EP3359703A1 - An elongated steel wire with a metal coating for corrosion resistance - Google Patents

An elongated steel wire with a metal coating for corrosion resistance

Info

Publication number
EP3359703A1
EP3359703A1 EP15905676.1A EP15905676A EP3359703A1 EP 3359703 A1 EP3359703 A1 EP 3359703A1 EP 15905676 A EP15905676 A EP 15905676A EP 3359703 A1 EP3359703 A1 EP 3359703A1
Authority
EP
European Patent Office
Prior art keywords
steel wire
metal coating
metal
elongated steel
elongated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15905676.1A
Other languages
German (de)
French (fr)
Other versions
EP3359703A4 (en
Inventor
Xiaojiang Liu
Li Shen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bekaert NV SA
Original Assignee
Bekaert NV SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bekaert NV SA filed Critical Bekaert NV SA
Publication of EP3359703A1 publication Critical patent/EP3359703A1/en
Publication of EP3359703A4 publication Critical patent/EP3359703A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/185Tubes; Wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/38Wires; Tubes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to an elongated steel wire with a metal coating for corrosion resistance, and its manufacturing method.
  • the invention relates to the application of an elongated steel wire with a metal coating for corrosion resistance as carding wire or brush wire.
  • the invention also relates to a flexible clothing, fixed carding flat or wire brush comprising an elongated steel wire with a metal coating for corrosion resistance.
  • carding wires In general, there are two types of so-called carding wires: steel wires for so-called flexible tops or flexible clothing and steel wires to be worked into toothed wires for fixed carding flats.
  • a carding process is for arranging the fibers in a uniform state, i.e. uniform density and uniform thickness, and removing impurities. This can be done by means of flexible clothings or by means of fixed flats.
  • Flexible clothings comprise small hooks which are set into resilient, multi-ply fabric layers and are made of steel wires bent into a U shape and provided with a knee.
  • the flexible clothings bend when subjected to loading and return to thejr original position when no longer loaded.
  • the steel wires for the flexible clothings are usually very hard and are bare steel filament without any coating.
  • the steel wires either have a tempered martensitic structure over their whole volume and length or they have been locally hardened at their tops so that tempered martensite only present at the top.
  • toothed carding wire is installed in the fixed flats, also has a hardened structure, either locally or over its volume.
  • Both the toothed carding wire and the steel wire for flexible clothing is not easy to be corroded during the process of carding the fibers, as the friction between the wire and the fibers help to prevent the corrosion of the wire.
  • these steel wires may get sometimes corroded during the transport or installation.
  • the iron oxides on the sufface of the steel wire present hard particles, as a consequence of which a corroded carding wire may cause the failure of the carding wire during carding process.
  • one solution is to provide a carding wire with zinc or zinc alloy coating which can be done by means of a hot dip process
  • passing the steel wires through a hot dip bath means exposing the steel wire to temperatures above the melt temperature of zinc or zinc alloy. This heat treatment is not desired as it may soften or even destroy the tempered martensitic structure (to be sorbite or tempered sorbite structure) .
  • the present carding wire either is a steel filament with tempered martensite structure without metal coating or a steel filament with a metal coating and sorbite and tempered sorbite structure.
  • the primary object of the invention is to provide an elongated steel wire having high corrosion resistance without above drawbacks.
  • a second object of the invention is to provide an elongated steel wire having a high corrosion resistance in an environment friendly way but without destroying the metal structure.
  • a third object of the invention is to provide a method of manufacturing the elongated steel wire having high corrosion resistance without destroying the metal structure of the steel wire.
  • a fourth object of the invention is to provide a flexible clothing or fixed flats with high corrosion resistance and proper metal structure.
  • a fifth object of the invention is to provide a wire brush with high corrosion resistance and proper metal structure.
  • an elongated steel wire comprises a steel filament and a metal coating for corrosion resistance upon the steel filament, the steel filament has a microstructure comprising more than 96%tempered martensite.
  • the invention provides a new solution of elongated steel wire having good performance of corrosion resistance, abrasion resistance, strength and hardness, and the invention provides an environment friend product.
  • the application of the metal coating on the elongated steel wire doesn′t change the metal structure of the steel filament.
  • the elongated steel wire with a metal coating for corrosion resistance and high content of tempered martensite is achieved by applying the metal coating by an environment f riendly way by avoiding hot dip, without waste acid, waste gas and heavy metal.
  • the steel wire with a metal coating made by conventional technology of hot dip has a microstructure of more sorbite and tempered sorbite, as the high temperature of hot dip process makes the elongated steel wire going through an unwanted patenting process, and this patenting process makes the metal structure of steel wires being changed to be sorbite and tempered sorbite.
  • the present invention is different, the coating upon the elongated steel wire is done with a very low temperature, and this low temperature does not change the metal structure of steel filament, so the metal structure of the elongated steel wire is kept to be of more than 96%tempered martensite thereby to obtain high hardness, strength and abrasion resistance which are benefit for the further application such as carding wire or brush wire.
  • the invention elongated steel wire no waste acid, waste gas or heavy metal is generated. Therefore, the invention elongated steel wire is an environment friendly product, and it has good corrosion resistance, hardness, abrasion resistance and strength.
  • the invention provides an elongated steel wire with good corosion resistance while keeping the hardness, abrasion resistance and strength and reducing environment pollution.
  • the invention elongated steel wire provides a new solution with less environment pollution and higher hardness, abrasion resistance and strength. Compared with the conventional steel wire without metal coating, the invention elongated steel wire has better corrosion resistance. Particular for the application of carding wire, the invention metal coating can help to resist the corrosion during the transport and the installation of the carding wire before the carding process.
  • the steel filament has a microstructure comprising more than 99%tempered martensite, or even less than or equal to 100%tempered martensite.
  • Such elongated steel filament has a higher strength, abrasion resistance and hardness, and it is more suitable for the application of flexible clothing, fixed flats and wire brush.
  • the metal coating for corrosion resistance is for improving the performance of corrosion resistance of the elongated steel wire.
  • the metal coating could be any one of the existing metal coating which can prevent the corrosion of the steel wire.
  • the metal coating comprises one or more element selected from the group consisting of aluminium, zinc and zinc alloy. The different metal elements of the metal coating are not alloyed with each other, instead, they are separately presenting in the coating.
  • the metal element in the metal coating is in the form of flakes and/or particles which are observed in microstructure.
  • “Flake” means the metal presents a laminar-like shape.
  • the flakes and/or particles of metal, preferably zinc and aluminium, form a closed layer to prevent the corrosion of steel filament.
  • the closed layer of metal coating helps to prevent the corrosion of the elongated steel wire.
  • the metal coating provides a corrosion resistance enough for preventing the corrosion during the transport and the process of making the flexible cloth or fixed flat.
