JPH0395806A - Superconductive conductor, its manufacture and superconducting coil formed by using the same superconductive conductor - Google Patents

Superconductive conductor, its manufacture and superconducting coil formed by using the same superconductive conductor

Info

Publication number
JPH0395806A
JPH0395806A JP1232579A JP23257989A JPH0395806A JP H0395806 A JPH0395806 A JP H0395806A JP 1232579 A JP1232579 A JP 1232579A JP 23257989 A JP23257989 A JP 23257989A JP H0395806 A JPH0395806 A JP H0395806A
Authority
JP
Japan
Prior art keywords
superconductor
magnetic field
tape
axis
superconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1232579A
Other languages
Japanese (ja)
Other versions
JP2889286B2 (en
Inventor
Shoji Shiga
志賀 章二
Naoki Uno
直樹 宇野
Kenji Enomoto
憲嗣 榎本
Kaname Matsumoto
要 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1232579A priority Critical patent/JP2889286B2/en
Publication of JPH0395806A publication Critical patent/JPH0395806A/en
Application granted granted Critical
Publication of JP2889286B2 publication Critical patent/JP2889286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a superconductive conductor having high critical current density which can be efficiently manufactured by a method wherein the superconductive conductor layer is composed of a two-dimensional superconductor and a plane perpendicular to a C axis high in a critical magnetic field is placed in parallel to an electrifying direction of the superconductive conductor. CONSTITUTION:A superconductive conductor is a tape-like superconductive conductor with a cross section of a straight angle with a superconductor layer 3 buried in a metal matrix 1, wherein a widthwise direction of the cross section of the superconductor layer 2 is placed in parallel to a widthwise plane of the superconductive conductor, ratio l/d of widthwise length l to thickness (d) of the superconductor layer 2 is within a range of 10 to 10<4>, the superconductor layer 2 is composed of a twodimensional superconductor whose critical magnetic field is larger in a direction perpendicular to a C axis than in a direction parallel to the C axis, and an angle made by a perpendicular line on the widthwise plane of the tape-like superconductive conductor and the C axis on a widthwise part of the superconductor layer 2 is 15 deg. or smaller. Thus a direction perpendicular to the C axis with a high critical magnetic field of the superconductor layer is aligned with a direction for applying the magnetic field so as to obtain high critical current density or high magnetic field generation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属マトリンクス中にセラミンクス超電導体
等の化合物超電導体を埋め込んで複合化した超電導々体
及びその製造方法及び前記超電導々体を用いて形威した
超電導コイルに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a composite superconductor obtained by embedding a compound superconductor such as a ceramic superconductor in a metal matrix, a method for manufacturing the same, and a method using the superconductor. This article is about superconducting coils that have taken shape.

.〔従来の技術及びその課題] NbTi,NbsSn,Nb.AC V,Ga等の金属
間化合物やNb,Pb等の金属が液体He等の極低温冷
媒を用いて超電導マグネノト、磁気シールド体、同軸ケ
ーブル、キャビティ等に実用されている.しかしこれら
の金属材料は資源的に制約があり又冷却にHeを用いる
為コスト高となり用途も限定されている。
.. [Prior art and its problems] NbTi, NbsSn, Nb. Intermetallic compounds such as ACV and Ga, and metals such as Nb and Pb are used in superconducting magnetographs, magnetic shields, coaxial cables, cavities, etc. using cryogenic refrigerants such as liquid He. However, these metal materials are limited in terms of resources and use He for cooling, resulting in high costs and limited applications.

このようなことに対し、近年安価な冷却媒体で超電導と
なる鴎界温度(T,)の高い物質が見出され各分野で実
用化研究が活発に進められている.而して上記の高T,
物質とは、T,が30〜45KのLag−xBa.cu
04やLa2−xsr.cuoa、又はT,が〜95K
のY (Dy..Er,Ho)BagCu.O,−δ、
又はTcが80〜110KのB izs rtCaCu
.08 、B its rgcat Cu30+oのB
i−Sr−Ca−Cu−0系、又はT,が90−125
KのTj!.Ba.CaCu.○s 、T12BazC
azCus○1。、T I B a z C a z 
C u ?○,.,等のTNBa−Ca−Cu−○系酸
化物超電導体であり、これらの酸化物超電導々体の製造
は、例えば上記超t4体の粉末を有機バインダーと混練
してペースト状体となし、これを直接押出し又はスクリ
ーン印刷により威形し、或いは上記超t導体粉末をAg
パイプ等に充填しこれを伸延する等して所望形状の導体
に加工してなされている。更にこれら導体を用いたコイ
ルが試作され実用化の為の研究が種々なされている。
In response to these problems, in recent years, materials with a high temperature (T,) that can become superconducting using inexpensive cooling media have been discovered, and research on their practical application is actively progressing in various fields. Therefore, the above high T,
The substance is Lag-xBa.T, of 30-45K. cu
04 and La2-xsr. cuoa, or T, is ~95K
Y (Dy..Er,Ho)BagCu. O, -δ,
Or Bizs rtCaCu with Tc of 80-110K
.. 08, B of B its rgcat Cu30+o
i-Sr-Ca-Cu-0 system, or T, is 90-125
K's Tj! .. Ba. CaCu. ○s, T12BazC
azCus○1. , T I B az C az
Cu? ○、. , etc., and these oxide superconductors are produced by, for example, kneading the above-mentioned super t4 powder with an organic binder to form a paste, and The super t-conductor powder is shaped by direct extrusion or screen printing, or
It is made by filling a pipe or the like and stretching it to form a conductor of a desired shape. Furthermore, prototype coils using these conductors have been manufactured, and various studies are being conducted to put them into practical use.

