JPH05182540A - Manufacture of ceramics superconductive conductor - Google Patents

Manufacture of ceramics superconductive conductor

Info

Publication number
JPH05182540A
JPH05182540A JP4019542A JP1954292A JPH05182540A JP H05182540 A JPH05182540 A JP H05182540A JP 4019542 A JP4019542 A JP 4019542A JP 1954292 A JP1954292 A JP 1954292A JP H05182540 A JPH05182540 A JP H05182540A
Authority
JP
Japan
Prior art keywords
layer
pipe
composite
composite billet
billet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4019542A
Other languages
Japanese (ja)
Inventor
Sukeyuki Kikuchi
祐行 菊地
Kiyoshi Nemoto
清 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4019542A priority Critical patent/JPH05182540A/en
Publication of JPH05182540A publication Critical patent/JPH05182540A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To reduce dispersion and improving a superconductive characteristic in a magnetic field by using a thin wall pipe, which satisfies the thickness of a metallic pipe with a prescribed expression, for the metallic pipe making an inner layer excepting the outermost layer of a multilayer composite billet. CONSTITUTION:A thin wall pipe, where the thickness (t) of a metallic pipe satisfies the following formula: 0.05D<=t<=0.02D (D indicates an outer diameter of the metallic pipe), is used for the metallic pipe making an inner layer excepting the outermost layer of a multilayer composite billet. Then, at the time of performing drawing processing on a multilayer composite beam, this thin wall pipe is broken so as to fully and uniformly transmit compressive force of drawing processing to a raw material layer while dispersing broken pieces in a raw material layer in a corpuscular state in order to give a pinning effect of a magnetic flux for improving a superconductive characteristic under a magnetic field. Thereby, a substance, where Ag particles 3 and oxide particles 4 of a metal are dispersed in a ceramics superconductor layer 2, for instance, inside a metallic sheath 1, can be obtained so that dispersion can be reduced while improving a superconductive characteristic in a magnetic field.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導特性に優れ、マ
グネットやケーブル等の導体として好適な多層セラミッ
クス超電導々体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a multilayer ceramic superconducting body which has excellent superconducting properties and is suitable as a conductor for magnets and cables.

【0002】[0002]

【従来の技術】近年、液体窒素温度で超電導を示すY−
Ba−Cu−O系,Bi−(Pb)−Sr−Ca−Cu
−O系,Tl−Ba−Ca−Cu−O系等のセラミック
ス超電導体が見出され、各分野で実用化研究が進められ
ている。ところでこれらのセラミックス超電導体は脆い
為、これらを線材等に加工するには、加工性に富んだA
g等の金属製パイプにセラミックス超電導体となし得る
原料物質(以下、原料物質と略記する。)を充填して複
合ビレットとなし、この複合ビレットを延伸加工して所
望形状の線素材となし、この線素材に所定の加熱処理を
施して前記原料物質を超電導体に反応させる複合加工法
が用いられている。この複合加工法では、前記の線素材
は円形,楕円形,四角形,テープ状等任意の断面形状に
加工される。そして例えば、前記のテープ状の線素材
は、この複数枚を平行に又は同心状に又は渦巻状に積層
し、次にこれらの積層体を別に用意した純Ag製パイプ
内に充填して多層複合ビレットとなし、これらの多層複
合ビレットに前述と同じように延伸加工と加熱処理を施
してセラミックス超電導々体が製造されていた。
2. Description of the Related Art In recent years, Y- which exhibits superconductivity at liquid nitrogen temperature
Ba-Cu-O system, Bi- (Pb) -Sr-Ca-Cu
Ceramic superconductors such as -O type and Tl-Ba-Ca-Cu-O type have been found, and researches for practical use have been advanced in various fields. By the way, since these ceramic superconductors are fragile, it is necessary to process them into a wire or the like, which has a high workability.
A metal pipe such as g is filled with a raw material (hereinafter abbreviated as raw material) capable of forming a ceramics superconductor to form a composite billet, and the composite billet is drawn to form a wire material having a desired shape. A composite processing method is used in which the raw material is reacted with a superconductor by subjecting the wire material to a predetermined heat treatment. In this composite processing method, the wire material is processed into an arbitrary cross-sectional shape such as a circle, an ellipse, a quadrangle, or a tape. Then, for example, the tape-shaped wire material is laminated in a plurality of layers in parallel, concentrically or spirally, and then these laminated bodies are filled in a separately prepared pipe made of Ag to obtain a multilayer composite. A billet was not formed, and these multilayer composite billets were subjected to a stretching process and a heat treatment in the same manner as described above to manufacture a ceramics superconducting body.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述の
ようにして製造されるセラミックス超電導々体は、原料
物質層が金属製パイプを介して延伸加工される為、延伸
加工の際の圧縮力が原料物質層に十分に且つ均一に掛か
り難く、従って得られるセラミックス超電導々体は超電
導特性が低くなりがちな上、バラツキが大きく、しかも
磁場下での超電導特性が著しく低下するという問題があ
った。
However, in the ceramic superconducting body manufactured as described above, since the raw material layer is drawn through the metal pipe, the compressive force at the time of drawing is the raw material. There is a problem that it is difficult to satisfactorily and uniformly apply to the material layer, and thus the obtained ceramic superconducting body tends to have a low superconducting property, has large variations, and the superconducting property under a magnetic field remarkably deteriorates.