  • the metal element of the metal coating and Fe of the steel wire are not alloyed. This is different from the metal coating made by conventional hot dip method. Even though there is no alloy generated in the boundary of the metal coating and the surface of the steel filament, the adhesion between the metal coating and the steel filament is good and acceptable. Therefore the elongated steel filament is available for the end user ( “for the end user” means no heavy deformation will be applied on the elongated steel wire anymore and the mechanical property of elongated steel wire won’t be changed very much) , even if the elongated steel wire may be cut or top grinded during the application such as carding wire or brush wire.
  • the metal coating is a coating comprising zinc and aluminium, and both zinc and aluminium are in the form of flakes and/or particles which are observed in microstructure.
  • the weight ratio of zinc to aluminium ranges from 0.6 to 160. More preferably, the weight ratio of zinc to aluminium ranges from 3 to 50. In the preferable range, the metal coating has better performance of corrosion resistance and better adhesion with the steel filament.
  • the thickness of the metal coating depends on the requirement of the corrosion resistance of the elongated steel wire. The thicker the metal coating, the better the corrosion resistance, but the higher the production cost. Preferablv, the metal coating has a thickness ranging from 0.5 ⁇ m to 50 ⁇ m. More preferablv, the metal coating has a thickness ranging from 0.8 ⁇ m to 5 ⁇ m.
  • the steel filament for the elongated steel wire is carbon steel filament with a certain strength.
  • the carbon content of the steel filament is preferably higher than 0.20%by weight, more preferably ranging from 0.50%to 1.2%, most preferably ranging from 0.6%to 1.1%. The higher the carbon content, the higher the tensile strength.
  • the steel filament comprises one or more other elements, for example, silicon, preferably ranging from 0.10%to 2.5%, more preferably ranging from 0.15 to 1.60%;manganese, preferably ranging from 0.10%to 2.0%, more preferably ranging from 0.50 to 0.90%; chromium, preferably ranging from 0.0%to 2.0%, more preferably ranging from 0.10%to 1.50%; vanadium, preferably ranging from 0.0%to 2.0%, more preferably ranging from 0.05%to 0.60%; tungsten, preferably ranging from 0.0%to 1.5%, more preferably ranging from 0.1%to 0.70%.
  • silicon preferably ranging from 0.10%to 2.5%, more preferably ranging from 0.15 to 1.60%
  • manganese preferably ranging from 0.10%to 2.0%, more preferably ranging from 0.50 to 0.90%
  • chromium preferably ranging from 0.0%to 2.0%, more preferably ranging from 0.10%to 1.50%
  • vanadium preferably ranging from
  • the steel filament of the elongated steel wire has any one of existing cross-sections, for example, round, triangle, oval or flat.
  • the cross-section of the steel filament may have slight convex or concave curve caused by the manufacturing process.
  • steel filament has an equivalent diameter ranging from 0.2mm to 6.0mm, more preferably ranging from 0.2mm to 0.8mm.
  • the equivalent diameter is its diameter measured by micrometer; for other shaped steel filament, the equivalent diameter is the diameter of a circle of equivalent cross-sectional area.
  • a method of making an elongated steel wire is provided.
  • This method is a continuous process which is very suitable for coating the elongated steel filament which is thin and very long, it comprises:
  • the heating temperature in third step is 150-300°C.
  • the heating in third step is done with a time ranging from 2 to 8 seconds.
  • the elongated steel wire obtained by the above method has a microstructure comp rising more than 96%tempered martensite and a metal coating for corrosion resistance, and the metal coating has good adhesion with the surface of the steel filament.
  • the method doesn’t use acid and heavy metal, so it doesn’t generate waste acid, waste gas and heavy metal, and it is environmental friendly. Furthermore this method is a continuous process, and it is fit for the thin and long steel filament.
  • this coating process is done with a low temperature, the metal structure won’t be changed obviously (the metal structure of the oil quenched andtempered steel filament has a metal structure of more than 96%tempered martensite, the metal coated elongated steel wire still has a metal structure of more than 96%tempered martensite) ; and thereby the mechanical properties of the steel filament won’t be changed obviously, i.e. the strength, abrasion resistance and hardness of the metal coated elongated steel wire are almost the same as the original oil quenched and tempered steel filament.
  • the metal coating obtained by the above method doesn′t generate any alloy in the boundary between the metal coating and the surface of the steel filament, and the metal in the metal coating is in the form of flakes and/or particles observed in microstructure. This is completely different from a metal coating obtained by conventional hot dip process.
  • the method further comprises a thickness control step between second step and third step.
  • the thickness control step is to control the thickness of the metal coating and make the thickness of the metal coating being uniform, and it is done by leading the oil quenched and tempered steel filament through a blowing device or a wiping device.
  • the thickness control step can be done in horizontal direction or vertical direction.
  • the oil quenched and tempered steel filament is preferably to be cleaned before being coated (the second step) .
  • the cleaning ofthe oil quenched and tempered steel filament makes the metal coating being easier adhering on.
  • the cleaning process can be any one of existing cleaning method.
  • the above-mentioned organic solvent is a carrier of metal particles to keep the metal particles in the liquid, and itis volatilized after the third step, namely the short heating step.
  • the organic solvent could be any one of existing organic solvent for carrying the metal particles.
  • the organic solvent is hexyl propionate or propyl acetate.
  • the metalbath may comprise other additives to contribute to the coating process.
  • the invention elongated steel wire has many applications, and it can be applied in any field which requires the final steel wire has a certain corrosion resistance performance, such as carding wire,brush wire and control cable wire.
  • a fixed flat with toothed steel wire comprises an elongated steel wire, the elongated steel wire comprises a steel filament and a metal coating for corrosion resistance upon the steel filament, the steel filament has a microstructure comprising more than 96%tempered martensite.
  • the steel filament has a microstructure comprising more than 99%tempered martensite.
  • the metal coating is a coating comprising zinc and aluminium, both zinc and aluminium are in the form of flakes and/or particles observed in microstructure.
  • the fixed flat is an environment friend product, as its manufacturing method doesn′t generate waste acid, waste gas and heavy metal.
  • a flexible clothing comprises small hooks or needles and resilient, multi-ply fab ric layers, the hooks or needles are set into the fabric layers, the hooks or needles are made of elongated steel wires.
  • the elongated steel wire comprises a steel filament and a metal coating for corrosion resistance upon the steel filament, the steel filament has a microstructure comprising more than 96%tempered martensite.
  • the steelfilament has a microstructure comprising more than 99%tempered martensite.
  • the metal coating is a coating comprising zinc and aluminium, both zinc and aluminium are in the form of flakes and/or particles observed in microstructure.
  • the top of the hooks or needles may be grinded, thereby the metal coating are removed, however, this is only occurred in the top end of the hooks or needles.
  • a wire brush comprises the wires and a holder, the wires are fixed on the holder, the wires are made of elongated steel wires, the elongated steel wire comprises a steel filament and a metal coating for corrosion resistance upon the steel filament, the steel filament has a microstructure comprising more than 96%tempered martensite.
  • the steel filament has a microstructure comprising more than 99%tempered martensite.
