JPH04174913A - Manufacture of ceramic superconductor - Google Patents

Manufacture of ceramic superconductor

Info

Publication number
JPH04174913A
JPH04174913A JP2301936A JP30193690A JPH04174913A JP H04174913 A JPH04174913 A JP H04174913A JP 2301936 A JP2301936 A JP 2301936A JP 30193690 A JP30193690 A JP 30193690A JP H04174913 A JPH04174913 A JP H04174913A
Authority
JP
Japan
Prior art keywords
composite
sheet
metal
ceramic
breathable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2301936A
Other languages
Japanese (ja)
Inventor
Sukeyuki Kikuchi
菊地 祐行
Kiyoshi Nemoto
清 根本
Masanao Mimura
三村 正直
Naoki Uno
直樹 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2301936A priority Critical patent/JPH04174913A/en
Publication of JPH04174913A publication Critical patent/JPH04174913A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To improve superconductive characteristic by boring small holes on a metal sheet or a pipe used when molding a composite sheet for air permeability. CONSTITUTION:A raw material layer 3 is formed on a metal sheet 2 bored with small holes for air permeability to obtain a composite sheet 4, the sheet 4 is spirally wound on a metal pipe 5 bored with small holes 1 while the layer 3 is faced to the inside to obtain a spirally wound body 6, the wound body 6 is filled in a metal pipe 8 to obtain a composite billet 9, it is drawn to obtain a composite linear body, and it is heat-treated. A ceramic superconductor which has a good shape and excellent superconductive characteristic and is adaptable to large-capacity excitation in particular is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、マグネット用、ケーブル用、電流リード用等
の大容量通電に通した中空状のセラミ・ンクス超電導々
体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a hollow ceramic nex superconductor that is passed through a large-capacity current for use in magnets, cables, current leads, and the like.

〔従来の技術] 近年B1−5r−Ca−Cu−0系、Y−Ba−Cu−
0系、Tl−Ba−Ca−Cu−0系等の臨界温度(T
 c )が液体窒素温度を超えるセラミックス超電導体
が見出され、種々分野で応用研究が進められている。
[Prior art] In recent years, B1-5r-Ca-Cu-0 system, Y-Ba-Cu-
0 system, Tl-Ba-Ca-Cu-0 system, etc.
A ceramic superconductor whose temperature (c) exceeds the temperature of liquid nitrogen has been discovered, and applied research is progressing in various fields.

ところで、これらのセラミックス超電導体は脆い為、こ
れらを所定形状のセラミックス超電導線状体に加工する
には、セラミックス超電導体となし得る原料物質を金属
製パイプ内に充填して複合ビレットとなし、次いでこの
複合ビレットに伸延加工を施して所定形状の複合線状体
となし、次いでこれに所定の加熱処理を施して前記原料
物質をセラミックス超電導体に反応せしめる方法等が用
いられている。
By the way, these ceramic superconductors are brittle, so in order to process them into ceramic superconducting wire bodies of a predetermined shape, raw material that can be used as a ceramic superconductor is filled into a metal pipe to form a composite billet, and then A method is used in which this composite billet is stretched to form a composite filament of a predetermined shape, and then subjected to a predetermined heat treatment to cause the raw material to react with a ceramic superconductor.

而して、セラミックス超電導体は機械的強度及び熱・電
気伝導性に劣るという欠点がある為、特にセラミックス
超電導体層を厚く形成する場合は、前記超電導体層内に
金属製シートを渦巻状又は同心筒状に複合させて前記欠
点を補うようにしている。
However, since ceramic superconductors have the disadvantage of being inferior in mechanical strength and thermal/electrical conductivity, especially when forming a thick ceramic superconductor layer, a metal sheet is placed inside the superconductor layer in a spiral or The above drawbacks are compensated for by combining them in a concentric cylindrical shape.

このように、セラミックス超電導体に複合させる金属製
パイプ並びに金属製シートは、セラミ。
In this way, the metal pipes and metal sheets that are combined with ceramic superconductors are made of ceramic.