【0004】[0004]

【課題を解決するための手段】本発明は、かかる状況に
鑑み鋭意研究を行った結果なされたものでその目的とす
るところは、超電導特性に優れたセラミックス超電導々
体の製造方法を提供することにある。即ち、本発明は、
金属製パイプ内にセラミックス超電導体となし得る原料
物質を充填して複合ビレットとなし、次いでこの複合ビ
レットを延伸加工して複合素材となし、次いで前記複合
素材を金属製パイプ内に充填して複合ビレットとなし、
この複合ビレットを延伸加工して複合素材となす工程を
所望回繰返し施したのち、得られた複合素材を金属製パ
イプ内に充填して多層複合ビレットとなし、この多層複
合ビレットに延伸加工を施して多層複合線材となし、次
いでこの多層複合線材に所定の加熱処理を施すセラミッ
クス超電導々体の製造方法において、多層複合ビレット
の最外層を除く内層となす金属製パイプに、金属製パイ
プの厚さtが、次式、0.05D≧t≧0.02D(但し、Dは
金属製パイプの外径。)を満足する薄肉パイプを用いる
ことを特徴とするものである。
DISCLOSURE OF THE INVENTION The present invention has been made as a result of intensive studies in view of the above circumstances, and an object thereof is to provide a method for producing a ceramic superconducting body having excellent superconducting properties. It is in. That is, the present invention is
A metal bill is filled with a raw material that can be a ceramics superconductor to form a composite billet, and then this composite billet is drawn to form a composite material, and then the composite material is filled into a metal pipe to form a composite. With billet,
After repeatedly performing the step of stretching this composite billet to form a composite material as many times as desired, the obtained composite material is filled into a metal pipe to form a multi-layer composite billet, and the multi-layer composite billet is stretched. To form a multilayer composite wire rod, and then subject this multilayer composite wire to a predetermined heat treatment to produce a ceramic superconducting body.In the method of manufacturing a ceramic superconducting body, the metal pipe to be the inner layer excluding the outermost layer of the multilayer composite billet It is characterized by using a thin-walled pipe in which t satisfies the following equation: 0.05D ≧ t ≧ 0.02D (where D is the outer diameter of the metal pipe).

【0005】本発明方法は、多層複合線材を充填した多
層複合ビレットの内部に位置する内層の金属製パイプに
特定範囲厚さ内の薄肉の金属製パイプ(以下、薄肉パイ
プと略記する。)を用いて、前記多層複合ビレットを延
伸加工する際に前記の薄肉パイプを破砕せしめて、原料
物質層に延伸加工の圧縮力を十分に且つ均一に伝達さ
せ、且つ前記薄肉パイプの破砕片を原料物質層中に粒子
状に分散させて、得られるセラミックス超電導々体に、
前記粒子状物による磁束のピンニング効果を持たせて、
磁場下での超電導特性を向上させるようにしたものであ
る。本発明方法において、前記の内層に用いる薄肉パイ
プの肉厚tを、0.05D≧t≧0.02D(但し、Dは金属製
パイプの外径。)の式を満足する厚さに限定した理由
は、薄肉パイプの肉厚tが0.05Dを超える厚さでは、延
伸加工時に金属製パイプが十分に破砕せず、その結果延
伸加工の圧縮力が原料物質層に均等に伝達されず又前記
パイプの破砕片が粒子状に分散しない為であり、又tが
0.02D未満の厚さでは、外層の金属製ビレットが延伸加
工途中で破砕し過ぎて、複合ビレットを所定形状にまで
延伸加工できなくなる為である。
In the method of the present invention, a thin-walled metal pipe (hereinafter abbreviated as thin-walled pipe) within a specific range of thickness is used as the inner-layer metal pipe located inside the multi-layer composite billet filled with the multi-layer composite wire. Using the crushed thin-walled pipe during the drawing process of the multilayer composite billet to transmit the compressive force of the drawing process to the raw material layer sufficiently and uniformly, and the crushed pieces of the thin-walled pipe to the raw material. Dispersed in a layer in the form of particles, the resulting ceramic superconductor,
With the pinning effect of magnetic flux by the particulate matter,
It is intended to improve the superconducting property under a magnetic field. In the method of the present invention, the reason why the wall thickness t of the thin-walled pipe used for the inner layer is limited to the thickness satisfying the equation of 0.05D ≧ t ≧ 0.02D (where D is the outer diameter of the metal pipe). When the wall thickness t of the thin-walled pipe is more than 0.05D, the metal pipe is not sufficiently crushed during the stretching process, so that the compressive force of the stretching process is not evenly transmitted to the raw material layer and This is because the crushed pieces do not disperse into particles, and t is
This is because if the thickness is less than 0.02D, the metal billet of the outer layer is crushed too much during the stretching process and the composite billet cannot be stretched to a predetermined shape.