ところで上記の如きセラミックス超電導体は、結晶異方
性が強く例えば臨界磁場について言うと、C軸に垂直な
方向の臨界磁場は平行方向の臨界磁場の5〜50倍も大
きいもので、所謂2次元超電導体である。而してこの超
電導体を構或要素とする超電導々体のJC又はこの超電
導々体を用いたソレノイドコイル等の発生磁場は、上記
超電導体の結晶配向性によって大きく左右されるもので
ある。
By the way, ceramic superconductors such as those described above have strong crystal anisotropy, and for example, regarding the critical magnetic field, the critical magnetic field in the direction perpendicular to the C axis is 5 to 50 times larger than the critical magnetic field in the parallel direction, so it is so-called two-dimensional. It is a superconductor. The JC of a superconductor having this superconductor as a component or the magnetic field generated by a solenoid coil or the like using this superconductor is greatly influenced by the crystal orientation of the superconductor.

しかるに従来の超電導々体は、上記超電導々体を構或す
る超電導体層の配列が結晶配向性に関してランダムであ
り、従ってかかる超電導々体は比界電流密度(J,)が
低く、又このような導体を用いたコイルでは高い発生磁
場が得られないという問題があった. 〔課題を解決するための手段〕 本発明はかかる状況に鑑み鋭意研究を行った結果なされ
たもので、その目的とするところは高J,の超電導々体
及び前記超電導々体を効率よく製造する方法及び高い磁
場を発生し得る超電導コイルを提供することにある。
However, in conventional superconductors, the arrangement of the superconductor layers constituting the superconductor is random with respect to crystal orientation, and therefore such superconductors have a low specific field current density (J,). There was a problem that a high generated magnetic field could not be obtained with a coil using a conductor. [Means for Solving the Problems] The present invention was made as a result of intensive research in view of the above situation, and its purpose is to efficiently manufacture a high J superconductor and the superconductor. The object of the present invention is to provide a method and a superconducting coil capable of generating a high magnetic field.

即ち請求項lの発明は、金属マトリックス中に超電導体
層が埋込まれた断面平角のテープ状超電導々体であって
、上記超TH.導体層は、その断面の幅方向が上記テー
プ状超電導々体の幅広面に平行に配置され、上記超電導
体層のテープ状超電導々体の幅広面に平行な幅方向長さ
iと超電導体層の厚さdとの比1/dが10−104の
範囲にあり、又上記超電導体層はその臨界磁場がC軸に
平行な方向よりC軸に垂直な方向において大きい2次元
超電導体からなり、上記テープ状超電導々体の幅広面の
垂線と上記超電導体層の幅方向部分のC軸とのなす角度
が156以下であることを特徴とする超電導々体である
That is, the invention of claim 1 is a tape-shaped superconductor having a rectangular cross section in which a superconductor layer is embedded in a metal matrix, and the above-mentioned super TH. The conductor layer is arranged such that the width direction of its cross section is parallel to the wide surface of the tape-shaped superconductor, and the width direction length i of the superconductor layer parallel to the wide surface of the tape-shaped superconductor and the superconductor layer. The ratio 1/d to the thickness d is in the range of 10-104, and the superconductor layer is made of a two-dimensional superconductor whose critical magnetic field is larger in the direction perpendicular to the C-axis than in the direction parallel to the C-axis. , a superconductor characterized in that the angle between the perpendicular to the wide surface of the tape-shaped superconductor and the C axis of the widthwise portion of the superconductor layer is 156 or less.

一般に超電導々体をコイルに巻いて使用する場合、上記
超電導々体には横方向から磁場が印加されるものである
。而してこの発明の超電導々体は、その形状を平角のテ
ープ状となし、このテープ状導体の幅広面に対し、上記
テープ状導体を構成する超電導体層の幅方向を平行に配
置し、且つ上記超電導体層の幅方向部分のC軸を上記テ
ープ状導体の幅広面の垂線方向に向けることによって、
超電導体層の臨界磁場の高いC軸に垂直な方向を前記の
磁場の印加方向と一致させて、高いJ,又は発生磁場が
得られるようにしたものである。
Generally, when a superconductor is used by being wound into a coil, a magnetic field is applied to the superconductor from the lateral direction. The superconductor of the present invention has a rectangular tape-like shape, and the width direction of the superconductor layer constituting the tape-like conductor is arranged parallel to the wide surface of the tape-like conductor. and by orienting the C-axis of the width direction portion of the superconductor layer in the perpendicular direction of the wide surface of the tape-shaped conductor,
The direction perpendicular to the C-axis in which the critical magnetic field of the superconductor layer is high is made to coincide with the direction in which the magnetic field is applied, so that a high J or generated magnetic field can be obtained.

上記において、超電導々体の幅広面の垂線と上記導体を
構戒する超電導体のC軸とのなす角度を156以下に限
定した理由は、15″′を超えると超電導体層のC軸に
垂直な方向と磁場の印加方向とのズレが大きくなってJ
,又は発生磁場が著しく低下する為である。
In the above, the reason why the angle between the perpendicular to the wide surface of the superconductor and the C-axis of the superconductor surrounding the conductor was limited to 156 or less is that if it exceeds 15'', the angle is perpendicular to the C-axis of the superconductor layer. The difference between the magnetic field application direction and the direction J
, or because the generated magnetic field decreases significantly.