クス超電導体となし得る原料$5質層の加工性を改善す
るとともに、得られたセラミックス超電導々体に機械的
強度並びに電気的安定性を付与する作用を果たすもので
あって、が−る金属製パイプ並びに金属製シートの材料
には、加工性及び熱・電気的伝導性に優れたAg、Ag
合金、  Cu、 Cu合金等が用いられている。
The material serves to improve the workability of the raw material layer that can be made into a ceramic superconductor, and also to impart mechanical strength and electrical stability to the obtained ceramic superconductor, and the metal Ag, which has excellent workability and thermal and electrical conductivity, is used as a material for manufactured pipes and metal sheets.
Alloys, Cu, Cu alloys, etc. are used.

又前記複合ビレットを伸延加工する方法としては、押出
し、圧延、引抜き、スェージング等従来の加工方法が適
用される。又複合ビレットを伸延加工して得られる複合
線状体の断面形状は、円形。
Further, as a method for stretching the composite billet, conventional processing methods such as extrusion, rolling, drawing, and swaging can be applied. Furthermore, the cross-sectional shape of the composite linear body obtained by stretching the composite billet is circular.

楕円形、多角形、テープ状等任意の形状が適用される。Any shape such as ellipse, polygon, tape shape, etc. can be applied.

而して、上記の如き複合線状体に施す原料物質をセラミ
ックス超電導体とならしめる為の加熱処理は、例えば、
Y系セラミックス超電導体の場合は900〜950″C
,Bi系セラミックス超電導体の場合は850〜900
″C程度の温度で、酸素含を雰囲気中にて施され、原料
物質のセラミックス超電導体への反応がなされる。
Therefore, the heat treatment to make the raw material material into a ceramic superconductor, which is applied to the composite linear body as described above, is performed by, for example,
900~950″C for Y-based ceramic superconductor
, 850 to 900 for Bi-based ceramic superconductors
It is applied in an atmosphere containing oxygen at a temperature of about 1000 yds., and the raw material reacts to form a ceramic superconductor.

〔発明が解決しようとする課題] しかしながら、前記の複合線状体に施す加熱処理温度が
高い場合、特に原料物質の半溶融温度以上の温度で施す
場合は、原料物質から大量のガスが発生し、このガスは
前述の金属製シート又は金属製パイプによって外部への
放出が妨げられ、その結果、第3図に示したように得ら
れたセラミックス超電導々体のセラミックス超電導体層
12と金属被覆I!13との間に空洞14が生成し、セ
ラミックス超電導々体の形状不良、更に超電導特性の著
しい低下を引き起こすという問題があった。
[Problems to be Solved by the Invention] However, when the heat treatment temperature applied to the composite linear body is high, especially when the heat treatment is performed at a temperature higher than the half-melting temperature of the raw material, a large amount of gas is generated from the raw material. This gas is prevented from being released to the outside by the aforementioned metal sheet or metal pipe, and as a result, the ceramic superconductor layer 12 and metal coating I of the ceramic superconductor obtained as shown in FIG. ! There is a problem in that a cavity 14 is formed between the ceramic superconductor 13 and the ceramic superconductor, which causes a defect in the shape of the ceramic superconductor and further causes a significant deterioration of the superconducting properties.

〔課題を解決する為の手段〕[Means to solve problems]

本発明はか\る状況に鑑み鋭意研究を行った結果なされ
たもので、その目的とするところは、膨れ等がなく形状
が良好で、超電導特性に優れ、特に大容量通電に適した
セラミックス超電導々体の製造方法を提供することにあ
る。
The present invention was made as a result of intensive research in view of the above situation, and its purpose is to create a ceramic superconductor that is free from bulges, has a good shape, has excellent superconducting properties, and is especially suitable for large-capacity current flow. The purpose of this invention is to provide a method for manufacturing various types of bodies.

即ち、本発明は、通気性を付与した金属製ノート上にセ
ラミ・ノクス超電導体となし得る原料物質を層状に形成
して複合シートとなし、次いで前記複合シートを、原料
物質層を内側にして、壁面に通気性を付与した金属製パ
イプ上に渦巻状に巻き上げ巻回体とするが又は同心筒状
体に成形し、次いで前記渦巻状巻回体又は同心筒状体を
金属製パイプ内に充填して複合ビレットとなし、しかる
のち前記複合ビレットに伸延加工を施して中空部を有す
る所望形状の複合線状体となし、次いで前記複合線状体
に所定の加熱処理を施すことを特徴とするものである。
That is, the present invention forms a composite sheet by forming a layer of a raw material that can be used as a Cerami-Nox superconductor on a metal notebook provided with air permeability, and then placing the composite sheet with the raw material layer on the inside. , the spirally wound body or concentric cylindrical body is formed into a spirally wound body on a metal pipe whose wall surface is provided with air permeability, and then the spirally wound body or concentric cylindrical body is placed inside the metal pipe. The composite billet is filled to form a composite billet, and then the composite billet is stretched to form a composite linear body having a desired shape having a hollow portion, and then the composite linear body is subjected to a predetermined heat treatment. It is something to do.