【0006】本発明方法において、内層に用いる薄肉パ
イプには任意の金属材料が用いられるが、Ag,Mg,
Al又はこれらの合金が、得られる超電導体の結晶配向
性又は磁束のピンニング効果を著しく高め好ましい。又
最外層となす金属製パイプの材料には酸素透過性に優れ
たAg又はAg合金を用いるのが、得られるセラミック
ス超電導々体の特性が向上して好ましい。前記に例示し
た薄肉パイプの材料のうち、Agは金属粒子として、又
MgとAlは酸化物粒子としてセラミックス超電導体層
中に分散して、各々磁束をピンニングする作用を果た
し、又Ag粒子は、セラミックス超電導体層の結晶配向
性を高める作用をも果たすものである。尚、MgやAl
の酸化物粒子は脆い為微細化し易く、磁束のピンニング
効果がAg粒子より大きい。従って薄肉パイプには、A
g製のものとMg製のもの、又はAg製のものとAl製
のものというように組合わせて、Ag粒子でセラミック
ス超電導体層の結晶配向性を高め、他の酸化物粒子で磁
束をより強くピンニングするというように効果を相乗さ
せるのが良い。図1に本発明方法にて製造したセラミッ
クス超電導々体の態様例を示す縦断面図を示した。金属
製シース1内のセラミックス超電導体層2中に、Ag粒
子3及び酸化物粒子4が分散したものである。
In the method of the present invention, an arbitrary metal material is used for the thin pipe used for the inner layer.
Al or an alloy thereof is preferable because it significantly enhances the crystal orientation of the obtained superconductor or the pinning effect of the magnetic flux. Further, it is preferable to use Ag or Ag alloy having excellent oxygen permeability as the material of the metal pipe which is the outermost layer, because the characteristics of the resulting ceramic superconductor are improved. Among the materials of the thin pipes exemplified above, Ag is dispersed as metal particles, and Mg and Al are dispersed as oxide particles in the ceramic superconducting layer, and each serves to pin the magnetic flux. It also serves to enhance the crystal orientation of the ceramic superconductor layer. In addition, Mg and Al
Since the oxide particles of No. 3 are brittle, they are easily miniaturized, and the pinning effect of magnetic flux is larger than that of Ag particles. Therefore, for thin pipes, A
In order to increase the crystal orientation of the ceramic superconducting layer with Ag particles and increase the magnetic flux with other oxide particles, a combination of g and Mg, or Ag and Al is used. It is good to make the effects synergistic, such as strong pinning. FIG. 1 shows a longitudinal sectional view showing an example of the embodiment of the ceramic superconductor manufactured by the method of the present invention. The Ag particles 3 and the oxide particles 4 are dispersed in the ceramic superconductor layer 2 in the metal sheath 1.

【0007】本発明方法において、原料物質には、前述
のY系、Bi系、Tl系等のセラミックス超電導体を始
め、酸素含有雰囲気中で加熱処理することによりセラミ
ックス超電導体に反応する中間体、例えばセラミックス
超電導体の構成元素の混合体、又は共沈混合物、又は前
記構成元素の酸化物又は炭酸塩の一次原料粉を各々所定
量配合し混合して混合原料となし、この混合原料を仮焼
成した酸素欠損型複合酸化物等が用いられる。又最内層
の薄肉パイプに原料物質を充填するには、原料物質をそ
のままタッピング等により充填する方法の他、原料物質
を予めCIP法等により所定形状に圧縮成形したり、或
いはこの成形体を更に加熱焼結してから充填する方法が
用いられる。このように予め原料物質を成形体や焼結体
に加工してから充填すると、得られるセラミックス超電
導々体は密度が高まり、Jc等の特性が一段と向上す
る。金属製パイプに複合線材や多層複合線材を充填する
場合にも、これら線材に、予めCIP処理を施しておく
のが望ましい。
In the method of the present invention, the raw materials include the above-mentioned Y-based, Bi-based, Tl-based ceramics superconductors, and intermediates that react with the ceramics superconductor by heat treatment in an oxygen-containing atmosphere, For example, a mixture of constituent elements of a ceramics superconductor, or a coprecipitation mixture, or primary raw material powders of oxides or carbonates of the above constituent elements are mixed in predetermined amounts to form a mixed raw material, and the mixed raw material is calcinated. Oxygen-deficient complex oxides are used. Further, in order to fill the raw material into the thin-walled pipe of the innermost layer, in addition to the method of filling the raw material as it is by tapping or the like, the raw material may be previously compression-molded into a predetermined shape by the CIP method, or A method of filling after heating and sintering is used. When the raw material is previously processed into a molded body or a sintered body in this manner and then filled, the resulting ceramic superconducting body has a higher density and the characteristics such as Jc are further improved. When filling a metal pipe with a composite wire or a multi-layer composite wire, it is desirable to subject these wires to CIP treatment in advance.