この発明においてテープ状超電導々体の断面における超
電導体層の上記超電導々体の幅広面に平行な幅方向長さ
lと超電導体層の厚さdの比l/dを10−104に限
定した理由は、上記限定値をはずれると超電導々体の幅
広面の垂線と超電導体層のC軸とのなす角度を15゜以
下に収めるのが困難になり、その結果Jcや発生磁場強
度が低下し又不安定となる為である。
In this invention, the ratio l/d of the width direction length l of the superconductor layer parallel to the wide surface of the superconductor and the thickness d of the superconductor layer in the cross section of the tape-shaped superconductor is limited to 10-104. The reason is that if the above-mentioned limit value is exceeded, it becomes difficult to keep the angle between the perpendicular to the wide surface of the superconductor and the C-axis of the superconductor layer within 15 degrees, and as a result, Jc and the generated magnetic field strength decrease. This is also because it becomes unstable.

この発明の超電導々体は、例えば第1図イにその断面図
を示したように断面平角型のテープ状金属マトリックス
1内に超電導体層2が埋込まれたものであり、上記超電
導体層2の幅方向は上記テープ状金属マトリックス1の
幅広面と平行に配置されており、上記超電導体層のテー
プ状金属マトリノクスlの幅広面と平行な幅方向の長さ
lと超電導体層の厚さdとの比N/dはlO〜104の
範囲にあるものである。又同図ロに示した超電導々体は
金属マトリノクス1の側面から超電導体層2の端面が露
出した構造のもの、同図ハに示した超電導々体は、金属
マトリックス1内に円筒状の超電導体層2が埋込まれた
ものである。
The superconductor of the present invention has a superconductor layer 2 embedded in a tape-shaped metal matrix 1 having a rectangular cross section, as shown in the cross-sectional view of FIG. 1A, for example. The width direction of 2 is arranged parallel to the wide surface of the tape-shaped metal matrix 1, and the length 1 in the width direction parallel to the wide surface of the tape-shaped metal matrix 1 of the superconductor layer and the thickness of the superconductor layer. The ratio N/d is in the range of 10 to 104. The superconductor shown in Figure B has a structure in which the end face of the superconductor layer 2 is exposed from the side surface of the metal matrix 1. Body layer 2 is embedded.

この発明において、超電導々体を構或する超電導体層に
は前記の酸化物超電導体が適用され、これらの超電導体
は前述した如く二次元超電導体であってC軸に垂直方向
の臨界磁場(trcz上)は平行方向の臨界磁場(Hc
x/)の5〜50倍と大きく、中には液体He中でのT
{ct上がIOOTを超えるものも含まれている。
In this invention, the above-mentioned oxide superconductor is applied to the superconductor layer constituting the superconductor, and these superconductors are two-dimensional superconductors as described above, and the critical magnetic field ( trcz) is parallel to the critical magnetic field (Hc
x/), which is 5 to 50 times larger than T in liquid He.
{Includes cases where the ct exceeds the IOT.

この発明において金属マトリックスには、Ag1Au,
Cu,Affi等の伝熱性に優れた金属が用いられ、用
途に応じて上記金属は他の金属材料により補強して用い
られる. 請求項3の発明は、上記請求項lの超電導々体を用いて
形威したコイルであって、請求項l記載の超電導々体を
その幅広面が発生磁場方向と平行になるように巻回した
ことを特徴とするものである。
In this invention, the metal matrix includes Ag1Au,
Metals with excellent heat conductivity such as Cu and Affi are used, and depending on the purpose, the above metals are reinforced with other metal materials. The invention according to claim 3 is a coil formed using the superconductor according to claim 1, wherein the superconductor according to claim 1 is wound so that its wide surface is parallel to the direction of the generated magnetic field. It is characterized by the fact that

而して上記超電導々体は絶縁処理後、その幅広面が上下
方向に向くようにゼンマイ巻きすることによりその特性
を最高に発揮できる。
After the superconductor has been insulated, it can exhibit its properties to the best of its ability by winding it in a spring so that its wide side faces upward and downward.

この発明のコイルは、加熱処理前のテープ状体をコイル
に巻上げたのち加熱処理するWind &React法
により製造することも可能で、この場合は絶縁材には耐
熱性絶縁材料が用いられる。
The coil of the present invention can also be manufactured by the Wind & React method in which a tape-shaped body before heat treatment is wound into a coil and then heat treated. In this case, a heat-resistant insulating material is used as the insulating material.

この発明のコイルは使用中のローレンス力に耐えられる
ようSUS、ハステロイ合金、カーボンファイバ等によ
り補強したりエポキシ樹脂等により固化して用いること
もできる。
The coil of this invention can be reinforced with SUS, Hastelloy alloy, carbon fiber, etc., or solidified with epoxy resin, etc., so as to withstand the Lawrence force during use.

この発明のコイルは、断面が平型形状のためソレノイド
やパンケーキ型コイルとして用いるのが製造が容易で好
適である。
Since the coil of the present invention has a flat cross-section, it is suitable for use as a solenoid or pancake-shaped coil because it is easy to manufacture.

請求項2の発明は請求項1の超電導々体の製造方法であ
って、超電導体又はその前駆体の超電導物質と金属材料
とを交互に積層し、この積層体を伸延加工により断面平
角のテープ状線材となし、次いでこのテープ状線材に加
熱処理を施すことを特徴とするものである。
The invention according to claim 2 is a method for manufacturing the superconductor according to claim 1, which comprises alternately laminating a superconducting substance of a superconductor or its precursor and a metal material, and stretching this laminate to form a tape having a rectangular cross section. This method is characterized in that it is made into a tape-shaped wire rod, and then this tape-shaped wire rod is subjected to a heat treatment.