  • the metal coating is a coating comprising zinc and aluminium, both zinc and aluminium are in the form of flakes and/or particles observed in microstructure.
  • the wire brush is an environment friend producf, as its manufacturing method doesn′t generate waste acid, waste gas and heavy metal.
  • “Elongated” is understood to be thin and long, i.e. the length is more than twenty times, e.g. more than fifty times the biggest dimension of the cross-section.
  • Carding wire is the wire for the application of carding.
  • “Brush wire” is the wire for the application of brush.
  • the manufacturing of the elongated steel wire can be done as follows.
  • the metal bath comp rises organic solvent and metal particles.
  • the oil quenched and tempered steel filament can be made by drawing wire rod together with heat treatments, and it has a metal structure of more than 96%martensite.
  • the wire rod is firstly cleaned by mechanical descaling and/or by chemical pickling in a H 2 SO 4 or HCl solution in order to remove the oxides present on the surface.
  • the wire rod is then rinsed in water and is dried.
  • the dried wire rod is then subjected to a first series of dry drawing operations in order to reduce the diameter until a first intermediate diameter.
  • the dry drawn steel filament is subjected to a first intermediate heat treatment, called patenting.
  • Patenting means first austenitizing until a temperature of about 1000°Cfollowed by a transformation phase from austenite to pearlite at a temperature of about 580-650°C. The steel filament is then ready for further mechanical deformation.
  • the steel filament is further dry drawn from the first intermediate diameter d1 until a second intermediate diameter d2 in a second number of diameter reduction steps.
  • the second diameter d2 typically ranges from 1.0mm to 1.60mm.
  • the steel filament is subjected to a second patenting treatment, i.e. austenitizing again at a temperature of about 1000°Cand thereafter quenching at a temperature of 580 to 650°Cto allow for transformation to pearlite.
  • a second patenting treatment i.e. austenitizing again at a temperature of about 1000°Cand thereafter quenching at a temperature of 580 to 650°Cto allow for transformation to pearlite.
  • the steel filament is further dry drawn or wet drawn from the second intermediate diameter d2 until a final diameter d3 in a third number of diameter reduction steps.
  • the final diameter d3 typically ranges from 0.20mm to 0.80mm.
  • the steel filament can also be a non-round shape, e.g. flat, rectangle, double convex, triangle, egg-shape, rhombus and etc, and the non-round filament has an equivalent diameter ranging from 0.20mm to 0.80mm.
  • Oil quenching and tempering mean that first austenitizing until a temperature of about 1000°Cfollowing by a transformation phase from austenite to martensite at a temperature of about 40-150°Cin the quenching oil, then finally going through a tempering process at a temperature of about 300-400°Cfor a final transformation phase of tempered martensite.
  • the oil quenched and tempered steel filament is provided, and it has a microstructune comprising more than g6%tempered martensite, even more than 99%tempered martensite, or even less than or equal to 100%tempered martensite.
  • a metal bath and a heat device are also provided.
  • the metal bath comprises organic solvent and metal particles, the metal particles are kept in the liquid of organic solvent.
  • the metal particles could be zinc, zinc alloy and/or alumium particles.
  • the organic solvent could be hexyl propionate or propyl acetate.
  • the heat device is an on-line heating device, could be a heating furnace. The metal bath and the heat device are continuously set to make the coating process being continuous.
  • the steel filament is subjected to a metal coating process.
  • the steel filament is led through the metal bath at atmospheric temperature to provide a metal coating on the surface of the oil quenched and tempered steel filament, then it is led through the heat device at a temperature in the range of 150-400°C to dry the metal coating and volatilize the organic solvent.
  • the speed of the steel filament going through the heat device is controlled, preferably, the stay of the steel filament in the heat device is less than 10 seconds, or in the range of 2-8 seconds or even 3-5 seconds.
  • the metal coating is fixed on the surface of the steel filament, and an elongated steel wire with a metal coating for corrosion resistance is obtained.
  • the final elongated steel wire has a carbon content above 0.20%by weight(preferably less than 1.2%) , a tensile strength typically above 1800 MPa, and a metal coating with a coating thickness ranging from 0.5 ⁇ m to 50 ⁇ m.
  • the final elongated steel wire has good corrosion resistance, abrasion resistance, strength and hardness.
  • a first embodiment of the invention is an elongated steel wire.
  • the elongated steel wire has a steel filament and a metal coating upon the steel filament.
  • the steel filament has a microstructure comprising more than 99%tempered martensite, and it has a carbon content of 0.5%.
  • the steel filament has a round cross-section, and it has a diameter of 0.35mm.
  • the metal coating is a closed coating comprising zinc flakes and aluminium flakes, and it has a thickness of 1.1 ⁇ m. There is no alloy in the boundary of the metal coating and the surface of the steel filament.
  • a second embodiment of the invention is an elongated steel wire.
  • the elongated steel wire has a steel filament and a metal coating upon the steel filament.
  • the steel filament has a microstructure comprising more than 97%tempered martensite, and it has a carbon content of 0.3%.
  • the steel filament has a triangle cross-section, and it has an equivalent diameter of 0.60mm.
  • the metal coating is a closed coating comprising zinc flakes and aluminium flakes, and it has a thickness of 3.0 ⁇ m. There is no alloy in the boundary of the metal coating and the surface of the steel filament.
  • a test is done to know the anticorrosion performance of the invention elongated steel wire.
  • Two prior elongated steel wires are as reference, one is an elongated steel wire without any coating ( “Reference 1”) , another is an elongated steel wire with a zinc coating which is coated by hot-dip and has a coating thickness of 3.5 ⁇ m ( “Reference 2” ) .
  • the test is so-called salt spray test according to ASTM B117. The time when the corrosion started and severe corrosion occurred is recorded.
  • the invention elongated steel wire has a corrosion resistance much better than Reference 1.
  • Reference 2 has the best corrosion resistance, considering the environment pollution broughtby hot dip process and the thickest of the coating, Reference 2 has the highest production cost, and the manufacturing of Reference 2 leads environment pollution (waste gas, waste acid and heavy metal) , Reference 2 is not best choice for the future sustainable development.
  • the corrosion resistance of the elongated steel wire is not required to be very high, the invention elongated steel wire is the best choice.
  • the invention elongated steel wire has enough corrosion resistance to prevent the corrosion during this short time.
  • the invention elongated steel wire is environment friendly.
  • the invention elongated steel wire is a new solution for carding wire.
  • the invention elongated steel wire shows good and comparable hardness, strength and abrasion resistance.
  • the elongated steel wire has a steel filament and a metal coating upon the steel filament.
  • the steel filament has a microstructure comprising more than 98%tempered martensite, and it has a carbon content of 0.5%.
  • the steel filament has a round cross-section, and it has a diameter of 0.40mm.
  • the metal coating is a closed coating comprising zinc flakes and particles, and it has a thickness of 2.5 ⁇ m. There is no alloy in the boundary of the metal coating and the surface of the steel filament.
  • a flexible clothing comprising hooks and multiple ply fabric layers.
  • the hooks are made by cutting the elongated steel wire of the first embodiment into a short length and thereafter being bent into U-shape. The tops of the hooks can be grinded or not.
  • a wire brush comprising wires and a holder which is fixed with the wires.
  • the wires are made by cutting the elongated steel wire of the second embodiment into a short length.
  • the wires can be crimped or not.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Preliminary Treatment Of Fibers (AREA)

