JP2006228665A - Oxide superconducting wire material, manufacturing method thereof, and superconducting apparatus - Google Patents

Oxide superconducting wire material, manufacturing method thereof, and superconducting apparatus Download PDF

Info

Publication number
JP2006228665A
JP2006228665A JP2005043950A JP2005043950A JP2006228665A JP 2006228665 A JP2006228665 A JP 2006228665A JP 2005043950 A JP2005043950 A JP 2005043950A JP 2005043950 A JP2005043950 A JP 2005043950A JP 2006228665 A JP2006228665 A JP 2006228665A
Authority
JP
Japan
Prior art keywords
wire
oxide superconducting
metal material
sealing
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005043950A
Other languages
Japanese (ja)
Inventor
Shinichi Kobayashi
慎一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005043950A priority Critical patent/JP2006228665A/en
Publication of JP2006228665A publication Critical patent/JP2006228665A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an oxide superconducting wire material, having high sintering density of oxide superconductor and a high critical current density, by preventing pressurizing gas from infiltrating into wire material from an end of the wire material, upon heat treatment, by sealing the end of the wire material. <P>SOLUTION: The manufacturing method of an oxide superconducting wire material comprises the steps of preparing a wire material, formed by covering the raw material powder of an oxide superconductor with a metal pipe (for example, S1 and S2); closing both ends of the wire material with a metal material (for example, S11); and heat-treating the wire material, in a pressurized atmosphere of which the ends are closed with the metal material (for example, S6). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、酸化物超電導線材の製造方法に関し、特に、臨界電流密度を高くすることができる酸化物超電導線材の製造方法に関する。     The present invention relates to a method for manufacturing an oxide superconducting wire, and more particularly, to a method for manufacturing an oxide superconducting wire that can increase the critical current density.

従来から、酸化物超電導線材の製造方法として、酸化物超電導体の原材料粉末を金属管に充填した後、伸線加工や圧延加工を金属管に施すことによって得られた線材を熱処理して酸化物超電導体の原材料粉末を焼結し、酸化物超電導線材を得る方法が知られている。しかしながら、上記の焼結のための熱処理工程において線材に膨れが生じることにより、得られた酸化物超電導線材の超電導特性が低下するなどの問題があった。   Conventionally, as a method of manufacturing an oxide superconducting wire, after filling a metal tube with raw material powder of an oxide superconductor, a wire obtained by subjecting the metal tube to wire drawing or rolling is heat-treated to produce an oxide. A method is known in which raw material powder of a superconductor is sintered to obtain an oxide superconducting wire. However, there has been a problem that the superconducting properties of the obtained oxide superconducting wire deteriorate due to the swelling of the wire in the heat treatment step for sintering.

そこで、酸化物超電導体の粉末を充填してなる金属管またはその偏平体を加圧雰囲気中で加熱処理して酸化物超電導体の粉末を焼結させることを特徴とする酸化物超電導線材の製造方法が提案されている(たとえば、特許文献1を参照)。この方法によれば、加圧熱処理することによって超電導特性に優れた線材が得られると特許文献1に記載されている。   Accordingly, manufacturing of an oxide superconducting wire characterized by sintering a powder of an oxide superconductor by heating a metal tube or a flat body thereof filled with the oxide superconductor powder in a pressurized atmosphere. A method has been proposed (see, for example, Patent Document 1). According to this method, it is described in Patent Document 1 that a wire having excellent superconducting properties can be obtained by pressure heat treatment.

具体的には、酸化物超電導体の粉末を充填した金属管を耐熱耐圧の密閉容器内に収容し、密閉容器内の温度上昇に伴なって増大する内部の圧力の上昇によって焼結時の膨れを防止することが試みられている。このときの内部圧は、気体の状態方程式などから求めることができ、たとえば、温度900℃程度の加熱温度では約4気圧の内部圧を得ることができると特許文献1に記載されている。   Specifically, a metal tube filled with oxide superconductor powder is housed in a heat-resistant and pressure-resistant sealed container, and swelling during sintering is caused by an increase in internal pressure that increases as the temperature in the sealed container increases. Attempts have been made to prevent. The internal pressure at this time can be obtained from a gas equation of state. For example, Patent Document 1 describes that an internal pressure of about 4 atm can be obtained at a heating temperature of about 900 ° C.

しかし、上記のように、特許文献1に記載の方法においては、密閉容器内の温度上昇に伴なって得られる内部圧は4気圧(0.4MPa)程度である。これにより、焼結時に酸化物超電導結晶間に空隙が生成され、それにより臨界電流密度が低下するという問題があった。   However, as described above, in the method described in Patent Document 1, the internal pressure obtained with the temperature rise in the sealed container is about 4 atmospheres (0.4 MPa). As a result, there is a problem in that voids are generated between the oxide superconducting crystals during sintering, thereby reducing the critical current density.