この発明方法において用いられる酸化物超電導体として
は前記したような種々系の酸化物超電導体が広く適用さ
れるに加えて上記酸化物超電導体の前駆体物質である酸
化物超電導体となし得る原料物質から酸化物超電導体に
合或されるまでの中間体、例えば酸化物超電導体構戒元
素の混合体又は共沈混合物又は酸素欠損型複合酸化物又
は上記構或元素の合金等が使用可能でこれらの前駆体物
質は酸素含有雰囲気中が加熱処理することにより酸化物
超電導体に反応するものである。
As the oxide superconductor used in the method of this invention, various types of oxide superconductors as described above are widely used, and in addition, raw materials that can be used as oxide superconductors which are precursor substances of the above-mentioned oxide superconductors. Intermediates from substances to oxide superconductors can be used, such as mixtures or co-precipitated mixtures of oxide superconductor structural elements, oxygen-deficient composite oxides, or alloys of the above structural elements. These precursor substances react to form an oxide superconductor when heated in an oxygen-containing atmosphere.

本発明方法における積層体とは第2図イ〜二にその断面
図を示した如きものである。即ち図イに示した積層体は
同心円状に配置した管状の金属材料3の間隙に超電導体
又はその前駆体の超電導物質4を充填したものである.
又図ロに示した積層体は管状の金属材料3内に帯状の金
属材料5と超電導物質4とを渦巻状に巻上げた複合体を
充填したものである。又図ハに示した積層体は管状の金
属材料3内に板状の金属材料6と超電導物質4とを交互
に積層し充填したものである。又図二に示した積層体は
上記の如き個々の積層体を4個枠状の金属材料7の枠内
に嵌合し複合積層体となしたものである。
The laminate used in the method of the present invention is as shown in cross-sectional views in FIGS. 2A-2. That is, the laminate shown in Figure A is one in which the gaps between tubular metal materials 3 arranged concentrically are filled with a superconducting substance 4, which is a superconductor or its precursor.
The laminate shown in FIG. 2B is a tubular metal material 3 filled with a composite formed by spirally winding a band-shaped metal material 5 and a superconducting substance 4. The laminate shown in FIG. 3C is one in which plate-shaped metal materials 6 and superconducting substances 4 are alternately laminated and filled in a tubular metal material 3. The laminate shown in FIG. 2 is a composite laminate in which four individual laminates as described above are fitted into a frame of the metal material 7.

而してかかる積層体又は複合積層体を押出し、圧延、引
抜き、スエージャー等の伸延加工法により断面平角のテ
ープ状体に加工し、しかるのちこのテープ状体を酸素含
有雰囲気中にて加熱して超電導体への反応、焼結がなさ
れ超電導々体が製造される。上記加熱処理における加熱
温度は少なくとも再結晶温度以上、場合によっては部分
融解する温度となして結晶配同性を高めるのが望ましい
.又加熱雰囲気は酸素雰囲気となすのが超電導体への反
応が促進し好ましい.上記加熱処理に先立ちテープ状体
表面の金属層にスリットを入れておくと超電導体層への
酸素の供給が十分になされ好ましい。
The laminate or composite laminate is extruded, rolled, drawn, swaged, or otherwise processed into a tape-shaped body with a rectangular cross section, and then this tape-shaped body is heated in an oxygen-containing atmosphere. The superconductor is reacted and sintered to produce a superconductor. The heating temperature in the above heat treatment is preferably at least the recrystallization temperature or higher, and in some cases, a temperature at which partial melting occurs to improve crystal conformation. In addition, it is preferable to use an oxygen atmosphere as the heating atmosphere because this will accelerate the reaction to the superconductor. It is preferable to make slits in the metal layer on the surface of the tape-shaped body prior to the above-mentioned heat treatment, since oxygen can be sufficiently supplied to the superconductor layer.

〔作用〕[Effect]

本発明の超電導々体は、断面平角のテープ状金属マトリ
ックス中に臨界磁場がC軸に垂直な方向に大きく、C軸
に平行な方向に小さい二次元超電導体からなる超電導体
層をそのC軸に平行な方向を上記金属マトリックスの幅
広面に平行に配置し埋込んだ超電導々体なので、上記導
体を幅広面を上下方向にしてコイルアンプした超電導コ
イルは、使用中発生する磁場の印加方向が上記超電導体
層のC軸に垂直な方向と一敗して、超電導々体としては
高いJ,が又コイルとしては高い発生磁場が得られるも
のである。又このPa’WL導々体は通常の伸延加工及
び熱処理法により製造し得るので、製造が容易になされ
生産性に富むものである。
The superconductor of the present invention has a superconductor layer consisting of a two-dimensional superconductor in which the critical magnetic field is large in the direction perpendicular to the C-axis and small in the direction parallel to the C-axis in a tape-shaped metal matrix with a rectangular cross section. The superconducting conductor is embedded with the direction parallel to the wide side of the metal matrix placed parallel to the wide side of the metal matrix, so the superconducting coil that is coil-amplified with the wide side of the conductor in the vertical direction will be able to apply the magnetic field that is generated during use. In contrast to the direction perpendicular to the C axis of the superconductor layer, a high J as a superconductor and a high generated magnetic field as a coil can be obtained. Moreover, since this Pa'WL conductor can be manufactured by ordinary drawing and heat treatment methods, it is easy to manufacture and has high productivity.