Abstract

An elongated steel wire is provided, the elongated steel wire comprises a steel filament and a metal coating for corrosion resistance upon the steel filament, the steel filament has a microstructure comprising more than 96% tempered martensite. The elongated steel wire is an environment friend product, and it has good corrosion resistance, abrasion resistance, hardness and strength.

Description

    AN ELONGATED STEEL WIRE WITH A METAL COATING FOR CORROSION RESISTANCE
  • Description
  • Technlcal Field
  • The invention relates to an elongated steel wire with a metal coating for corrosion resistance, and its manufacturing method. The invention relates to the application of an elongated steel wire with a metal coating for corrosion resistance as carding wire or brush wire. The invention also relates to a flexible clothing, fixed carding flat or wire brush comprising an elongated steel wire with a metal coating for corrosion resistance.
  • Background Art
  • In general, there are two types of so-called carding wires: steel wires for so-called flexible tops or flexible clothing and steel wires to be worked into toothed wires for fixed carding flats.
  • In the production of textiles, a carding process is for arranging the fibers in a uniform state, i.e. uniform density and uniform thickness, and removing impurities. This can be done by means of flexible clothings or by means of fixed flats.
  • Flexible clothings comprise small hooks which are set into resilient, multi-ply fabric layers and are made of steel wires bent into a U shape and provided with a knee. The flexible clothings bend when subjected to loading and return to thejr original position when no longer loaded. The steel wires for the flexible clothings are usually very hard and are bare steel filament without any coating. The steel wires either have a tempered martensitic structure over their whole volume and length or they have been locally hardened at their tops so that tempered martensite only present at the top.
  • Similarly the toothed carding wire, is installed in the fixed flats, also has a hardened structure, either locally or over its volume.
  • Both the toothed carding wire and the steel wire for flexible clothing is not easy to be corroded during the process of carding the fibers, as the friction  between the wire and the fibers help to prevent the corrosion of the wire. However, these steel wires may get sometimes corroded during the transport or installation. The iron oxides on the sufface of the steel wire present hard particles, as a consequence of which a corroded carding wire may cause the failure of the carding wire during carding process.
  • To improve the corrosion resistance, one solution is to provide a carding wire with zinc or zinc alloy coating which can be done by means of a hot dip process However, passing the steel wires through a hot dip bath, means exposing the steel wire to temperatures above the melt temperature of zinc or zinc alloy. This heat treatment is not desired as it may soften or even destroy the tempered martensitic structure (to be sorbite or tempered sorbite structure) .
  • The present carding wire either is a steel filament with tempered martensite structure without metal coating or a steel filament with a metal coating and sorbite and tempered sorbite structure.
  • Disclosure of lnventiorn
  • The primary object of the invention is to provide an elongated steel wire having high corrosion resistance without above drawbacks.
  • A second object of the invention is to provide an elongated steel wire having a high corrosion resistance in an environment friendly way but without destroying the metal structure.
  • A third object of the invention is to provide a method of manufacturing the elongated steel wire having high corrosion resistance without destroying the metal structure of the steel wire.
  • A fourth object of the invention is to provide a flexible clothing or fixed flats with high corrosion resistance and proper metal structure.
  • A fifth object of the invention is to provide a wire brush with high corrosion resistance and proper metal structure.
  • According to the first aspect of the invention, an elongated steel wire is provided, the elongated steel wire comprises a steel filament and a metal coating for corrosion resistance upon the steel filament, the steel filament has a microstructure comprising more than 96%tempered martensite.
  • The invention provides a new solution of elongated steel wire having good performance of corrosion resistance, abrasion resistance, strength and hardness, and the invention provides an environment friend product. The application of the metal coating on the elongated steel wire doesn′t change the metal structure of the steel filament.
  • The elongated steel wire with a metal coating for corrosion resistance and high content of tempered martensite is achieved by applying the metal coating by an environment f riendly way by avoiding hot dip, without waste acid, waste gas and heavy metal. The steel wire with a metal coating made by conventional technology of hot dip has a microstructure of more sorbite and tempered sorbite, as the high temperature of hot dip process makes the elongated steel wire going through an unwanted patenting process, and this patenting process makes the metal structure of steel wires being changed to be sorbite and tempered sorbite. The present invention is different, the coating upon the elongated steel wire is done with a very low temperature, and this low temperature does not change the metal structure of steel filament, so the metal structure of the elongated steel wire is kept to be of more than 96%tempered martensite thereby to obtain high hardness, strength and abrasion resistance which are benefit for the further application such as carding wire or brush wire. During the manufacturing of the invention elongated steel wire, no waste acid, waste gas or heavy metal is generated. Therefore, the invention elongated steel wire is an environment friendly product, and it has good corrosion resistance, hardness, abrasion resistance and strength. The invention provides an elongated steel wire with good corosion resistance while keeping the hardness, abrasion resistance and strength and reducing environment pollution.
  • Compared with the conventional steel wire with zinc coating made by hot dip, the invention elongated steel wire provides a new solution with less environment pollution and higher hardness, abrasion resistance and strength. Compared with the conventional steel wire without metal coating, the invention elongated steel wire has better corrosion resistance. Particular for the application of carding wire, the invention metal coating  can help to resist the corrosion during the transport and the installation of the carding wire before the carding process.
  • Preferably, the steel filament has a microstructure comprising more than 99%tempered martensite, or even less than or equal to 100%tempered martensite. Such elongated steel filament has a higher strength, abrasion resistance and hardness, and it is more suitable for the application of flexible clothing, fixed flats and wire brush.
  • According to the present invention, the metal coating for corrosion resistance is for improving the performance of corrosion resistance of the elongated steel wire. The metal coating could be any one of the existing metal coating which can prevent the corrosion of the steel wire. Preferably, the metal coating comprises one or more element selected from the group consisting of aluminium, zinc and zinc alloy. The different metal elements of the metal coating are not alloyed with each other, instead, they are separately presenting in the coating.
  • According to the present invention, the metal element in the metal coating is in the form of flakes and/or particles which are observed in microstructure. “Flake” means the metal presents a laminar-like shape. The flakes and/or particles of metal, preferably zinc and aluminium, form a closed layer to prevent the corrosion of steel filament. The closed layer of metal coating helps to prevent the corrosion of the elongated steel wire. Particularly for the application of carding wire, the metal coating provides a corrosion resistance enough for preventing the corrosion during the transport and the process of making the flexible cloth or fixed flat.
  • According to the present invention, there is no alloy in the boundary of the metal coating and the surface of the steel filament, this means the metal element of the metal coating and Fe of the steel wire are not alloyed. This is different from the metal coating made by conventional hot dip method. Even though there is no alloy generated in the boundary of the metal coating and the surface of the steel filament, the adhesion between the metal coating and the steel filament is good and acceptable. Therefore the elongated steel filament is available for the end user ( “for the end user” means no heavy deformation will be applied on the elongated steel wire anymore and the mechanical property of elongated steel wire won’t be  changed very much) , even if the elongated steel wire may be cut or top grinded during the application such as carding wire or brush wire.