【0008】本発明方法において、前述の多層複合ビレ
ットに施す延伸加工には、押出、引抜き、スエージン
グ、圧延、鍛造、プレス圧縮等の任意の加工法が適用で
きるが、圧延法又はプレス圧縮法が超電導体層の密度を
より高めることができて好ましい。又最後の多層複合線
材に施す加熱処理は原料物質をセラミックス超電導体に
反応させる為に行うもので、その加熱温度は、例えばB
i系セラミックス超電導体の場合は通常820〜885
℃の温度範囲である。又前記の加熱処理は、多層テープ
線材をマグネットコイル等に成形したあと施した方が内
部のセラミックス超電導体層に割れ等が入り難く好まし
い。
In the method of the present invention, the stretching process applied to the above-mentioned multi-layer composite billet can be carried out by any process such as extrusion, drawing, swaging, rolling, forging and press compression. Is preferable since it can further increase the density of the superconductor layer. The final heat treatment applied to the multi-layer composite wire is to react the raw material with the ceramic superconductor, and the heating temperature is, for example, B
In the case of i-based ceramics superconductor, it is usually 820-885.
The temperature range is ° C. Further, it is preferable that the above-mentioned heat treatment is performed after the multilayer tape wire is molded into a magnet coil or the like because cracks and the like are less likely to occur in the internal ceramics superconductor layer.

【0009】[0009]

【作用】本発明方法では、最外層以外の内層となす金属
製パイプに特定範囲厚さ内の薄肉の金属製パイプを用い
るので、原料物質と前記薄肉パイプにより構成される多
層複合ビレットは延伸加工時に薄肉パイプが破砕して、
延伸加工の圧縮力が原料物質層に十分に且つ均一に伝達
され、得られるセラミックス超電導々体は密度や結晶配
向性が均一化して、超電導特性のバラツキが減少する。
又前記の破砕された内層パイプは金属粒子又は酸化物粒
子としてセラミックス超電導体層中に分散し、磁束をピ
ンニングして磁場下での超電導特性の向上に寄与する。
又薄肉パイプにAgを用いるとAg粒子は前記ピンニン
グ効果の他に、超電導体層の結晶配向性を高める作用を
も有し、依って超電導特性は一段と向上したものとな
る。
In the method of the present invention, since a thin metal pipe having a thickness within a specific range is used for the metal pipes other than the outermost layer, the multi-layer composite billet composed of the raw material and the thin pipe is drawn. Sometimes the thin-walled pipe crushes,
The compressive force of the stretching process is sufficiently and uniformly transmitted to the raw material layer, and the obtained ceramic superconducting body has uniform density and crystallographic orientation, which reduces variations in superconducting properties.
The crushed inner layer pipe is dispersed in the ceramic superconductor layer as metal particles or oxide particles to pin the magnetic flux and contribute to the improvement of the superconducting property under the magnetic field.
When Ag is used for the thin pipe, the Ag particles have a function of enhancing the crystal orientation of the superconductor layer, in addition to the pinning effect, so that the superconducting property is further improved.

【0010】[0010]