〔実施例] 以下に本発明を実施例により詳細に説明する.実施例I BfzOs、Pb○、SrCo3、CaCOs、Cub
.をBi:Pb:Sr:Ca:Cuが原子比で1.9 
 :  0.2: 2 :  1.1:2.2になるよ
うに配合して混合し、この混合粉末を大気中にて860
゜C3H仮焼戒しこの仮焼成体を粉砕分級して平均粒径
15−のB i.s r.Ca Cu.O.の仮焼或粉
を作製した。
[Examples] The present invention will be explained in detail below using examples. Example I BfzOs, Pb○, SrCo3, CaCOs, Cub
.. The atomic ratio of Bi:Pb:Sr:Ca:Cu is 1.9
: 0.2: 2 : 1.1:2.2, and this mixed powder was heated to 860°C in the air.
゜C3H calcined material is crushed and classified to produce B i. s r. Ca Cu. O. A calcined powder was prepared.

而して上記仮焼戒粉にバインダーとしてメチルセルロー
ス10voj2%とプチルセロソルブ8vof%を配合
してこれをロールで混練したのち、ドクターブレード法
により0.9m+a’のテープ状グリーンシ一トを作製
した.次いで上記グリーンシ一トを0.9m’のAg製
シートと重ね合わせ、これをAg製シートが外側になる
ようにスシ状に巻いて直径15碓の棒材となした.次い
でこの捧材を150゜Cに加熱してバインダー等の揮発
成分を除去したのち大気中で800’C I H加熱し
冷却した。次いでこれを内径15市肉厚2amのAg製
パイプに充填し、この4へg製パイプを真空封止したの
ち500゜CIOOO気圧の条件でHIP処理を施した
。しかるのち、上記スシ巻体を充填しHIP処理を施し
たAg製パイプをスエージングにより5.Omφの素材
となし、この素材を0.5mm’に圧延し更にこれを8
1nI+巾にスリノトして板材となした。
Then, 10 voj 2% of methyl cellulose and 8 vof % of butyl cellosolve were blended with the above calcined powder as binders, and after kneading this with a roll, a tape-shaped green sheet of 0.9 m+a' was produced by the doctor blade method. Next, the above green sheet was overlapped with a 0.9 m' Ag sheet, and this was rolled into a sushi-like shape with the Ag sheet facing outward to form a bar with a diameter of 15 m. Next, this specimen was heated to 150°C to remove volatile components such as binder, and then heated to 800°C IH in the atmosphere and cooled. Next, this was filled into an Ag pipe with an inner diameter of 15 mm and a wall thickness of 2 am, and after the pipe was vacuum-sealed, HIP treatment was performed at 500°CIOOO atmospheric pressure. After that, the Ag pipe filled with the sushi roll and subjected to HIP treatment was swaged in 5 steps. This material was rolled to 0.5mm' and further rolled to 8mm.
A board material was made by cutting the material to a width of 1nI+.

しかるのち上記板材を大気中で900゜C0.25H加
熱して酸化物超雷導体層を部分溶融させた後860゜C
まで3H加熱かけて徐冷し、860’Cで8H加熱後8
20’Cで6 H保持し冷却するとい)一連の加熱処理
を施して板状の酸化物超電導々体を製造した。
The plate material was then heated in the atmosphere to 900°C for 0.25H to partially melt the oxide superconductor layer, and then heated to 860°C.
After heating at 860'C for 8H, cooling slowly until 860'C.
A plate-shaped oxide superconductor was manufactured by performing a series of heat treatments (maintaining at 20'C for 6H and cooling).

実施例2 素材を圧延して得た板材の厚さを0.09mm’とした
他は実施例1と同し方法により板状の酸化物超電導々体
を製造した。
Example 2 A plate-shaped oxide superconductor was manufactured in the same manner as in Example 1, except that the thickness of the plate material obtained by rolling the material was 0.09 mm'.

実施例3 素材を圧延して得た板材の厚さを2 . 0 mm ’
とした他は実施例1と同し方法により板状の酸化物超電
導々体を製造した。
Example 3 The thickness of the plate material obtained by rolling the material was 2. 0 mm'
A plate-shaped oxide superconductor was manufactured by the same method as in Example 1 except that the following steps were taken.

実施例4 スエージング上りの素材径を9.0m+nφとなし、こ
の素材を圧延及びスリットにより0.08mm’ X1
5凧“の仮材となした他は実施例1と同し方法により板
状の酸化物超電導々体を製造した。
Example 4 The material diameter after swaging was set to 9.0 m + nφ, and this material was rolled and slit to 0.08 mm'
A plate-shaped oxide superconductor was manufactured in the same manner as in Example 1, except that a temporary material of 5" was used.

比較例1 実施例lにおいて5.0ms+φの素材を伸線により0
,5帥φの線材となした他は実施例1と同し方法により
線状の酸化物超電導々体を製造した。
Comparative Example 1 In Example 1, the 5.0ms+φ material was wire drawn to 0
A linear oxide superconductor was manufactured in the same manner as in Example 1, except that the wire rod had a diameter of 5 mm.

比較例2 実施例lにおいて、Ag製バイブのスエージングを15
+nmφまでとし、このあとこの15nm+φの素材を
圧延により0.02mIfi’ X23m+a’の板材
となした他は実施例1と同じ方法により板状の酸化物超
電導々体を製造した。
Comparative Example 2 In Example 1, the swaging of the Ag vibrator was
A plate-shaped oxide superconductor was manufactured in the same manner as in Example 1, except that the 15 nm+φ material was rolled to form a plate material of 0.02 mIfi' x 23m+a'.