  • For one preferable embodiment, the metal coating is a coating comprising zinc and aluminium, and both zinc and aluminium are in the form of flakes and/or particles which are observed in microstructure. Preferablv. the weight ratio of zinc to aluminium ranges from 0.6 to 160. More preferably, the weight ratio of zinc to aluminium ranges from 3 to 50. In the preferable range, the metal coating has better performance of corrosion resistance and better adhesion with the steel filament.
  • The thickness of the metal coating depends on the requirement of the corrosion resistance of the elongated steel wire. The thicker the metal coating, the better the corrosion resistance, but the higher the production cost. Preferablv, the metal coating has a thickness ranging from 0.5μm to 50μm. More preferablv, the metal coating has a thickness ranging from 0.8μm to 5μm.
  • The steel filament for the elongated steel wire is carbon steel filament with a certain strength. The carbon content of the steel filament is preferably higher than 0.20%by weight, more preferably ranging from 0.50%to 1.2%, most preferably ranging from 0.6%to 1.1%. The higher the carbon content, the higher the tensile strength. Besides the carbon content, the steel filament comprises one or more other elements, for example, silicon, preferably ranging from 0.10%to 2.5%, more preferably ranging from 0.15 to 1.60%;manganese, preferably ranging from 0.10%to 2.0%, more preferably ranging from 0.50 to 0.90%; chromium, preferably ranging from 0.0%to 2.0%, more preferably ranging from 0.10%to 1.50%; vanadium, preferably ranging from 0.0%to 2.0%, more preferably ranging from 0.05%to 0.60%; tungsten, preferably ranging from 0.0%to 1.5%, more preferably ranging from 0.1%to 0.70%. The above contents are calculated by weight.
  • The steel filament of the elongated steel wire has any one of existing cross-sections, for example, round, triangle, oval or flat. The cross-section of the steel filament may have slight convex or concave curve caused by the manufacturing process. Preferablv, steel filament has an equivalent  diameter ranging from 0.2mm to 6.0mm, more preferably ranging from 0.2mm to 0.8mm. For the round steel filament, the equivalent diameter is its diameter measured by micrometer; for other shaped steel filament, the equivalent diameter is the diameter of a circle of equivalent cross-sectional area.
  • According to the second object of the invention, a method of making an elongated steel wire is provided. This method is a continuous process which is very suitable for coating the elongated steel filament which is thin and very long, it comprises:
  • -first step, provide an oil quenched and tempered steel filament, a metal bath and a heat device, the metal bath comprises organic solvent and metal particles;
  • -second step,lead the oil quenched and tempered steel filament through the metal bath at atmospheric temperature to provide a metal coating on the surface of the oil quenched and tempered steel filament;
  • -third step, lead the oil quenched and tempered steel filament through the heat device at a temperature in the range of 1 50-400℃to dry the metal coating and volatilize the organic solvent within 1 0 seconds. As this passing through the heat device is very short, the tempered martensitic structure of the steel filament is not changed to a great extent. In addition, the short time avoids waste of energy.
  • Preferably the heating temperature in third step is 150-300℃. Preferably the heating in third step is done with a time ranging from 2 to 8 seconds.
  • The elongated steel wire obtained by the above method has a microstructure comp rising more than 96%tempered martensite and a metal coating for corrosion resistance, and the metal coating has good adhesion with the surface of the steel filament. The method doesn’t use acid and heavy metal, so it doesn’t generate waste acid, waste gas and heavy metal, and it is environmental friendly. Furthermore this method is a continuous process, and it is fit for the thin and long steel filament. Additionally, this coating process is done with a low temperature, the metal structure won’t be changed obviously (the metal structure of the oil quenched andtempered steel filament has a metal structure of more than  96%tempered martensite, the metal coated elongated steel wire still has a metal structure of more than 96%tempered martensite) ; and thereby the mechanical properties of the steel filament won’t be changed obviously, i.e. the strength, abrasion resistance and hardness of the metal coated elongated steel wire are almost the same as the original oil quenched and tempered steel filament.
  • The metal coating obtained by the above method doesn′t generate any alloy in the boundary between the metal coating and the surface of the steel filament, and the metal in the metal coating is in the form of flakes and/or particles observed in microstructure. This is completely different from a metal coating obtained by conventional hot dip process. 
  • According to the present invention,the method further comprises a thickness control step between second step and third step. The thickness control step is to control the thickness of the metal coating and make the thickness of the metal coating being uniform, and it is done by leading the oil quenched and tempered steel filament through a blowing device or a wiping device. The thickness control step can be done in horizontal direction or vertical direction.
  • The oil quenched and tempered steel filament is preferably to be cleaned before being coated (the second step) . The cleaning ofthe oil quenched and tempered steel filament makes the metal coating being easier adhering on. The cleaning process can be any one of existing cleaning method.
  • The above-mentioned organic solvent is a carrier of metal particles to keep the metal particles in the liquid, and itis volatilized after the third step, namely the short heating step. The organic solvent could be any one of existing organic solvent for carrying the metal particles. According to the present invention, preferably the organic solvent is hexyl propionate or propyl acetate.
  • Besides metal particles and organic solvent, the metalbath may comprise other additives to contribute to the coating process.
  • The invention elongated steel wire has many applications, and it can be applied in any field which requires the final steel wire has a certain  corrosion resistance performance, such as carding wire,brush wire and control cable wire.
  • According to the third object of the invention, a fixed flat with toothed steel wire is provided. The fixed flat comprises an elongated steel wire, the elongated steel wire comprises a steel filament and a metal coating for corrosion resistance upon the steel filament, the steel filament has a microstructure comprising more than 96%tempered martensite. Preferably, the steel filament has a microstructure comprising more than 99%tempered martensite.Preferably the metal coating is a coating comprising zinc and aluminium, both zinc and aluminium are in the form of flakes and/or particles observed in microstructure. The fixed flat is an environment friend product, as its manufacturing method doesn′t generate waste acid, waste gas and heavy metal.
  • According to the present invention, a flexible clothing is provided. The flexible clothing comprises small hooks or needles and resilient, multi-ply fab ric layers, the hooks or needles are set into the fabric layers, the hooks or needles are made of elongated steel wires. the elongated steel wire comprises a steel filament and a metal coating for corrosion resistance upon the steel filament, the steel filament has a microstructure comprising more than 96%tempered martensite. Preferably, the steelfilament has a microstructure comprising more than 99%tempered martensite. Preferably the metal coating is a coating comprising zinc and aluminium, both zinc and aluminium are in the form of flakes and/or particles observed in microstructure. The top of the hooks or needles may be grinded, thereby the metal coating are removed, however, this is only occurred in the top end of the hooks or needles.
  • According to the fourth object of the invention, a wire brush is provided. The brush wire comprises the wires and a holder, the wires are fixed on the holder, the wires are made of elongated steel wires, the elongated steel wire comprises a steel filament and a metal coating for corrosion resistance upon the steel filament, the steel filament has a microstructure comprising more than 96%tempered martensite. Preferably, the steel filament has a microstructure comprising more than 99%tempered martensite. Preferably the metal coating is a coating comprising zinc and  aluminium, both zinc and aluminium are in the form of flakes and/or particles observed in microstructure. The wire brush is an environment friend producf, as its manufacturing method doesn′t generate waste acid, waste gas and heavy metal.