即ち、本発明方法は、金属製シート上にセラミックス超
電導体となし得る原料物質(以下原料勧賞と略記)を層
状に形成して複合シートとなす前記金属製シート、及び
前記複合シートを渦巻状に巻上げる又は同心筒状に成形
する時に芯体として用いる金属製パイプに、例えば小穴
を多数あけて通気性を付与した金属製シート又は金属製
パイプを用いて、加熱処理時に発生するガスを前記小穴
を通して外方に放出し得るようにしたものである。
That is, the method of the present invention involves forming a composite sheet by forming a layer of raw material that can be made into a ceramic superconductor (hereinafter abbreviated as "raw materials") on a metal sheet, and spirally forming the composite sheet. For example, a metal sheet or metal pipe that is used as a core when rolled up or formed into a concentric cylindrical shape is made with many small holes to provide ventilation, and the gas generated during heat treatment is passed through the small holes. It is designed so that it can be released to the outside through.

以下に本発明方法を圀を参照して具体的に説明する。第
1図イ〜チは本発明方法の態様例を示す工程説明図であ
る。
The method of the present invention will be specifically explained below with reference to the country. FIGS. 1 to 1 are process explanatory diagrams showing embodiments of the method of the present invention.

小穴1をあけて通気性を付与した金属製シート(以下通
気性金属シートと略記)2(図イ)上に原料物質層3を
形成して複合シート4となしく開口)、次いでこの複合
シート4を、原料物質層3を内側にして、壁面に小穴1
をあけて通気性を付与した金属製パイプ(以下通気性金
属パイプと略記)5上に渦巻状に巻き上げて渦巻状巻回
体6となしく図ハ)、又は前記複合シート4を径の異な
る筒状に成形して、各々の筒状体を通気性金属パイプ5
上に同心状に嵌合して同心筒状体7となしく図二)、次
いで前記渦巻状巻回体6又は同心筒状体7を金属製パイ
プ8内に充填して複合ビレット9となしく図ホ、へ)、
次いで前記複合とレット9に伸延加工を施して断面に中
空部loを有する複合線状体11.21となしく図ト、
チ)、シかるのち前記複合線状体11.21に所定の加
熱処理を施してセラミックス超電導々体となすものであ
る。
A raw material layer 3 is formed on a metal sheet (hereinafter abbreviated as breathable metal sheet) 2 (Figure A) which has been provided with small holes 1 to provide air permeability (apertures are formed into a composite sheet 4), and then this composite sheet is formed. 4, with the raw material layer 3 inside, make a small hole 1 in the wall surface.
A spirally wound body 6 is formed by winding the composite sheet 4 in a spiral shape on a metal pipe (hereinafter abbreviated as a permeable metal pipe) 5 which has been provided with air permeability (Fig. C), or the composite sheet 4 has different diameters. Molded into a cylindrical shape, each cylindrical body is connected to a breathable metal pipe 5.
The spirally wound body 6 or the concentric cylindrical body 7 is then filled into a metal pipe 8 to form a composite billet 9. Kuzuho, he),
Next, the composite wire 9 is subjected to elongation processing to form a composite linear body 11.21 having a hollow portion lo in its cross section.
h) After that, the composite linear body 11.21 is subjected to a predetermined heat treatment to form a ceramic superconductor.