比較例3 実施例lにおいて、グリーンシ一トの厚さを4.2 t
rmとし、上記グリーンシ一トと重ね合わせるAgシー
1・の厚さを1.O rtmとした他は実施例Iと同し
方法により2.0mmφの素材を作製し、この素材を幅
3rrmのテープ状に圧延し、しかるのちこのテープ状
体を実施例lと同し方法により板状の酸化物超電導々体
となした。
Comparative Example 3 In Example 1, the thickness of the green sheet was 4.2 t.
rm, and the thickness of the Ag sheet 1. which is overlapped with the above green sheet is 1.rm. A material with a diameter of 2.0 mm was produced in the same manner as in Example I, except that the material was rolled into a tape shape with a width of 3 rrm, and then this tape-like body was produced in the same manner as in Example I. A plate-shaped oxide superconductor was created.

斯くの如くして得られた各々の酸化物超電導々体につい
て、Jc及びC軸配向性を調べた。結果は第1表に示し
た。
The Jc and C-axis orientations of each of the oxide superconductors thus obtained were examined. The results are shown in Table 1.

尚、J,は液体N,中(77K)及び液体He(4.2
 K)中でそれぞれO.l5T又は15Tの磁場を酸化
物超電導々体の長手方向に直角で且つ幅広面に平行に印
加して測定した。又C軸配向性はX線回折法により調べ
た。
In addition, J is liquid N, medium (77K) and liquid He (4.2
K) respectively O. Measurements were made by applying a magnetic field of 15T or 15T perpendicular to the longitudinal direction of the oxide superconductor and parallel to the wide surface. Further, the C-axis orientation was examined by X-ray diffraction.

第1表より明らかなように本発明方法品はJcが高い値
のものとなった。
As is clear from Table 1, the products produced by the method of the present invention had a high Jc value.

これに対し比較例1は、酸化物超電導々体が九線の為に
超電導体層のC軸に垂直な方向が磁場の印加方向と平行
にならずに、又比較例2はl/dが本発明の限定値を超
えた為に酸化物超電導々体の幅広面の垂線と上記超電導
体層の幅方向部分のC軸とのなす角度がl5゜C以下に
収まらずに、又比較例3は1/dが本発明の限定値を下
回った上、酸化物超電導体層そのもののC軸配向性が十
分でなく、その結果いずれもJcが低い値のものとなっ
た。
On the other hand, in Comparative Example 1, the direction perpendicular to the C-axis of the superconductor layer was not parallel to the direction of application of the magnetic field because the oxide superconductor was nine-wire, and in Comparative Example 2, l/d was Since the limit value of the present invention was exceeded, the angle between the perpendicular to the wide surface of the oxide superconductor and the C axis of the width direction portion of the superconductor layer did not fall within 15°C, and Comparative Example 3 In addition, 1/d was less than the limit value of the present invention, and the C-axis orientation of the oxide superconductor layer itself was insufficient, resulting in a low Jc value in all cases.

実施例5 実施例1にて製造した酸化物超電導々体を用いて、J,
に及ぼす磁場の印加方向の影響を調べた。
Example 5 Using the oxide superconductor produced in Example 1, J,
The effect of the applied direction of the magnetic field on the magnetic field was investigated.

磁場の印加方向は、酸化物超電導々体をその幅広面が上
下に向くように配置し、上記導体の右真横方向(0゜)
から幅広面の垂直方向(90’ )を通り左真横方向(
180” )に到るまでの間を5〜30゜刻みに変化さ
せた。J,は4.2KにてlTの磁場をかけて測定した
。結果は第2表に示した。
The direction in which the magnetic field is applied is to place the oxide superconductor so that its wide side faces up and down, and to apply the magnetic field in the right lateral direction (0°) of the conductor.
, passing through the vertical direction (90') of the wide surface in the left horizontal direction (
180") in steps of 5 to 30 degrees. J was measured at 4.2 K with a magnetic field of 1T applied. The results are shown in Table 2.

第2表 第2表より明らかなように、J,は角度がO゜又は18
0゜に近い程、即ち磁場の印加方向が酸化物超電導々体
の幅広面に平行な程高い値を示し、角度がl5“を超え
又は165゜未満ではJeは論激に低下した.これは酸
化物超電導体層のfactが高い値を示すC軸と直角な
方向が酸化物超電導々体の幅広面に対し平行に配置され
ている為である.而して上記結果は、酸化物超電導体層
のC軸と酸化物超電導々体の幅広面の垂線とのなす角度
が151以下になるようにすることが高いJcを得る上
で必要なことを意味するものである。
As is clear from Table 2, J, has an angle of 0° or 18
The closer the angle is to 0°, that is, the more parallel the direction of the applied magnetic field is to the wide surface of the oxide superconductor, the higher the value is, and when the angle exceeds 15'' or is less than 165°, the value of Je decreases dramatically. This is because the direction perpendicular to the C axis, in which the fact of the oxide superconductor layer has a high value, is arranged parallel to the wide surface of the oxide superconductor. This means that it is necessary to make the angle between the C axis of the layer and the perpendicular to the wide surface of the oxide superconductor 151 or less in order to obtain a high Jc.