  • “Elongated” is understood to be thin and long, i.e. the length is more than twenty times, e.g. more than fifty times the biggest dimension of the cross-section.
  • “Carding wire” is the wire for the application of carding.
  • “Brush wire” is the wire for the application of brush.
  • Mode (s) for Carrying Out the Invention
  • The manufacturing of the elongated steel wire can be done as follows.
  • First, providing an oil quenched and tempered steel filament, a metal bath and a heat device, the metal bath comp rises organic solvent and metal particles.
  • The oil quenched and tempered steel filament can be made by drawing wire rod together with heat treatments, and it has a metal structure of more than 96%martensite.
  • The wire rod is firstly cleaned by mechanical descaling and/or by chemical pickling in a H2SO4 or HCl solution in order to remove the oxides present on the surface. The wire rod is then rinsed in water and is dried. The dried wire rod is then subjected to a first series of dry drawing operations in order to reduce the diameter until a first intermediate diameter.
  • At this first intermediate diameter d1, e.g. at about 2.30 to 3.50mm, the dry drawn steel filament is subjected to a first intermediate heat treatment, called patenting. Patenting means first austenitizing until a temperature of about 1000℃followed by a transformation phase from austenite to pearlite at a temperature of about 580-650℃. The steel filament is then ready for further mechanical deformation.
  • Thereafter the steel filament is further dry drawn from the first intermediate diameter d1 until a second intermediate diameter d2 in a second number  of diameter reduction steps. The second diameter d2 typically ranges from 1.0mm to 1.60mm.
  • At this second intermediate diameter d2, the steel filament is subjected to a second patenting treatment, i.e. austenitizing again at a temperature of about 1000℃and thereafter quenching at a temperature of 580 to 650℃to allow for transformation to pearlite.
  • If the total reduction in the first and second dry drawing step is not too big a direct drawing operation can be done from wire rod till diameter d2.
  • Thereafter the steel filament is further dry drawn or wet drawn from the second intermediate diameter d2 until a final diameter d3 in a third number of diameter reduction steps. The final diameter d3 typically ranges from 0.20mm to 0.80mm. More than the round steel filament, the steel filament can also be a non-round shape, e.g. flat, rectangle, double convex, triangle, egg-shape, rhombus and etc, and the non-round filament has an equivalent diameter ranging from 0.20mm to 0.80mm.
  • Thereafter the steel filament is subjected to the oil-quenching and tempering process. Oil quenching and tempering mean that first austenitizing until a temperature of about 1000℃following by a transformation phase from austenite to martensite at a temperature of about 40-150℃in the quenching oil, then finally going through a tempering process at a temperature of about 300-400℃for a final transformation phase of tempered martensite.
  • The oil quenched and tempered steel filament is provided, and it has a microstructune comprising more than g6%tempered martensite, even more than 99%tempered martensite, or even less than or equal to 100%tempered martensite.
  • A metal bath and a heat device are also provided. The metal bath comprises organic solvent and metal particles, the metal particles are kept in the liquid of organic solvent. The metal particles could be zinc, zinc alloy and/or alumium particles. The organic solvent could be hexyl propionate or propyl acetate. The heat device is an on-line heating device, could be a heating furnace. The metal bath and the heat device are continuously set to make the coating process being continuous.
  • Following the oil-quenching and tempering process, the steel filament is subjected to a metal coating process. The steel filament is led through the metal bath at atmospheric temperature to provide a metal coating on the surface of the oil quenched and tempered steel filament, then it is led through the heat device at a temperature in the range of 150-400℃ to dry the metal coating and volatilize the organic solvent. The speed of the steel filament going through the heat device is controlled, preferably, the stay of the steel filament in the heat device is less than 10 seconds, or in the range of 2-8 seconds or even 3-5 seconds. Finally the metal coating is fixed on the surface of the steel filament, and an elongated steel wire with a metal coating for corrosion resistance is obtained.
  • The final elongated steel wire has a carbon content above 0.20%by weight(preferably less than 1.2%) , a tensile strength typically above 1800 MPa, and a metal coating with a coating thickness ranging from 0.5μm to 50μm. the final elongated steel wire has good corrosion resistance, abrasion resistance, strength and hardness.
  • A first embodiment of the invention is an elongated steel wire. The elongated steel wire has a steel filament and a metal coating upon the steel filament. The steel filament has a microstructure comprising more than 99%tempered martensite, and it has a carbon content of 0.5%. The steel filament has a round cross-section, and it has a diameter of 0.35mm. The metal coating is a closed coating comprising zinc flakes and aluminium flakes, and it has a thickness of 1.1μm. There is no alloy in the boundary of the metal coating and the surface of the steel filament.
  • A second embodiment of the invention is an elongated steel wire. The elongated steel wire has a steel filament and a metal coating upon the steel filament. The steel filament has a microstructure comprising more than 97%tempered martensite, and it has a carbon content of 0.3%. The steel filament has a triangle cross-section, and it has an equivalent diameter of 0.60mm. The metal coating is a closed coating comprising zinc flakes and aluminium flakes, and it has a thickness of 3.0μm. There is no alloy in the boundary of the metal coating and the surface of the steel filament.
  • A test is done to know the anticorrosion performance of the invention elongated steel wire. Two prior elongated steel wires are as reference, one is an elongated steel wire without any coating ( “Reference 1”) , another is an elongated steel wire with a zinc coating which is coated by hot-dip and has a coating thickness of 3.5μm ( “Reference 2” ) . The test is so-called salt spray test according to ASTM B117. The time when the corrosion started and severe corrosion occurred is recorded.
  • From the above table, it is clear that the invention elongated steel wire has a corrosion resistance much better than Reference 1. Although Reference 2 has the best corrosion resistance, considering the environment pollution broughtby hot dip process and the thickest of the coating, Reference 2 has the highest production cost, and the manufacturing of Reference 2 leads environment pollution (waste gas, waste acid and heavy metal) , Reference 2 is not best choice for the future sustainable development. For some applications, the corrosion resistance of the elongated steel wire is not required to be very high, the invention elongated steel wire is the best choice. For example, for the application of carding wire which corrosion is only occurred during the time of machining the wire to be hooks or needles and embedded into the flexible fabric layers, wherein the time is a short time, the invention elongated steel wire has enough corrosion resistance to prevent the corrosion during this short time. Additlonally the invention elongated steel wire is environment friendly. The invention elongated steel wire is a new solution for carding wire. Additionally, the invention elongated steel wire shows good and comparable hardness, strength and abrasion resistance.
  • Another embodiment of the invention is an elongated steel wire. The elongated steel wire has a steel filament and a metal coating upon the steel filament. The steel filament has a microstructure comprising more than 98%tempered martensite, and it has a carbon content of 0.5%. The steel filament has a round cross-section, and it has a diameter of 0.40mm. The metal coating is a closed coating comprising zinc flakes and particles, and it has a thickness of 2.5μm. There is no alloy in the boundary of the metal coating and the surface of the steel filament.
  • A flexible clothing is provided. The flexible clothing comprising hooks and multiple ply fabric layers. The hooks are made by cutting the elongated steel wire of the first embodiment into a short length and thereafter being bent into U-shape. The tops of the hooks can be grinded or not.
  • A wire brush is provided. The wire brush comprising wires and a holder which is fixed with the wires. The wires are made by cutting the elongated steel wire of the second embodiment into a short length. The wires can be crimped or not.