【実施例】以下に本発明を実施例により詳細に説明す
る。 実施例1 Bi23 ,PbO,SrCO3 ,CaCO3 ,CuO
等の一次原料粉体をそれぞれBi:Pb:Sr:Ca:
Cuが原子比で1.6:0.4:2:2:3 となるように混合し、こ
の混合粉を大気中で 800℃×50時間仮焼成したのち、こ
の仮焼成体を粉砕して仮焼粉となした。次いでこの仮焼
粉をCIP成形して種々外径の棒材となし、この棒材を
肉厚を種々に変えた外径10mmφの高純度Mg製の薄肉
パイプ内に挿入して複合ビレットとなした。次いでこの
複合ビレットをスエージング加工及び圧延加工して幅
4.8mm, 厚さ 0.1mmのテープ線材となした。次にこ
のテープ線材を45枚積層して、肉厚を種々に変えた内径
5.0mm角のAg製薄肉パイプ内に充填して多層複合ビ
レットとなした。次にこの多層複合ビレットを4方ロー
ル及び平ロールにて順次圧延して幅 4.8mm, 厚さ 0.1
mmの多層テープ線材となした。このあと、前記多層テ
ープ線材を薄肉パイプ内に充填して、多層複合ビレット
となし、これを圧延する工程を、薄肉パイプの材質をM
gとAgに交互に変えて9回繰り返し、最後に得られた
多層テープ線材を、外径 5.5mm,内径5.0mmの角型
Ag製パイプに充填して多層複合ビレットとなし、この
多層複合ビレットを4方ロールと平ロールにて順次圧延
して幅5mm,厚さ2mmの多層テープ線材に仕上げ、
この線材に大気中で 840℃× 100時間の加熱処理を施し
てセラミックス超電導々体を製造した。
EXAMPLES The present invention will be described in detail below with reference to examples. Example 1 Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 , CuO
Primary raw material powders such as Bi: Pb: Sr: Ca:
Cu was mixed so that the atomic ratio was 1.6: 0.4: 2: 2: 3, and the mixed powder was calcined in the air at 800 ° C for 50 hours, and then this calcined body was crushed to obtain calcined powder. Done Then, the calcined powder is CIP-molded into rods having various outer diameters, which are inserted into a thin pipe made of high-purity Mg having an outer diameter of 10 mmφ and various thicknesses to form a composite billet. did. This composite billet is then swaged and rolled to
The tape wire rod has a thickness of 4.8 mm and a thickness of 0.1 mm. Next, forty-five pieces of this tape wire material were laminated and the inner diameter was changed with various wall thicknesses.
A 5.0 mm square thin-walled pipe made of Ag was filled into a multilayer composite billet. Next, this multi-layer composite billet was sequentially rolled by a 4-way roll and a flat roll to obtain a width of 4.8 mm and a thickness of 0.1 mm.
mm multi-layer tape wire. Then, the step of filling the multilayer tape wire into a thin pipe to form a multilayer composite billet and rolling the billet
Alternating between g and Ag, repeating 9 times, finally filling the multilayer tape wire rod into a square Ag pipe with an outer diameter of 5.5 mm and an inner diameter of 5.0 mm to form a multi-layer composite billet. Is sequentially rolled with a four-way roll and a flat roll to finish a multilayer tape wire with a width of 5 mm and a thickness of 2 mm.
This wire was heat-treated in the atmosphere at 840 ° C for 100 hours to produce a ceramic superconductor.

【0011】実施例2 種々外径のBi,Pb,Sr,Ca,Cu製棒材を、種
々肉厚の外径10mmφの高純度Mg製薄肉パイプ内にそ
れぞれ挿入して複合ビレットとなし、次いでこの複合ビ
レットにスエージング加工と圧延加工を施して幅 4.8m
mのテープ線材に加工した。テープ線材の厚さは、Bi
又はSr又はCa製棒材を複合したものは 0.1mmに、
Pb又はCu製棒材を複合したものはそれぞれ0.03又は
0.12mmにした。次にこの5種のテープ線材をBi,P
b,Sr,Ca,Cuの順に各々9枚づつ計45枚積層
し、この積層体を肉厚を種々に変えた内径 5.0mmのA
g製薄肉パイプ内に充填して多層複合ビレットとなし、
これを4方ロール及び平ロールにて順次圧延して幅 4.8
mm, 厚さ 0.1mmの多層テープ線材となした。このあ
と前記多層テープ線材を金属製薄肉パイプ内に充填して
多層複合ビレットとなし、これを圧延する工程を薄肉パ
イプの材質をMgとAgに交互に変えて19回繰り返し、
最後に得られた多層テープ線材を、外径 5.5mm,内径
5.0mmの角型Ag製パイプに充填して多層複合ビレッ
トとなした。この多層複合ビレットを4方ロールと平ロ
ールにて順次圧延して幅5mm,厚さ2mmの多層テー
プ線材に仕上げ、この線材に大気中で 840℃× 100時間
の加熱処理を施してセラミックス超電導々体を製造し
た。
Example 2 Bars made of Bi, Pb, Sr, Ca, and Cu having various outer diameters were inserted into thin pipes made of high-purity Mg having various outer diameters of 10 mmφ to form a composite billet. This composite billet is swaged and rolled to a width of 4.8m.
m tape wire. The thickness of the tape wire is Bi
Or a composite of Sr or Ca rods is 0.1 mm,
A composite of Pb or Cu bars is 0.03 or respectively
It was set to 0.12 mm. Next, these five kinds of tape wire materials are Bi, P
B, Sr, Ca, Cu, 9 sheets each, 45 sheets in total, were laminated.
Filling a thin-walled pipe made of g to form a multi-layer composite billet,
Width of 4.8
mm multi-layer tape wire with a thickness of 0.1 mm. Then, the multi-layer tape wire is filled in a thin metal pipe to form a multi-layer composite billet, and the process of rolling this is repeated 19 times by alternately changing the material of the thin pipe to Mg and Ag,
Finally, the multilayer tape wire obtained has an outer diameter of 5.5 mm and an inner diameter of
A 5.0 mm square Ag pipe was filled to form a multilayer composite billet. This multi-layer composite billet is sequentially rolled by a 4-way roll and a flat roll to make a multi-layer tape wire rod with a width of 5 mm and a thickness of 2 mm, and this wire rod is heat-treated at 840 ° C for 100 hours in the atmosphere to obtain ceramic superconductivity. Manufactured body.