実施例6 実施例2で素材を圧延して得た0.09as’の板材を
絶縁材となすアルミナ繊維と補強材となす0.09一1
のハステロイテーブとを積層し、この積層体をアル旦ナ
をコートした外径30IIIIIφのSUS円筒上にゼ
ンマイ巻きして外径65■φのパンケーキに戒形した.
次いでこのパンケーキを実施例2と同じ条件で加熱処理
し、しかるのちこのパンケーキにエポキシ樹脂を含浸さ
せて固化して酸化物超電導コイルとなした。
Example 6 The 0.09as' plate material obtained by rolling the material in Example 2 was made of alumina fiber as an insulating material and 0.09-1 as a reinforcing material.
This laminated body was wound around an SUS cylinder coated with Altanina and had an outer diameter of 30 mm to form a pancake with an outer diameter of 65 mm.
Next, this pancake was heat-treated under the same conditions as in Example 2, and then the pancake was impregnated with an epoxy resin and solidified to form an oxide superconducting coil.

比較例4 実施例5において、板材の代わりに比較例1で素材を伸
線して得た0.5閣φの線材を用いた他は実施例5と同
し方法により酸化物超電導コイルを製造した. 尚l列のSli(8mg+)及び巻層数は実施例5と同
一にした。
Comparative Example 4 An oxide superconducting coil was manufactured in the same manner as in Example 5, except that a wire of 0.5 mm diameter obtained by drawing the material in Comparative Example 1 was used instead of the plate material. did. The Sli (8 mg+) and the number of winding layers in row 1 were the same as in Example 5.

斯くの如くして得られた各々の酸化物超電導コイルにつ
いて、発生磁場を測定した. 発生磁場は各々のコイルを4.2Kの液体He中又は7
7Kの液体N2中でそれぞれ5.5T又は0.09Tの
超電導ソレノイドコイルの中心に配置して測定した.結
果は第3表に示した. 第3表 車 外部磁場を除く磁場強さ。
The generated magnetic field was measured for each oxide superconducting coil obtained in this way. The generated magnetic field is applied to each coil in 4.2 K liquid He or 7
Measurements were made by placing them at the center of a 5.5T or 0.09T superconducting solenoid coil in liquid N2 at 7K. The results are shown in Table 3. Third table: Magnetic field strength excluding external magnetic field.

第3表より明らかなように本発明品(実施例6)は通電
量が大きくとれ、その結果発生磁場が高い値のものとな
った. これに対し比較品(比較例4)はコイル導体が九線の為
超電導体層のC軸に垂直な方向が発生磁場方向と平行に
ならずに発生磁場が低い値のものとなった. 〔効果〕 以上述べたように本発明の超電導々体は、超電導体層が
二次元超電導体からなり、且つ上記超電導体層は臨界磁
場の高いC軸に垂直な面が上記超電導々体の通電方向に
平行に配置されているのでJcが高い値のものとなり、
依ってこの導体を用いて形或したコイルは高い発生磁場
が得られる。
As is clear from Table 3, the product of the present invention (Example 6) had a large amount of current flow, and as a result, the generated magnetic field had a high value. On the other hand, in the comparative product (Comparative Example 4), since the coil conductor was made of nine wires, the direction perpendicular to the C axis of the superconductor layer was not parallel to the direction of the generated magnetic field, resulting in a low value of the generated magnetic field. [Effects] As described above, in the superconductor of the present invention, the superconductor layer is made of a two-dimensional superconductor, and the superconductor layer has a surface perpendicular to the C-axis with a high critical magnetic field that is energized by the superconductor. Since it is arranged parallel to the direction, Jc has a high value,
Therefore, a coil formed using this conductor can generate a high magnetic field.

又上記超電導々体は通常の伸延加工法を応用することで
効率よく製造し得るもので、工業上顕著な効果を奏する
Further, the above-mentioned superconductor can be efficiently manufactured by applying a normal drawing method, and has a remarkable industrial effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明超電導々体の実施例を示す断面図、第2
図は本発明の超電導々体を製造する際に用いる積層体の
実施例を示す断面図である。 1・・・金属マトリックス、 2・・・酸化物超電導体
層、 3.5,6.7・・・金属材料、 4・・・超電
導物質。 4 第1図
Figure 1 is a sectional view showing an embodiment of the superconductor of the present invention, Figure 2 is a sectional view showing an embodiment of the superconductor of the present invention;
The figure is a sectional view showing an example of a laminate used in manufacturing the superconductor of the present invention. DESCRIPTION OF SYMBOLS 1... Metal matrix, 2... Oxide superconductor layer, 3.5, 6.7... Metal material, 4... Superconducting substance. 4 Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)金属マトリックス中に超電導体層が埋込まれた断
面平角のテープ状超電導々体であって、上記超電導体層
は、その断面の幅方向が上記テープ状超電導々体の幅広
面に平行に配置され、上記超電導体層のテープ状超電導
々体の幅広面に平行な幅方向長さlと超電導体層の厚さ
dとの比l/dが10〜10^4の範囲にあり、又上記
超電導体層はその臨界磁場がC軸に平行な方向よりC軸
に垂直な方向において大きい2次元超電導体からなり、
上記テープ状超電導々体の幅広面の垂線と上記超電導体
層の幅方向部分のC軸とのなす角度15゜以下であるこ
とを特徴とする超電導々体。
(1) A tape-shaped superconductor with a rectangular cross section in which a superconductor layer is embedded in a metal matrix, wherein the width direction of the cross section of the superconductor layer is parallel to the wide surface of the tape-shaped superconductor. and the ratio l/d of the width direction length l parallel to the wide surface of the tape-shaped superconductor of the superconductor layer to the thickness d of the superconductor layer is in the range of 10 to 10^4, The superconductor layer is made of a two-dimensional superconductor whose critical magnetic field is larger in the direction perpendicular to the C-axis than in the direction parallel to the C-axis,
A superconductor characterized in that the angle between the perpendicular to the wide surface of the tape-shaped superconductor and the C axis of the widthwise portion of the superconductor layer is 15° or less.
(2)超電導体又はその前駆体の超電導物質と金属材料
とを交互に積層し、この積層体を伸延加工により断面平
角のテープ状線材となし、次いでこのテープ状線材に加
熱処理を施すことを特徴とする超電導々体の製造方法。
(2) Superconducting substances and metal materials of superconductors or their precursors are alternately laminated, this laminate is stretched into a tape-shaped wire with a rectangular cross section, and then this tape-shaped wire is subjected to heat treatment. Characteristic method for producing superconducting conductors.
(3)請求項1記載の超電導々体をその幅広面が発生磁
場方向と平行になるように巻回したことを特徴とする超
電導コイル。
(3) A superconducting coil characterized in that the superconductor according to claim 1 is wound so that its wide surface is parallel to the direction of the generated magnetic field.
JP1232579A 1989-09-07 1989-09-07 Superconducting body and superconducting coil formed using the superconducting body Expired - Fee Related JP2889286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1232579A JP2889286B2 (en) 1989-09-07 1989-09-07 Superconducting body and superconducting coil formed using the superconducting body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1232579A JP2889286B2 (en) 1989-09-07 1989-09-07 Superconducting body and superconducting coil formed using the superconducting body