本発明方法で用いる通気性金属パイプには、第2図イ〜
ハに示したような矩形、円形、六角形等任意の形状の金
属製パイプの壁面に小穴1をあけた通気性金属パイプ5
が適用される。又通気性金属パイプ及び通気性金属シー
トにあける小穴の径はあまり小さいとガスが十分に抜け
ず、又大きすぎると加熱処理の際に溶融した原料物質が
漏れ出るので、0.1〜111mφ程度の大きさにする
のが好ましい。又前記金属製シート又は金属製パイプ壁
面にあける小穴の占積率は5%未満ではガス放出が十分
になされず40%を超えると通気性パイプの強度が低下
するので、5〜40%の範囲が好ましい。
The permeable metal pipe used in the method of the present invention includes
A breathable metal pipe 5 with a small hole 1 drilled in the wall of a metal pipe of any shape such as rectangular, circular, hexagonal, etc. as shown in C.
applies. Also, if the diameter of the small hole drilled in the breathable metal pipe or breathable metal sheet is too small, gas will not be able to escape sufficiently, and if it is too large, the molten raw material will leak out during heat treatment, so the diameter of the small hole should be about 0.1 to 111 mφ. It is preferable to set the size to . In addition, if the space factor of the small holes drilled in the wall of the metal sheet or metal pipe is less than 5%, sufficient gas release will not be achieved, and if it exceeds 40%, the strength of the breathable pipe will decrease, so it should be in the range of 5 to 40%. is preferred.

本発明方法において、形成する複合ビレットの形状は、
その態様例を第1図ホ、へにそれぞれ示したように、断
面が円形の金属製パイプ8内に、断面が金属製パイプ8
とそれぞれ相似形の通気性金属パイプ5を間隔をあけて
同心状に配置し、上し 複合シて配置シものである。
In the method of the present invention, the shape of the composite billet to be formed is as follows:
As shown in FIG.
Air permeable metal pipes 5 of similar shapes are arranged concentrically at intervals, and are arranged in a composite structure.

尚、最外周の金属製パイプと最内層の通気性金属パイプ
とは、必ずしも相似形である必要はない。
Note that the outermost metal pipe and the innermost permeable metal pipe do not necessarily have to be similar in shape.

本発明方法で用いる原料物質としては、前述のBl系、
Y系、71系等のセラミックス超電導体が広く適用され
るに加えて、上記セラミックス超電導体の前駆物質であ
るセラミックス超電導体に合成されるまでの中間体、例
えばセラミックス超電導体構成元素の酸化物や炭酸塩等
の混合体又は共沈混合物又は酸素欠損型複合酸化物又は
上記構成元素の合金等の粉末等が使用可能で、これらの
前駆物質は酸素含有雰囲気中で加熱処理することにより
セラミックス超電導体に反応するものである。
The raw materials used in the method of the present invention include the above-mentioned Bl-based materials,
In addition to the wide application of ceramic superconductors such as Y series and 71 series, intermediates used in the synthesis of ceramic superconductors, which are precursors of the above ceramic superconductors, such as oxides of constituent elements of ceramic superconductors, etc. Powders such as mixtures or coprecipitated mixtures of carbonates, oxygen-deficient composite oxides, or alloys of the above constituent elements can be used, and these precursors can be heated in an oxygen-containing atmosphere to form ceramic superconductors. It is something that reacts to.

而して、上記原料物質を通気性金属シート上に形成する
方法としては、例えば前記の酸化物、炭酸塩等の一次原
料物質を所定量配合し混合し、この混合粉体を加熱処理
して仮焼成粉となし、この仮焼成粉をバインダーと混練
してスラリーとなし、これをドクターブレード法により
シート状に成形してグリーンシートとなし、このグリー
ンシートを通気性金属シート上に重ね合わせ、これを軽
圧延して密着させる方法等が通用される。
As a method for forming the above-mentioned raw materials on a breathable metal sheet, for example, a predetermined amount of the above-mentioned primary raw materials such as oxides and carbonates are blended and mixed, and this mixed powder is heat-treated. This calcined powder is kneaded with a binder to form a slurry, which is formed into a sheet by a doctor blade method to form a green sheet, and this green sheet is stacked on a breathable metal sheet. A method of lightly rolling this to make it stick together is commonly used.

又本発明では、複合シートは、通気性金属シートの両側
に原料物質層を形成して作成しても差支えない。又小穴
をあけてない金属製シートを用いた複合シートを最外層
に配置して、これを金属製パイプに充填せずにそのま\
複合ビレットとして用いても良い。
Further, in the present invention, the composite sheet may be created by forming raw material layers on both sides of a breathable metal sheet. In addition, a composite sheet using a metal sheet without small holes is placed on the outermost layer, and it can be placed as is without filling the metal pipe.
It may also be used as a composite billet.