【0012】実施例3 実施例1において、内層となす金属製薄肉パイプの全て
にMg製薄肉パイプを用いた他は、実施例1と同じ方法
によりセラミックス超電導々体を製造した。 実施例4 Bi23 ,SrCO3 ,CaCO3 ,CuO等の一次
原料粉体をそれぞれBi:Sr:Ca:Cuが原子比で
2:2:1:2 となるように混合し、この混合粉を大気中で 8
50℃×50時間仮焼成したのち、この仮焼成体を粉砕して
仮焼粉となし、次いでこの仮焼粉をCIP成形して種々
外径の棒材となした。次にこの棒材を肉厚を種々に変え
た外径10mmφの高純度Mg製薄肉パイプ内に充填して
複合ビレットとなし、次いでこの複合ビレットをスエー
ジング加工と圧延加工により幅 4.8mm, 厚さ 0.1mm
のテープ線材となした。次にこのテープ線材を45枚積層
して、肉厚を種々に変えた内径 5.0mm角のAg製パイ
プ内に充填して多層複合ビレットとなし、この多層複合
ビレットを4方ロール及び平ロールにより順次圧延して
幅 4.8mm, 厚さ 0.1mmの多層テープ線材となした。
このあと前記多層テープ線材を金属製パイプ内に充填し
て多層複合ビレットとなし、これを圧延する工程を金属
製パイプの材質をMgとAgに交互に変えて9回繰り返
し、最後に得られた多層テープ線材を、外径 5.5mm,
内径 5.0mmの角型Ag製パイプに充填して多層複合ビ
レットとなし、この多層複合ビレットを4方ロールと平
ロールにて順次圧延して幅5mm,厚さ2mmの多層テ
ープ線材に仕上げ、この線材に大気中で、半溶融状態を
通過させたのち 850℃で50時間保持する加熱処理を施し
てセラミックス超電導々体を製造した。
Example 3 A ceramic superconducting body was manufactured by the same method as in Example 1 except that Mg thin-walled pipes were used for all the metal thin-walled pipes forming the inner layer. Example 4 Primary raw material powders of Bi 2 O 3 , SrCO 3 , CaCO 3 , CuO, etc. were respectively mixed with Bi: Sr: Ca: Cu in an atomic ratio.
2: 2: 1: 2 so that the mixed powder is mixed in the air 8
After calcining at 50 ° C. for 50 hours, the calcined body was crushed to form calcined powder, and then the calcined powder was CIP molded into bars having various outer diameters. Next, this rod was filled into a thin pipe made of high-purity Mg with an outer diameter of 10 mmφ with various wall thicknesses to form a composite billet, and then this composite billet was swaged and rolled to a width of 4.8 mm, thickness. 0.1 mm
It was made into a tape wire rod. Next, 45 tape wire rods were laminated and filled in Ag pipes with 5.0 mm square inner diameter with various wall thicknesses to form a multi-layer composite billet. The multi-layer composite billet was formed by a 4-way roll and a flat roll. Sequential rolling was performed to obtain a multilayer tape wire having a width of 4.8 mm and a thickness of 0.1 mm.
Then, the multi-layer tape wire was filled in a metal pipe to form a multi-layer composite billet, and the process of rolling this was repeated 9 times by alternately changing the material of the metal pipe to Mg and Ag, and finally obtained. Multi-layer tape wire material, outer diameter 5.5mm,
A square Ag pipe with an inner diameter of 5.0 mm was filled to form a multi-layer composite billet, and this multi-layer composite billet was sequentially rolled by a 4-way roll and a flat roll to finish into a multi-layer tape wire rod with a width of 5 mm and a thickness of 2 mm. The wire was passed through a semi-molten state in the air and then heat-treated at 850 ° C for 50 hours to produce a ceramic superconductor.

【0013】実施例5 実施例4において、内層となす金属製パイプのMg製薄
肉パイプに代えて、Al製薄肉パイプを用いた他は、実
施例4と同じ方法により、セラミックス超電導々体を製
造した。 実施例6 実施例2において、種々外径のBi,Sr,Ca,Cu
製棒材を、種々肉厚の外径10mmφの高純度Mg製パイ
プ内にそれぞれ充填して複合ビレットとなし、次いでこ
の複合ビレットを圧延加工して幅 4.8mmのテープ線材
に加工した。テープ線材の厚さは、Bi,Sr,Ca製
棒材を複合したものは 0.12 mmに、Cu製棒材を複合
したものは0.14mmとした。次にこの5種のテープをB
i,Sr,Ca,Cuの順に各々9枚づつ計36枚積層
し、この積層体を肉厚を種々に変えた内径5mm角のA
g製薄肉パイプ内に充填して多層複合ビレットとなし
た。この多層複合ビレットを4方ロール及び平ロールに
より順次圧延して、幅 4.8mm, 厚さ 0.1mmの多層テ
ープ線材となした。このあと前記多層テープ線材を前記
金属製パイプに挿入し、多層複合ビレットとなして圧延
する工程を金属製パイプの材質をMgとAgに交互に変
えて19回繰り返し、最後に得られた多層テープ線材を外
径 5.5mm,内径 5.0mmの角型Ag製パイプに充填し
て多層複合ビレットとなし、この多層複合ビレットを4
方ロールと平ロールにて順次圧延して幅5mm,厚さ2
mmの多層テープ線材に仕上げた。次にこの多層テープ
線材に大気中で 840℃× 100時間の加熱処理を施してセ
ラミックス超電導々体を製造した。このようにして得ら
れた各々の多層セラミックス超電導々体について、液体
窒素中(77K)で臨界電流密度(Jc)を測定した。測
定時の磁場強度は0と1テスラーの2通りに変えた。測
定結果を表1及び表2に示した。
Example 5 A ceramic superconducting body was manufactured by the same method as in Example 4, except that the thin-walled pipe made of Al was used in place of the thin-walled pipe made of Mg as the inner layer. did. Example 6 In Example 2, Bi, Sr, Ca, Cu having various outer diameters were used.
The bar material was filled into high purity Mg pipes having various wall thicknesses and having an outer diameter of 10 mmφ to form a composite billet, and the composite billet was rolled and processed into a tape wire material having a width of 4.8 mm. The thickness of the tape wire rod was 0.12 mm for the composite bar material made of Bi, Sr, and Ca, and 0.14 mm for the composite bar material made of Cu. Next, these 5 types of tape are B
i, Sr, Ca, Cu were laminated in the order of 9 pieces, 36 pieces in total, and the thickness of this laminated body was changed to various thicknesses of 5 mm square inner diameter A
It was filled in a thin-walled pipe made of g to obtain a multilayer composite billet. The multi-layer composite billet was sequentially rolled by a 4-way roll and a flat roll to obtain a multi-layer tape wire having a width of 4.8 mm and a thickness of 0.1 mm. Then, the step of inserting the multi-layer tape wire into the metal pipe and rolling it into a multi-layer composite billet is repeated 19 times by alternately changing the material of the metal pipe to Mg and Ag, and finally obtained the multi-layer tape. The wire rod was filled into a square Ag pipe with an outer diameter of 5.5 mm and an inner diameter of 5.0 mm to form a multi-layer composite billet.
5mm wide and 2mm thick by rolling one side and one side
mm multi-layer tape wire. Next, this multilayer tape wire was heat-treated in the atmosphere at 840 ° C for 100 hours to manufacture a ceramic superconductor. The critical current density (Jc) of each multilayer ceramic superconductor thus obtained was measured in liquid nitrogen (77K). The magnetic field strength at the time of measurement was changed to 0 and 1 Tesler. The measurement results are shown in Tables 1 and 2.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】表1及び表2より明らかなように、本発明
方法品(No1〜18)は無磁場下は勿論、1テスラーの磁
場下でも高いJc値を有しており、バラツキも小さかっ
た。組織観察を行った結果、セラミックス超電導体層中
にAg又はMgO又はAl2 3 の粒子が微細に分散し
ており、又結晶配向性も良好であった。他方比較例品
(No19〜30)は、Jcが低く、特に磁場をかけた状態で
は、極端に低下し、バラツキも増大した。Jcの低下は
セラミックス超電導体層中にピンニングに有効な粒子が
存在しなかった為であり、バラツキが大きかった理由
は、延伸加工の圧縮力が何層もの金属製パイプに隔てら
れて原料物質層に均一に伝わらなかった為である。
As is clear from Tables 1 and 2, the method products of the present invention (Nos. 1 to 18) had a high Jc value not only in the absence of a magnetic field but also in a magnetic field of 1 Tesler, and the variation was small. As a result of observing the structure, particles of Ag, MgO or Al 2 O 3 were finely dispersed in the ceramic superconductor layer, and the crystal orientation was also good. On the other hand, the comparative examples (Nos. 19 to 30) had a low Jc, which was extremely lowered particularly in the state where a magnetic field was applied, and the variation was increased. The decrease in Jc was due to the absence of particles effective for pinning in the ceramic superconductor layer, and the reason for the large variation was that the compressive force of the stretching process was separated by many layers of metal pipe and the raw material layer It was because it was not transmitted uniformly.