Publications (2)

Publication Number Publication Date
JPH0395806A true JPH0395806A (en) 1991-04-22
JP2889286B2 JP2889286B2 (en) 1999-05-10

Family

ID=16941564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1232579A Expired - Fee Related JP2889286B2 (en) 1989-09-07 1989-09-07 Superconducting body and superconducting coil formed using the superconducting body

Country Status (1)

Country Link
JP (1) JP2889286B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104409A (en) * 1990-08-22 1992-04-06 Hitachi Ltd Oxide superconductor, manufacture thereof, and superconducting coil
US6194985B1 (en) 1995-10-30 2001-02-27 Hitachi, Ltd. Oxide-superconducting coil and a method for manufacturing the same
JP2006228665A (en) * 2005-02-21 2006-08-31 Sumitomo Electric Ind Ltd Oxide superconducting wire material, manufacturing method thereof, and superconducting apparatus
JP2009503794A (en) * 2005-07-29 2009-01-29 アメリカン・スーパーコンダクター・コーポレーション Architecture for high temperature superconductor wires
JP2020519448A (en) * 2017-05-12 2020-07-02 オックスフォード インストルメンツ ナノテクノロジー ツールス リミテッド Method of joining niobium titanium alloys using active solder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104409A (en) * 1990-08-22 1992-04-06 Hitachi Ltd Oxide superconductor, manufacture thereof, and superconducting coil
US5798312A (en) * 1990-08-22 1998-08-25 Hitachi, Ltd. Elongate superconductor elements comprising oxide superconductors, superconducting coils and methods of making such elements
US6194985B1 (en) 1995-10-30 2001-02-27 Hitachi, Ltd. Oxide-superconducting coil and a method for manufacturing the same
JP2006228665A (en) * 2005-02-21 2006-08-31 Sumitomo Electric Ind Ltd Oxide superconducting wire material, manufacturing method thereof, and superconducting apparatus
JP2009503794A (en) * 2005-07-29 2009-01-29 アメリカン・スーパーコンダクター・コーポレーション Architecture for high temperature superconductor wires
JP2020519448A (en) * 2017-05-12 2020-07-02 オックスフォード インストルメンツ ナノテクノロジー ツールス リミテッド Method of joining niobium titanium alloys using active solder

Also Published As

Publication number Publication date
JP2889286B2 (en) 1999-05-10

Similar Documents

Publication Publication Date Title
DE69032253T2 (en) Oxide superconductor
EP0472333B1 (en) Elongate superconductor elements comprising oxide superconductors and superconducting coils
EP1421592B1 (en) Superconducting coil fabrication
DE69408906T2 (en) Method for producing a high temperature superconducting wire
JPH04310597A (en) Method of manufacturing article made of metallic body having superconductor layer
JPH0395806A (en) Superconductive conductor, its manufacture and superconducting coil formed by using the same superconductive conductor
DE3881620T2 (en) Process for producing an elongated superconductor.
JPH09223418A (en) Oxide superconductive wire rod and manufacture thereof
JP3099891B2 (en) Superconducting material
JPH0737443A (en) Bismuth-containing oxide superconductive wire and preparation of wire thereof
JPH02273418A (en) Manufacture of oxide superconductive conductor
JP3158408B2 (en) Oxide superconducting wire and manufacturing method thereof
JPH05334921A (en) Ceramic superconductor
JP3029153B2 (en) Manufacturing method of multilayer ceramic superconductor
JPH05151843A (en) Manufacture of angular cross-section type multilayer ceramic superconductive conductor
JP2835069B2 (en) Superconducting coil
JPH04343404A (en) Solenoid superconducting coil
JPH0261910A (en) Superconducting material wire and its manufacture
JPH0382105A (en) Manufacture of oxide superconducting coil
JP2563411B2 (en) Manufacturing method of oxide superconducting wire
JP3011962B2 (en) Method for manufacturing multi-core or multilayer ceramic superconductor
JPH05166426A (en) Manufacture for ceramics superconductor
JPH0317910A (en) Oxide superconductor and manufacture thereof
JPH0195409A (en) Superconducting wire
JPH02207416A (en) Oxide superconducting wire material and its manufacture

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees