross section of the ultra fine steel wire is 35 ° or more.
請求項1に記載の極細鋼線において、該鋼線における横断面表面の周方向に沿って存在する前記突起の単位周長あたりの平均個数が、0.5個/μm以下であることを特徴とする伸線パーライト極細鋼線。   The ultra fine steel wire according to claim 1, wherein an average number of the protrusions per unit circumferential length existing along the circumferential direction of the cross-sectional surface of the steel wire is 0.5 piece / μm or less. Wire drawing perlite extra fine steel wire. C:0.75〜1.10%,Si:0.5〜2.0%,Mn:0.2〜2.0%を含有し、パーライト組織を有する鋼線材を一次伸線し、最終パテンティングし、酸洗した後、鋼線の表面に銅めっきまたはブラスめっきを施し、湿式伸線を行う請求項1または2に記載の耐デラミネーション特性に優れた極細鋼線の製造方法において、
前記最終パテンティングの際の再加熱時の炉内温度を800〜1050℃に、加熱時間を在炉時間で10分以下にそれぞれ制御し、最終パテンティング後の酸洗を、濃度が15〜30質量%で温度が20〜45℃の塩酸を用い、酸洗時間が120分以下の条件で行って、該酸洗後の鋼線の表面粗さRmaxの最大値(Rmax)maxが4.5μm以下となるようにし、湿式伸線前の銅またはブラスめっき厚を1〜10μmとすることを特徴とする極細鋼線の製造方法。
C: 0.75 to 1.10%, Si: 0.5 to 2.0%, Mn: 0.2 to 2.0%, and a steel wire having a pearlite structure is first drawn, and the final pattern In the method for producing an ultra fine steel wire excellent in delamination resistance according to claim 1 or 2, wherein the surface of the steel wire is subjected to copper plating or brass plating, and wet wire drawing is performed after pickling and pickling.
The temperature in the furnace at the time of reheating in the final patenting is controlled to 800 to 1050 ° C., the heating time is controlled to 10 minutes or less in the in-furnace time, and the pickling after the final patenting is performed at a concentration of 15 to 30 The maximum value (Rmax) max of the surface roughness Rmax of the steel wire after the pickling is 4.5 μm using hydrochloric acid having a mass% of 20 to 45 ° C. and a pickling time of 120 minutes or less. A method for producing an ultra fine steel wire, characterized in that the thickness of copper or brass plating before wet drawing is 1 to 10 μm.
JP2011222992A 2011-10-07 2011-10-07 Ultra fine steel wire with excellent delamination resistance and its manufacturing method Active JP5879897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011222992A JP5879897B2 (en) 2011-10-07 2011-10-07 Ultra fine steel wire with excellent delamination resistance and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011222992A JP5879897B2 (en) 2011-10-07 2011-10-07 Ultra fine steel wire with excellent delamination resistance and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2013081982A true JP2013081982A (en) 2013-05-09
JP5879897B2 JP5879897B2 (en) 2016-03-08

Family

ID=48527748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011222992A Active JP5879897B2 (en) 2011-10-07 2011-10-07 Ultra fine steel wire with excellent delamination resistance and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5879897B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193896A (en) * 2014-03-31 2015-11-05 新日鐵住金株式会社 Method for manufacturing extra fine brass plating steel wire
CN105316573A (en) * 2014-06-23 2016-02-10 鞍钢股份有限公司 80-grade tire cord steel wire rod being suitable for acidic-pickling descaling and production method of same
WO2019150667A1 (en) * 2018-02-01 2019-08-08 住友電気工業株式会社 Copper-coated steel wire and canted coil spring
CN110954382A (en) * 2019-12-03 2020-04-03 镇江耐丝新型材料有限公司 Preparation method of solid-liquid multiphase metallographic sample with superfine steel wire cross section
US11090978B2 (en) * 2018-08-31 2021-08-17 Panasonic Intellectual Property Management Co., Ltd. Tungsten wire and elastic component
US11674193B2 (en) 2017-05-25 2023-06-13 Sumitomo Electric Industries, Ltd. Canted coil spring and connector

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0199714A (en) * 1987-05-20 1989-04-18 Bekaert Sa:Nv Manufacture of steel wire for reinforcing rubber product and steel wire thereof
JPH05171276A (en) * 1991-10-11 1993-07-09 Nippon Steel Corp Production of carcass cord for passenger car tire
JPH06218574A (en) * 1992-10-01 1994-08-09 Kawasaki Steel Corp Low-spatter wire and its production
JPH06293938A (en) * 1993-04-08 1994-10-21 Nippon Steel Corp High strength extra fine steel wire excellent in stranding property and its production
JPH09141487A (en) * 1995-11-24 1997-06-03 Kawasaki Steel Corp Low spatter steel wire for welding and its manufacture
JPH10211516A (en) * 1997-01-27 1998-08-11 Nippon Steel Corp Extra fine steel wire favorable for fatigue characteristic and manufacture therefor
US5873961A (en) * 1996-09-16 1999-02-23 The Goodyear Tire & Rubber Company Process for producing patented steel wire
JP2002001419A (en) * 2000-06-19 2002-01-08 Nippon Steel Corp High-speed wire drawing method for plated steel wire
US20040118486A1 (en) * 2002-12-18 2004-06-24 Zelin Michael Gregory High strength, high carbon steel wire
JP2005054260A (en) * 2003-08-07 2005-03-03 Kobe Steel Ltd Method of producing extra fine steel wire for steel cord, and steel cord
JP2009091625A (en) * 2007-10-09 2009-04-30 Bridgestone Corp Method for manufacturing carbon steel wire

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0199714A (en) * 1987-05-20 1989-04-18 Bekaert Sa:Nv Manufacture of steel wire for reinforcing rubber product and steel wire thereof
JPH05171276A (en) * 1991-10-11 1993-07-09 Nippon Steel Corp Production of carcass cord for passenger car tire
JPH06218574A (en) * 1992-10-01 1994-08-09 Kawasaki Steel Corp Low-spatter wire and its production
JPH06293938A (en) * 1993-04-08 1994-10-21 Nippon Steel Corp High strength extra fine steel wire excellent in stranding property and its production
JPH09141487A (en) * 1995-11-24 1997-06-03 Kawasaki Steel Corp Low spatter steel wire for welding and its manufacture
US5873961A (en) * 1996-09-16 1999-02-23 The Goodyear Tire & Rubber Company Process for producing patented steel wire
JPH10211516A (en) * 1997-01-27 1998-08-11 Nippon Steel Corp Extra fine steel wire favorable for fatigue characteristic and manufacture therefor
JP2002001419A (en) * 2000-06-19 2002-01-08 Nippon Steel Corp High-speed wire drawing method for plated steel wire
US20040118486A1 (en) * 2002-12-18 2004-06-24 Zelin Michael Gregory High strength, high carbon steel wire
JP2005054260A (en) * 2003-08-07 2005-03-03 Kobe Steel Ltd Method of producing extra fine steel wire for steel cord, and steel cord
JP2009091625A (en) * 2007-10-09 2009-04-30 Bridgestone Corp Method for manufacturing carbon steel wire

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193896A (en) * 2014-03-31 2015-11-05 新日鐵住金株式会社 Method for manufacturing extra fine brass plating steel wire
CN105316573A (en) * 2014-06-23 2016-02-10 鞍钢股份有限公司 80-grade tire cord steel wire rod being suitable for acidic-pickling descaling and production method of same
US11674193B2 (en) 2017-05-25 2023-06-13 Sumitomo Electric Industries, Ltd. Canted coil spring and connector
WO2019150667A1 (en) * 2018-02-01 2019-08-08 住友電気工業株式会社 Copper-coated steel wire and canted coil spring
JPWO2019150667A1 (en) * 2018-02-01 2021-03-04 住友電気工業株式会社 Copper coated steel wire and diagonally wound spring
US11459644B2 (en) 2018-02-01 2022-10-04 Sumitomo Electric Industries, Ltd. Copper-coated steel wire and canted coil spring
US11090978B2 (en) * 2018-08-31 2021-08-17 Panasonic Intellectual Property Management Co., Ltd. Tungsten wire and elastic component
CN110954382A (en) * 2019-12-03 2020-04-03 镇江耐丝新型材料有限公司 Preparation method of solid-liquid multiphase metallographic sample with superfine steel wire cross section

Also Published As

Publication number Publication date
JP5879897B2 (en) 2016-03-08

Similar Documents

Publication Publication Date Title
JP5157230B2 (en) High carbon steel wire rod with excellent wire drawing workability
JP5939359B2 (en) High carbon steel wire and method for producing the same
JP5879897B2 (en) Ultra fine steel wire with excellent delamination resistance and its manufacturing method
JP5154694B2 (en) High carbon steel wire rod with excellent workability
JP6354481B2 (en) Steel wire and method for manufacturing steel wire
JP5201009B2 (en) High-strength extra-fine steel wire, high-strength extra-fine steel wire, and manufacturing methods thereof
JPH05200428A (en) Method and device for wire drawing
JP4980172B2 (en) Manufacturing method of high-strength ultrafine steel wire with excellent balance of strength and ductility
JP2007167878A (en) High carbon steel wire production method
JP5945196B2 (en) High strength steel wire
JP4377715B2 (en) High strength PC steel wire with excellent twisting characteristics
JP2005054260A (en) Method of producing extra fine steel wire for steel cord, and steel cord
JP3938240B2 (en) Steel wire and manufacturing method thereof
JP6053031B2 (en) High carbon steel wire rod excellent in the machinability on the rolling scale and its manufacturing method
JP2009138251A (en) Steel wire with excellent wire drawability
JP6558255B2 (en) High-strength ultrafine steel wire and method for producing the same
JP6614005B2 (en) Hot rolled wire rod for high-strength steel wire and method for producing the same
JP5573223B2 (en) High-strength ultrafine steel wire excellent in breakage resistance and method for producing the same
JP2003334606A (en) Production method for high strength extra-fine steel wire
JP6724435B2 (en) Hot rolled wire rod and method for manufacturing the same
JP2005163082A (en) High carbon steel wire rod having excellent longitudinal crack resistance
JP6736951B2 (en) Steel wire and method for manufacturing the steel wire
JP6922726B2 (en) Hot rolled wire
JP2015101779A (en) Wire material for extra fine steel wire and manufacturing method therefor
JP6736950B2 (en) Steel wire and method for manufacturing the steel wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R151 Written notification of patent or utility model registration

Ref document number: 5879897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350