本発明方法で用いる通気性金属シート又は通気性金属パ
イプには、上述のような小穴を多数あけた金属製シート
又は金属製パイプの他、目の細かいメツシュ又はネット
等をシート状又はパイプ状に成形したものを用いること
も可能である。
The breathable metal sheet or pipe used in the method of the present invention includes a metal sheet or metal pipe with many small holes as described above, as well as a sheet or pipe made of fine mesh or net. It is also possible to use a molded product.

本発明方法において、複合ビレットに施す伸延加工は、
伸延加工後得られる複合線状体に中空部が残る程度の減
面加工率をもってなす必要がある。
In the method of the present invention, the stretching process applied to the composite billet is
It is necessary to reduce the area by such a degree that a hollow portion remains in the composite linear body obtained after drawing.

又前記伸延加工には前述の如き、従来の任意の加工法が
適用される。
Further, any conventional processing method as described above can be applied to the stretching process.

本発明方法で用いる前記金属製パイプ又は通気性金属シ
ート又は通気性金属パイプの材料としては、Ag、Cu
又はその合金が、熱・電気伝導性等に優れていて好まし
い材料であるが、とりわけAg又はその合金が酸素の透
過性に優れるので好ましい。又Ag合金の中にあっては
Ag−Au。
Materials for the metal pipe, breathable metal sheet, or breathable metal pipe used in the method of the present invention include Ag, Cu,
Ag or an alloy thereof is a preferable material since it has excellent thermal and electrical conductivity, and Ag or an alloy thereof is particularly preferable because it has excellent oxygen permeability. Among Ag alloys, there is Ag-Au.

Ag−Pd、Ag−Rh、Ag−Pt等がセラミックス
超電導体と非反応性の為特に通している。
Ag-Pd, Ag-Rh, Ag-Pt, etc. are particularly allowed to pass through because they are non-reactive with ceramic superconductors.

〔作用〕[Effect]

本発明方法では、通気性金属シート上に原料物質を層状
に形成して複合シートとなし、この複合シートを原料物
質層を内側にして通気性金属パイプ上に渦巻状に巻上げ
て、又は同心筒状に成形して、渦巻状巻回体又は同心筒
状体となし、これを金属製パイプ内に充填して複合ビレ
ットとなし、次いでこの複合ビレットに伸延加工を施し
て、中空部を有する複合線状体となして加熱処理するの
で、加熱処理時に原料物質から発生するガスは、通気性
金属シート及び通気性金属パイプの小穴及び中空部を通
って外部に抜は出る。従って最外層の金属製パイプに膨
れを生しることがなく形状並びに超電導特性に優れたセ
ラミンクス超電導々体が得られる。又複合ビレットの外
周には、小穴のない金属製パイプを用いるので、得られ
るセラミックス超電導々体は外観の優れたものとなる。
In the method of the present invention, a raw material is formed in layers on a breathable metal sheet to form a composite sheet, and this composite sheet is rolled up in a spiral shape on a breathable metal pipe with the raw material layer inside, or in a concentric tube. This is formed into a spirally wound body or a concentric cylindrical body, which is then filled into a metal pipe to form a composite billet, and then this composite billet is stretched to form a composite having a hollow part. Since the linear body is heat-treated, the gas generated from the raw material during the heat treatment is extracted to the outside through the small holes and hollow portions of the breathable metal sheet and the breathable metal pipe. Therefore, a ceramic superconductor with excellent shape and superconducting properties can be obtained without causing any bulges in the outermost layer of the metal pipe. Furthermore, since a metal pipe without small holes is used for the outer periphery of the composite billet, the resulting ceramic superconductor has an excellent appearance.

〔実施例〕〔Example〕

以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

実施例I BjzOz 、5rCO,、CaCO3,CaOの粉末
をBi :Sr :Ca :Cuが原子比で2=2:l
:2になるように配合し混合したのち、大気中で800
’CX20時間加熱し、これを粉砕して仮焼成粉となし
、次いでこれをバインダーと混練してスラリーとなし、
このスラリーをドクターブレード法により厚さ0.2m
mのグリーンシートに成形した。
Example I BjzOz, 5rCO, CaCO3, CaO powder in an atomic ratio of Bi:Sr:Ca:Cu of 2=2:l
: After blending and mixing so that the ratio is 2, 800
'CX heated for 20 hours, pulverized to make a calcined powder, then kneaded with a binder to make a slurry,
This slurry was made into a thickness of 0.2m using the doctor blade method.
It was molded into a green sheet of m.

他方、厚さ0.2ml1のAg製シートに多数の小穴を
等間隔にあけた通気性Agシートを作製し、この通気性
Agシートに前記のグリーンシートを重ね合わせ軽く圧
延して密着せしめて厚さ0.4mmの複合ノートとなし
、この複合シートを等間隔に多数の小穴をあけた外径5
1/内径4.5 mmのAg製の通気性パイプ上に原料
物質層を内側エコして10層に巻き上げて渦巻状巻回体
とな巳、この渦巻状巻回体を外径18問、内径15mm
のAg製パイプ内乙こ充填して複合ビレ、トを作製した
。次にこの複合ヒレ、トにスェージング加工を施して4
mmφの中空部を有する外径14mmの複合線状体を製
造した。
On the other hand, a breathable Ag sheet with a thickness of 0.2 ml1 was prepared with a large number of small holes made at regular intervals, and the above-mentioned green sheet was overlaid on this breathable Ag sheet and lightly rolled to make them adhere to each other. It is made into a composite notebook with a diameter of 0.4 mm, and this composite sheet is made with an outer diameter of 5 mm with many small holes made at equal intervals.
1/ A layer of raw material is placed on an Ag breathable pipe with an inner diameter of 4.5 mm and wound up into 10 layers to form a spirally wound body. Inner diameter 15mm
A composite fillet was prepared by filling the inside of the Ag pipe. Next, apply swaging to this composite fin and
A composite linear body having an outer diameter of 14 mm and having a hollow portion of mmφ was manufactured.

実施例2 実施例1で作製した複合シートを、外径がそれぞれ8,
7.6amの3本の円筒状体に成形し、これらの円筒状
体を外径5mm、内径4.51の通気性Agパイプ上に
同心状に配置して同心円筒状体となし、この同心円筒状
体を外径10mm 、内径81のAg製パイプ内に充填
して複合ビレ、トを作製した。次に前記複合ビレットに
スェージング加工を施して、3mmφの中空部を有する
外径61の複合線状体を製造した。
Example 2 The composite sheets produced in Example 1 were
Three cylindrical bodies with a diameter of 7.6 am were formed, and these cylindrical bodies were arranged concentrically on a breathable Ag pipe with an outer diameter of 5 mm and an inner diameter of 4.51 mm to form a concentric cylindrical body. The cylindrical body was filled into an Ag pipe having an outer diameter of 10 mm and an inner diameter of 81 mm to produce a composite fillet. Next, the composite billet was subjected to a swaging process to produce a composite linear body having an outer diameter of 61 and having a hollow portion of 3 mmφ.

尚、上記実施例1〜2において、通気性Agシート及び
通気性Agパイプにあけた小穴の径と占積率は第1表に
示した如く種々に変化させた。
In Examples 1 and 2, the diameter and space factor of the small holes formed in the breathable Ag sheet and the breathable Ag pipe were varied as shown in Table 1.

比較例1.2 実施例1又は2において、複合シートの作製に用いた通
気性Agシートに代えて、小穴をあけてないAg製シー
トを用いた他は、実施例1又は2とそれぞれ同し方法に
より中空状の複合線状体を製造した。
Comparative Example 1.2 Same as Example 1 or 2, respectively, except that an Ag sheet without small holes was used in place of the breathable Ag sheet used to prepare the composite sheet. A hollow composite linear body was manufactured by this method.

比較例3.4 実施例1又は2において、複合シートの作製に用いた通
気性Agシート及び通気性Agパイプに代えて、それぞ
れ小穴をあけてないAg製シート及びAg製パイプを用
いた他は、実施例1又は2と同じ方法により中空状の複
合線状体を製造した。
Comparative Example 3.4 In Example 1 or 2, an Ag sheet and an Ag pipe without small holes were used instead of the breathable Ag sheet and breathable Ag pipe used to produce the composite sheet, respectively. A hollow composite linear body was manufactured by the same method as in Example 1 or 2.

このようにして得られた各々の複合線状体を、大気中に
て850″C×50時間の加熱処理を施して、セラミッ
クス超電導々体となした。
Each of the composite linear bodies thus obtained was subjected to a heat treatment of 850''C x 50 hours in the atmosphere to form a ceramic superconductor.

得られたセラミックス超を導々体について、形状調査並
びに臨界電流密度(Jc)の測定を行った。結果は第1
表に示した。
The shape of the obtained ceramic conductor was investigated and the critical current density (Jc) was measured. The result is the first
Shown in the table.

第1表より明らかなように、本発明方法品(N。As is clear from Table 1, the product produced by the method of the present invention (N.

1〜16)は、殆ど膨れが生ぜず、形状がほぼ良好で、
Jcも高い1直のものであった。
1 to 16), almost no swelling occurred and the shape was almost good,
It was a first shift job with a high Jc.

本発明方法品の中にあって、No、 6〜7.14〜1
5は、通気性Agシート及び通気性Agパイプの小穴径
又は小穴占積率が大きすぎて、内部のセラミ・ノクス超
電導体が漏れ出たり、或いは内層の通気性Agパイプの
強度がもたずに中空部が変形したりして、セラミックス
超電導体層の密度が低下し、又Nα8,16は小穴径及
び占積率が小さすぎてガスが十分抜けずに、僅かながら
膨れを生し、いずれもJcが幾分低めの値となった。
Among the method products of the present invention, No. 6-7.14-1
5 is that the hole diameter or hole space factor of the breathable Ag sheet and the breathable Ag pipe is too large, causing the internal Ceraminox superconductor to leak out, or the strength of the inner layer of the breathable Ag pipe to be insufficient. The hollow part may be deformed, and the density of the ceramic superconductor layer will decrease. Also, the small hole diameter and space factor of Nα8 and Nα16 are too small, so gas cannot escape sufficiently, causing a slight bulge. The value of Jc was also somewhat low.

他方、比較方法品のNα17.18は、通気性Agパイ
プに近い原料物質のガスが抜けただけで大部分のガスが
抜けずに残り、又Nci19.20はガスが全く抜けな
かった為、いずれにも膨れが発生し又Jcが大幅に低下
した。
On the other hand, for the comparison method product Nα17.18, most of the gas remained without escaping even though the gas from the raw material near the breathable Ag pipe escaped, and for Nci 19.20, no gas escaped at all. Blistering also occurred, and Jc decreased significantly.

尚、上記実施例では、Bi系超超電導体場合について説
明したが、本発明方法は他のセラミックス超電導体に適
用しても同様の効果を発現するもので、特に、原料物質
を半溶融状態以上の温度に加熱して反応させる場合は原
#J物質からのガス発生が多い為、本庄の効果が顕著に
現れる。
In the above example, the case of a Bi-based superconductor was explained, but the method of the present invention can also be applied to other ceramic superconductors to achieve similar effects. When the reaction is carried out by heating to a temperature of , there is a lot of gas generated from the original #J substance, so Honjo's effect becomes noticeable.

〔効果] 以上述べたように、本発明方法によれば、形状が良好で
、超電導特性に優れ、特に大容量通電に通したセラミ/
ジス超電導々体を容易エコ製造することができ、工業上
顕著な効果を奏する。
[Effects] As described above, according to the method of the present invention, the ceramic/
The DIS superconductor can be easily and eco-manufactured and has remarkable industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イ〜チは本発明の態様例を示す工程説明回、第2
図イ〜ハは本発明にて用いる通気性パイプの態様例を示
すそれぞれ斜視図、第3図は従来のセラミックス超電導
体の断面図である。 ■・・・小穴、 2・・・通気性金属シート、 3山原
料物質層、 4・・複合シート、 訃・・通気性金属パ
イプ、 6・・・渦巻状巻回体、 7・・・同心筒状体
、8・・・金属製パイプ、  9・・・複合ビレット、
 1o・・・中空部、 11.21・・・複合線状体、
 12・・・セラミックス超電導体層、 I3・・・金
属被覆層、 14川空洞。 特許出願人   古河電気工業株式会社第1図 第1図
Figures 1 to 1 are process explanations showing embodiments of the present invention;
Figures A to C are perspective views showing embodiments of a permeable pipe used in the present invention, and Figure 3 is a cross-sectional view of a conventional ceramic superconductor. ■...Small hole, 2...Breathable metal sheet, 3-layer raw material layer, 4...Composite sheet, End...Breathable metal pipe, 6...Spiral winding body, 7...Concentric Cylindrical body, 8... Metal pipe, 9... Composite billet,
1o...Hollow part, 11.21...Composite linear body,
12... Ceramic superconductor layer, I3... Metal coating layer, 14 River cavity. Patent applicant Furukawa Electric Co., Ltd. Figure 1 Figure 1

Claims (1)

【特許請求の範囲】[Claims] 通気性を付与した金属製シート上にセラミックス超電導
体となし得る原料物質を層状に形成して複合シートとな
し、次いで前記複合シートを、壁面に通気性を付与した
金属製パイプ上に、原料物質層を内側にして、渦巻状に
巻き上げて巻回体とするか又は同心筒状体に成形し、次
いで前記渦巻状巻回体又は同心筒状体を金属製パイプ内
に充填して複合ビレットとなし、しかるのち前記複合ビ
レットに伸延加工を施して中空部を有する複合線状体と
なし、次いで前記複合線状体に所定の加熱処理を施すこ
とを特徴とするセラミックス超電導々体の製造方法。
A composite sheet is formed by forming a layer of raw material that can be used as a ceramic superconductor on a metal sheet with air permeability, and then the composite sheet is placed on a metal pipe whose wall surface is made of air permeable material. With the layer on the inside, it is wound into a spiral shape or formed into a concentric cylindrical body, and then the spirally wound body or concentric cylindrical body is filled into a metal pipe to form a composite billet. A method for producing a ceramic superconductor, comprising: first subjecting the composite billet to elongation processing to form a composite linear body having a hollow portion, and then subjecting the composite linear body to a predetermined heat treatment.
JP2301936A 1990-11-07 1990-11-07 Manufacture of ceramic superconductor Pending JPH04174913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2301936A JPH04174913A (en) 1990-11-07 1990-11-07 Manufacture of ceramic superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2301936A JPH04174913A (en) 1990-11-07 1990-11-07 Manufacture of ceramic superconductor

Publications (1)

Publication Number Publication Date
JPH04174913A true JPH04174913A (en) 1992-06-23

Family

ID=17902894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2301936A Pending JPH04174913A (en) 1990-11-07 1990-11-07 Manufacture of ceramic superconductor

Country Status (1)

Country Link
JP (1) JPH04174913A (en)

Similar Documents

Publication Publication Date Title
EP0281444B1 (en) Process for manufacturing a superconducting wire of compound oxide-type ceramic
AU779553B2 (en) Oxide high-temperature superconducting wire and method of producing the same
JPH04174913A (en) Manufacture of ceramic superconductor
JP3011962B2 (en) Method for manufacturing multi-core or multilayer ceramic superconductor
JPH0395806A (en) Superconductive conductor, its manufacture and superconducting coil formed by using the same superconductive conductor
JPH05144332A (en) Ceramic superconductor
JPH05334921A (en) Ceramic superconductor
JPH04196015A (en) Ceramic superconductive wire
JP3029153B2 (en) Manufacturing method of multilayer ceramic superconductor
JPH05151843A (en) Manufacture of angular cross-section type multilayer ceramic superconductive conductor
JPH04337213A (en) Manufacture of multi-layer ceramic superconductor
JPH04171612A (en) Manufacture of ceramic superconductive body
US6451742B1 (en) High temperature superconducting composite conductor and method for manufacturing the same
JPH0668729A (en) Manufacture of multilayer ceramic superconducting conductor
JPH05166426A (en) Manufacture for ceramics superconductor
JPH04155715A (en) Manufacture of ceramic superconductor
JPH04249812A (en) Manufacture of tape-shaped ceramic superconducting wire rod
JPH03291812A (en) Manufacture of ceramic superconductor
JPS63264821A (en) Manufacture of oxide superconductive wire
JPH05182540A (en) Manufacture of ceramics superconductive conductor
JPH04179006A (en) Manufacture of ceramic superconductive wire materials
JPH0279310A (en) Manufacture of oxide superconductive wire
JPH0528847A (en) Ceramic superconductor
JPH01169815A (en) Manufacture of superconductive cable with high critical current density
JPH03291813A (en) Manufacture of ceramic superconductor