Claims (15)

  1. An elongated steel wire, said elongated steel wire comprising a steel filament and a metal coating for corrosion resistance upon said steel filament, characterized in that said steel filament has a microstructure comprising more than 96% tempered martensite.
  2. An elongated steel wire according to claim 1, characterized in that the metal of said metal coating is in the form of flakes and/or particles observed in m icrostructure.
  3. An elongated steel wire according to claim 1, characterized in that said steel filament has a microstructure comprising more than 99% tempered martensite.
  4. An elongated steel wire according to any one of claims 1 to 3, characterized in that the metal of said metal coating comprises one or more element selected from the group consisting of aluminium, zinc and zinc alloy.
  5. An elongated steel wire according to claim 4, characterized in that said metal coating is a coating comprising zinc and aluminium.
  6. An elongated steel wire according to claim 5, characterized in that the weight ratio of said zinc to said aluminium ranges from 3 to 50.
  7. An elongated steel wire according to any one of claims 1 to 6, characterized in that said metal coating has a thickness ranging from 0.5μm to 50μm.
  8. An elongated steel wire according to claim 7, characterized in that said metal coating has a thickness ranging from 0.8μm to 5μm.
  9. An elongated steel wire according to any one of claims 1 to 8, characterized in that said steel filament has an equivalent diameter ranging from 0.20 mm to 0.80 mm.
  10. A method of making an elongated steel wire according to any one of previous claims, said method is a continuous process comprising:
    -first step, providing an oil quenched and tempered steel filament, a metal bath and a heat device, said metal bath comprising organic solvent and metal particles;
    -second step, leading said oil quenched and tempered steel filament through said metal bath at atmospheric temperature to provide a metal coating on the surface of said oil quenched and tempered steel filament;
    -third step, leading said oil quenched and tempered steel filament through said heat device at a temperature in the range of 150-400℃ to dry said metal coating and volatilize said organic solvent.
  11. A method according to claim 10, characterized in that said method further comprises a thickness control step between second step and third step, said thickness control step is done by leading said oil quenched and tempered steel filament through a blowing device or a wiping device to control the thickness of said metal coating.
  12. Use of an elongated steel wire according to any one of claims 1 to 9 as brush wire.
  13. Use of an elongated steel wire according to any one of claims 1 to 9 as carding wire.
  14. A flexible clothing comprising hooks or needles and resilient, multi-ply fabric layers, said hooks or needles are set into the fabric layers, said hooks or needles are made of elongated steel wires according to any one of claims 1 to 9.
  15. A wire brush comprising the wires and a holder, said wires being fixed on said holder, said wires are made of elongated steel wires according to any one of claims 1 to 9.
EP15905676.1A 2015-10-09 2015-10-09 An elongated steel wire with a metal coating for corrosion resistance Withdrawn EP3359703A4 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/091544 WO2017059578A1 (en) 2015-10-09 2015-10-09 An elongated steel wire with a metal coating for corrosion resistance

Publications (2)

Publication Number Publication Date
EP3359703A1 true EP3359703A1 (en) 2018-08-15
EP3359703A4 EP3359703A4 (en) 2019-05-15

Family

ID=58487212

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15905676.1A Withdrawn EP3359703A4 (en) 2015-10-09 2015-10-09 An elongated steel wire with a metal coating for corrosion resistance

Country Status (3)