【0017】[0017]

【効果】以上述べたように、本発明方法によれば、バラ
ツキが小さく、又磁場下での超電導特性に優れたセラミ
ックス超電導々体を容易に製造することができ、工業上
顕著な効果を奏する。
As described above, according to the method of the present invention, it is possible to easily manufacture a ceramics superconducting body having a small variation and excellent superconducting properties under a magnetic field, and to exert a remarkable industrial effect. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法により製造したセラミックス超電導
々体の態様例を示す縦断面説明図である。
FIG. 1 is a vertical cross-sectional explanatory view showing an embodiment of a ceramic superconductor manufactured by the method of the present invention.

【符号の説明】[Explanation of symbols]

1 金属シース 2 セラミックス超電導体層 3 Ag粒子 4 金属の酸化物粒子 1 Metal sheath 2 Ceramics superconductor layer 3 Ag particles 4 Metal oxide particles

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属製パイプ内にセラミックス超電導体
となし得る原料物質を充填して複合ビレットとなし、次
いでこの複合ビレットを延伸加工して複合素材となし、
次いで前記複合素材を金属製パイプ内に充填して複合ビ
レットとなし、この複合ビレットを延伸加工して複合素
材となす工程を所望回繰返し施したのち、得られた複合
素材を金属製パイプ内に充填して多層複合ビレットとな
し、この多層複合ビレットに延伸加工を施して多層複合
線材となし、次いでこの多層複合線材に所定の加熱処理
を施すセラミックス超電導々体の製造方法において、多
層複合ビレットの最外層を除く内層となす金属製パイプ
に、金属製パイプの厚さtが、次式、0.05D≧t≧0.02
D(但し、Dは金属製パイプの外径。)を満足する薄肉
パイプを用いることを特徴とするセラミックス超電導々
体の製造方法。
1. A metal pipe is filled with a raw material capable of forming a ceramics superconductor to form a composite billet, and then this composite billet is drawn to form a composite material.
Next, the composite material is filled into a metal pipe to form a composite billet, and the step of stretching the composite billet to form a composite material is repeatedly performed a desired number of times, and then the obtained composite material is placed in a metal pipe. Filling into a multilayer composite billet, forming a multilayer composite wire by subjecting this multilayer composite billet to stretching, and then subjecting this multilayer composite wire to a predetermined heat treatment. For a metal pipe that is an inner layer excluding the outermost layer, the thickness t of the metal pipe is calculated by the following equation: 0.05D ≧ t ≧ 0.02
A method for producing a ceramics superconducting body, characterized in that a thin pipe satisfying D (where D is the outer diameter of a metal pipe) is used.
JP4019542A 1992-01-07 1992-01-07 Manufacture of ceramics superconductive conductor Pending JPH05182540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4019542A JPH05182540A (en) 1992-01-07 1992-01-07 Manufacture of ceramics superconductive conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4019542A JPH05182540A (en) 1992-01-07 1992-01-07 Manufacture of ceramics superconductive conductor

Publications (1)

Publication Number Publication Date
JPH05182540A true JPH05182540A (en) 1993-07-23

Family

ID=12002203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4019542A Pending JPH05182540A (en) 1992-01-07 1992-01-07 Manufacture of ceramics superconductive conductor

Country Status (1)

Country Link
JP (1) JPH05182540A (en)

Similar Documents

Publication Publication Date Title
JP2877149B2 (en) Method for producing composite oxide ceramic superconducting wire
EP0282286B1 (en) Superconducting wire and method of manufacturing the same
US5063200A (en) Ceramic superconductor article
EP0308326B1 (en) A process for producing an elongated superconductor
JPH05182540A (en) Manufacture of ceramics superconductive conductor
JP2889286B2 (en) Superconducting body and superconducting coil formed using the superconducting body
JPS63279514A (en) Superconductor wire rod, its manufacture and superconductive coil
JPH05166426A (en) Manufacture for ceramics superconductor
JPH05334921A (en) Ceramic superconductor
JPH05151843A (en) Manufacture of angular cross-section type multilayer ceramic superconductive conductor
JP2656253B2 (en) Superconductor wire and manufacturing method thereof
JP3029153B2 (en) Manufacturing method of multilayer ceramic superconductor
JPS63285812A (en) Manufacture of oxide superconductive wire material
JPH0554731A (en) Multicore ceramics superconducting wire rod and manufacture thereof
JP2653462B2 (en) Superconductor
JPH01163914A (en) Manufacture of oxide superconductive wire
JP2563411B2 (en) Manufacturing method of oxide superconducting wire
JPH0644842A (en) Manufacture of multilayer ceramic superconductor
JPS63279512A (en) Superconductor wire rod and its manufacture
JP2644245B2 (en) Oxide superconducting wire
JPH05190035A (en) Manufacture of ceramics superconductive conductor
JP3011962B2 (en) Method for manufacturing multi-core or multilayer ceramic superconductor
JP2966134B2 (en) Method for producing Bi-based oxide superconductor
JPH05120931A (en) Oxide superconductor and manufacture thereof
JPH04338171A (en) Production of ceramic superconductor