Country Link
EP (1) EP3359703A4 (en)
CN (1) CN108138276B (en)
WO (1) WO2017059578A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3933061A1 (en) * 2020-06-30 2022-01-05 Hyundai Steel Company Steel sheet for hot press and manufacturing method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110945149B (en) * 2017-07-21 2022-01-11 江阴贝卡尔特钢丝制品有限公司 Steel wire for flexible card clothing
WO2020173647A1 (en) * 2019-02-26 2020-09-03 Nv Bekaert Sa Helical compression spring for an actuator for opening and closing a door or a tailgate of a car
CN110724795A (en) * 2019-09-30 2020-01-24 江苏冠晟超导科技有限公司 Isothermal quenching heat treatment process of steel wire for wire
WO2024083497A1 (en) * 2022-10-21 2024-04-25 Nv Bekaert Sa An elongated zinc coated steel wire for flexible carding clothing

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1400708A (en) * 1971-09-02 1975-07-23 Bekaert Sa Nv Heat treatment of steel wire reinforcements
CN2185271Y (en) * 1993-11-16 1994-12-14 上海华申纺织印染(集团)公司 Part for removing fibre web of carding machine
JP3233188B2 (en) * 1995-09-01 2001-11-26 住友電気工業株式会社 Oil-tempered wire for high toughness spring and method of manufacturing the same
FR2743573A1 (en) * 1996-01-16 1997-07-18 Michelin & Cie METAL WIRE READY FOR USE AND METHOD FOR OBTAINING THREAD
TW421608B (en) * 1996-11-12 2001-02-11 Mitsubishi Gas Chemical Co Method for drying resin-used electronic parts
DE19826542C2 (en) * 1998-06-15 2001-05-31 Graf & Co Ag Scraper fitting for cards and / or carding machines
AU2001239276A1 (en) * 2000-03-16 2001-09-24 N V. Bekaert S.A. Spring steel wire
JP2003311600A (en) * 2002-04-25 2003-11-05 Kanai Hiroaki Saw wire and method for producing the same
JP4486040B2 (en) * 2005-12-20 2010-06-23 株式会社神戸製鋼所 Steel wire for cold forming springs with excellent cold cutability and fatigue characteristics and manufacturing method thereof
DE102008059014A1 (en) * 2008-05-28 2009-12-03 Basf Coatings Ag Process for coating metal strips
DE102008051883A1 (en) * 2008-10-16 2010-04-22 Nano-X Gmbh Coating for cathodic corrosion protection of metal, method for producing the coating and use of the coating.
US8720429B2 (en) * 2009-04-29 2014-05-13 Nv Bekaert Sa Sawing wire with abrasive particles partly embedded in a metal wire and partly held by an organic binder
US20120060980A1 (en) * 2009-05-14 2012-03-15 Nv Bekaert Sa Martensitic wire with thin polymer coating
CN104350167B (en) * 2012-06-08 2016-08-31 新日铁住金株式会社 Steel wire rod or bar steel
JP6136547B2 (en) * 2013-05-07 2017-05-31 新日鐵住金株式会社 High yield ratio high strength hot-rolled steel sheet and method for producing the same
PL3055436T3 (en) * 2013-10-11 2017-12-29 N.V. Bekaert S.A. High tensile strength steel wire
CN104498877A (en) * 2014-12-15 2015-04-08 中国钢研科技集团有限公司 Zinc-magnesium alloy coating and preparation method thereof
KR102504963B1 (en) * 2015-01-30 2023-03-02 엔브이 베카에르트 에스에이 high tensile strength steel wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3933061A1 (en) * 2020-06-30 2022-01-05 Hyundai Steel Company Steel sheet for hot press and manufacturing method thereof
US11225050B1 (en) 2020-06-30 2022-01-18 Hyundai Steel Company Steel sheet for hot press and manufacturing method thereof

Also Published As

Publication number Publication date
EP3359703A4 (en) 2019-05-15
CN108138276B (en) 2021-05-25
CN108138276A (en) 2018-06-08
WO2017059578A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
EP3359703A1 (en) An elongated steel wire with a metal coating for corrosion resistance
JP5361098B1 (en) Compression coil spring and method of manufacturing the same
CN101983247B (en) Steel material, process for producing steel material, and apparatus for producing steel material
CN108239735A (en) High tough, permanent seal cooling bridge cable 1960MPa grades of Zn-Al Alloy Coated Steel Wires of major diameter
JP6178102B2 (en) Compression coil spring and method of manufacturing the same
CN107227427B (en) 7.0mm2000MPa grades of zinc-coated wires of Φ and its manufacturing method
JP2014122393A (en) Steel wire material for high-strength spring having excellent hydrogen embrittlement resistance, production method thereof and high-strength spring
JP2017082251A (en) Method for producing heat-treated steel wire
US5503688A (en) Metal wire comprising a substrate of steel of work-hardened tempered martensite type structure and a coating
EP2655677B1 (en) Process and plant for continuously manufacturing a steel wire
KR20110021741A (en) Steel filament patented in bismuth
JP7062395B2 (en) Manufacturing method of compression coil spring
WO2018184855A1 (en) An elongated steel wire with a metal coating and a polymer coating
JP6085192B2 (en) Steel wire for springs excellent in drawability and manufacturing method thereof
JP6125313B2 (en) Hot pressing method for plated steel sheet
JP2014145123A (en) Method of producing high strength steel wire
US20080041497A1 (en) Carburized Wire and Method for Producing the Same
JP2009095859A (en) Steel wire excellent in twisting properties, and its manufacturing method
Joung et al. Effects of Alloying Elements, Si and Cr, on aging and delamination behaviors in cold-drawn and subsequently annealed hyper-eutectoid steel wires
JPS63241155A (en) High-strength spring steel wire of large diameter for cold forming and its production
Mihaliková et al. Damage pearlitic steel in operation
KR102258254B1 (en) High formability dual phase steel
US20140079957A1 (en) Process for tin coating a metallic substrate, process for hardening a tin layer and wire having a tin coating
JP2000282176A (en) Steel wire for heat resistant spring, and its production
JPH0417616A (en) Production of stainless steel wire

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20180507

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20190416

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 2/38 20060101ALI20190410BHEP

Ipc: C23C 2/28 20060101ALI20190410BHEP

Ipc: C23C 2/06 20060101ALI20190410BHEP

Ipc: C23C 30/00 20060101ALI20190410BHEP

Ipc: C22C 38/18 20060101ALI20190410BHEP

Ipc: C22C 38/00 20060101AFI20190410BHEP

Ipc: C23C 2/12 20060101ALI20190410BHEP

Ipc: B32B 15/01 20060101ALI20190410BHEP

Ipc: C23C 2/16 20060101ALI20190410BHEP

Ipc: C21D 1/18 20060101ALI20190410BHEP

Ipc: C21D 9/52 20060101ALI20190410BHEP

Ipc: C23C 2/18 20060101ALI20190410BHEP

Ipc: C21D 8/06 20060101ALI20190410BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20190705