また、内部圧が4気圧(0.4MPa)程度であるため、焼結時に生成する酸化物超電導線材の膨れを十分に抑制できず、それにより、臨界電流密度が低下するという問題もあった。   In addition, since the internal pressure is about 4 atmospheres (0.4 MPa), swelling of the oxide superconducting wire generated during sintering cannot be sufficiently suppressed, thereby causing a problem that the critical current density is lowered.

一方、熱処理時と熱処理後との少なくとも一方において、内部に酸化物超電導粉末などを充填した金属管を高圧力状態に保持することを特徴とする酸化物超電導導体の製造方法が提案されている(たとえば、特許文献2を参照)。この方法によれば、高圧力状態に置くことによって、焼結時に生じる酸化物超電導体と金属管との界面における部分的剥離をなくすことができると特許文献2に記載されている。   On the other hand, a method for producing an oxide superconducting conductor characterized in that a metal tube filled with oxide superconducting powder or the like is maintained in a high pressure state during at least one of heat treatment and after heat treatment ( For example, see Patent Document 2). According to this method, it is described in Patent Document 2 that partial peeling at the interface between the oxide superconductor and the metal tube, which occurs during sintering, can be eliminated by placing in a high pressure state.

具体的には、内部に酸化物超電導粉末を充填した金属管を、熱処理時と熱処理後との少なくとも一方において、500〜2000kg/cm2(約50〜200MPa)の高圧力状態に保持することにより金属管を焼結体側に圧着することができる。これにより、超電導体が部分的にクエンチ現象を生じた場合に、このクエンチ現象によって発生した熱を速やかに取り去ることができる。また、これ以外に、剥離部が応力集中部になり、歪を生じることによる超電導特性の劣化を防止することもできる。 Specifically, by holding a metal tube filled with oxide superconducting powder in a high pressure state of 500 to 2000 kg / cm 2 (about 50 to 200 MPa) at least during and after the heat treatment. A metal tube can be pressure-bonded to the sintered body side. Thereby, when a superconductor partially causes a quench phenomenon, the heat generated by the quench phenomenon can be quickly removed. In addition to this, the peeled portion becomes a stress concentration portion, and deterioration of superconducting characteristics due to distortion can be prevented.

しかし、上記のように特許文献2に記載の方法では、加える圧力が500〜2000kg/cm2(約50〜200MPa)と高すぎるために熱処理時の酸素分圧制御が困難となり、臨界電流密度が低下してしまう。 However, in the method described in Patent Document 2 as described above, since the applied pressure is too high, 500 to 2000 kg / cm 2 (about 50 to 200 MPa), it becomes difficult to control the oxygen partial pressure during the heat treatment, and the critical current density is reduced. It will decline.

そこで、熱処理の際に線材にかかる全圧力を1MPa以上50MPa未満とすることを特徴とする酸化物超電導線材の製造方法が提案されている(たとえば、特許文献3を参照)。この方法によれば、熱処理の際に線材の膨れが発生するのを防止することができると特許文献3に記載されている。また、特許文献3においては、熱処理の際の線材の膨れを防止するために、線材の圧延の際に線材にピンホールが生じるのを防止する方法、また線材の圧延の際に生じたピンホールに加圧ガスが侵入するのを防止する方法が記載されている。   In view of this, a method for manufacturing an oxide superconducting wire has been proposed in which the total pressure applied to the wire during heat treatment is 1 MPa or more and less than 50 MPa (see, for example, Patent Document 3). According to this method, it is described in Patent Document 3 that it is possible to prevent the wire from being swollen during heat treatment. Further, in Patent Document 3, in order to prevent the wire from bulging during heat treatment, a method for preventing a pinhole from being formed in the wire during rolling of the wire, or a pinhole generated during the rolling of the wire. Describes a method of preventing pressurized gas from entering.

しかし、線材の熱処理の際には、圧延の際に線材に生じるピンホールのみならず、線材の端部も、超電導フィラメントが金属によって被覆されていない部分となる。このため、加圧雰囲気中で線材を熱処理しても、加圧ガスが線材の端部から線材中の酸化物超電導結晶間の空隙に侵入し、特に線材端部の酸化物超電導体の焼結密度の増大を抑制するため、臨界電流密度を高めることが困難であった。
特開平5−101723号公報 特許第2592846号公報 国際公開第03/100795号パンフレット
However, during the heat treatment of the wire, not only the pinhole generated in the wire during rolling, but also the end of the wire becomes a portion where the superconducting filament is not covered with metal. For this reason, even if the wire is heat-treated in a pressurized atmosphere, the pressurized gas penetrates into the gap between the oxide superconducting crystals in the wire from the end of the wire, and in particular, sintering of the oxide superconductor at the end of the wire. In order to suppress the increase in density, it has been difficult to increase the critical current density.
JP-A-5-101723 Japanese Patent No. 2,592,846 International Publication No. 03/100795 Pamphlet

本発明は、線材の端部を封止することにより、熱処理の際に加圧ガスが線材の端部から線材中に侵入することを防止して加圧焼結の効果を高め、酸化物超電導体の焼結密度が高く臨界電流密度の高い酸化物超電導線材の製造方法を提供することを目的とする。   By sealing the end of the wire, the present invention prevents the pressure gas from entering the wire from the end of the wire during the heat treatment, thereby enhancing the effect of pressure sintering. An object of the present invention is to provide a method for producing an oxide superconducting wire having a high sintered density and a high critical current density.

本発明は、酸化物超電導体の原材料粉末を金属管で被覆した形態を有する線材を作製する工程と、線材の端部を金属材料で封止する封止工程と、端部を金属材料で封止した線材を加圧雰囲気中で熱処理する熱処理工程とを含む酸化物超電導線材の製造方法である。   The present invention includes a step of producing a wire having a form in which a raw material powder of an oxide superconductor is covered with a metal tube, a sealing step of sealing an end of the wire with a metal material, and sealing the end with a metal material. And a heat treatment step of heat-treating the stopped wire in a pressurized atmosphere.

本発明にかかる酸化物超電導線材の製造方法において、上記封止工程は、線材を真空雰囲気中で保持する真空保持工程と、真空雰囲気中で保持された線材の端部を金属材料で封止する工程とを含むことができる。また、上記封止工程は、線材を室温以上800℃以下の真空雰囲気中で保持する高温真空保持工程と、室温以上800℃以下の真空雰囲気中で保持された線材の端部を金属材料で封止する工程とを含むことができる。   In the method for manufacturing an oxide superconducting wire according to the present invention, the sealing step includes a vacuum holding step of holding the wire in a vacuum atmosphere, and sealing an end portion of the wire held in the vacuum atmosphere with a metal material. Process. The sealing step includes a high-temperature vacuum holding step for holding the wire in a vacuum atmosphere at room temperature to 800 ° C., and an end portion of the wire held in a vacuum atmosphere at room temperature to 800 ° C. is sealed with a metal material. Stopping.

また、本発明にかかる酸化物超電導線材の製造方法において、上記金属材料として、上記熱処理工程における熱処理温度より高い融点を有する金属材料を用いることができる。また、上記金属材料として、線材の端部を被覆するための被覆用金属材料と、線材の端部および被覆用金属材料とを封止するための封止用金属材料とを用いることができる。   In the method for manufacturing an oxide superconducting wire according to the present invention, a metal material having a melting point higher than the heat treatment temperature in the heat treatment step can be used as the metal material. Further, as the metal material, a coating metal material for covering the end of the wire and a sealing metal material for sealing the end of the wire and the covering metal material can be used.

また、本発明は、上記の酸化物超電導線材の製造方法により製造された酸化物超電導線材である。さらに、本発明は、この酸化物超電導線材を含む超電導機器である。   Moreover, this invention is an oxide superconducting wire manufactured by the manufacturing method of said oxide superconducting wire. Furthermore, this invention is a superconducting apparatus containing this oxide superconducting wire.

上記のように、本発明によれば、線材の端部を封止することにより、熱処理の際に加圧ガスが線材の端部から線材中に侵入することを防止して、酸化物超電導体の焼結密度が高く臨界電流密度の高い酸化物超電導線材の製造方法を提供することができる。   As described above, according to the present invention, the end portion of the wire is sealed to prevent the pressurized gas from entering the wire from the end of the wire during the heat treatment, and the oxide superconductor. A method for producing an oxide superconducting wire having a high sintering density and a high critical current density can be provided.

以下、図に基づいて、本発明の実施の形態を具体的に説明する。   Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.

なお、本明細書中で「Bi2223相」とは、ビスマスと鉛とストロンチウムとカルシウムと銅とを含み、その原子比として(ビスマスと鉛):ストロンチウム:カルシウム:銅が2:2:2:3と近似して表されるBi−Sr−Ca−Cu−O系の酸化物超電導相をいい、具体的には(BiPb)2Sr2Ca2Cu310+δ超電導相をいう。 In this specification, “Bi2223 phase” includes bismuth, lead, strontium, calcium, and copper, and the atomic ratio (bismuth and lead): strontium: calcium: copper is 2: 2: 2: 3. The Bi—Sr—Ca—Cu—O-based oxide superconducting phase expressed by the following equation, specifically, the (BiPb) 2 Sr 2 Ca 2 Cu 3 O 10 + δ superconducting phase.

また、「Bi2212相」とは、ビスマスと鉛とストロンチウムとカルシウムと銅とを含み、その原子比として(ビスマスと鉛):ストロンチウム:カルシウム:銅が2:2:1:2と近似して表されるBi−Pb−Sr−Ca−Cu−O系の酸化物超電導相をいい、具体的には(BiPb)2Sr2Ca1Cu28+δ超電導相をいう。 The “Bi2212 phase” includes bismuth, lead, strontium, calcium, and copper, and the atomic ratio (bismuth and lead): strontium: calcium: copper is approximated to 2: 2: 1: 2. is the called the BiPb-Sr-Ca-Cu- O -based oxide superconducting phase, specifically refers to (BiPb) 2 Sr 2 Ca 1 Cu 2 O 8 + δ superconducting phase.

図1を参照して、本発明にかかる酸化物超電導線材の一つである多芯線構造の酸化物超電導線材(線材1)は、長手方向に伸びる複数本の酸化物超電導体フィラメント2と、それらを被覆するシース部3とを有している。複数本の酸化物超電導体フィラメント2の各々の材質は、超電導を呈する酸化物であれば特に制限はないが、たとえばBi−Pb−Sr−Ca−Cu−O系の組成が好ましく、特に、(ビスマスと鉛):ストロンチウム:カルシウム:銅の原子比がほぼ2:2:2:3の比率で近似して表されるBi2223相を含む材質が最適である。シース部3の材質は、導電性の高い金属であれば特に制限はないが、たとえば銀が好ましい。   Referring to FIG. 1, an oxide superconducting wire (wire 1) having a multi-core wire structure, which is one of oxide superconducting wires according to the present invention, includes a plurality of oxide superconductor filaments 2 extending in the longitudinal direction, and And a sheath part 3 for covering. The material of each of the plurality of oxide superconductor filaments 2 is not particularly limited as long as it is an oxide exhibiting superconductivity. For example, a Bi-Pb-Sr-Ca-Cu-O-based composition is preferable. A material containing the Bi2223 phase represented by an approximate atomic ratio of bismuth and lead): strontium: calcium: copper of 2: 2: 2: 3 is optimal. The material of the sheath part 3 is not particularly limited as long as it is a highly conductive metal, but for example, silver is preferable.

なお、上記においては多芯線構造の酸化物超電導線材について説明したが、1本の酸化物超電導体フィラメント2がシース部3により被覆される単芯線構造の酸化物超電導線材が用いられてもよい。   In the above description, the oxide superconducting wire having a multi-core wire structure has been described. However, an oxide superconducting wire having a single-core wire structure in which one oxide superconductor filament 2 is covered with a sheath portion 3 may be used.

また、本発明にかかる酸化物超電導線材の製造方法は、図2および図3を参照して、酸化物超電導体の原材料粉末を金属管で被覆した形態を有する線材を作製する工程(たとえば、ステップS1およびステップS2)と、線材の端部を金属材料で封止する封止工程(たとえば、ステップ11)と、端部を金属材料で封止した線材を加圧雰囲気中で熱処理する熱処理工程(たとえば、図2におけるステップS6、図3におけるステップS4および/またはステップS6)とを含む。端部を封止した線材を加圧雰囲気中で熱処理することにより、この熱処理の際に加圧ガスが線材の端部から線材中に侵入することを防止して、酸化物超電導体の焼結密度を高めることにより、臨界電流密度の高い酸化物超電導線材が得られる。   The manufacturing method of the oxide superconducting wire according to the present invention is a process for producing a wire having a form in which a raw material powder of an oxide superconductor is covered with a metal tube with reference to FIGS. S1 and step S2), a sealing step for sealing the end portion of the wire with a metal material (for example, step 11), and a heat treatment step for heat-treating the wire with the end portion sealed with a metal material in a pressurized atmosphere ( For example, step S6 in FIG. 2, step S4 in FIG. 3, and / or step S6) are included. By heat-treating the wire with the end sealed in a pressurized atmosphere, the pressurized gas is prevented from entering the wire from the end of the wire during this heat treatment, and the oxide superconductor is sintered. By increasing the density, an oxide superconducting wire having a high critical current density can be obtained.

本発明にかかる酸化物超電導線材の製造工程の一例は、図2を参照して、まず、酸化物超電導体の原材料粉末が金属管に充填される(ステップS1)。この酸化物超電導体の原材料粉末は、たとえば、Bi2223相を含む材料、または焼成によりBi2223相を形成するBi2212相および/または非結晶相を含む材料により構成されている。   An example of the manufacturing process of the oxide superconducting wire according to the present invention will be described with reference to FIG. 2. First, the raw material powder of the oxide superconductor is filled in the metal tube (step S1). The raw material powder of the oxide superconductor is made of, for example, a material containing a Bi2223 phase, or a material containing a Bi2212 phase and / or an amorphous phase that forms a Bi2223 phase by firing.

なお、金属管としては、とくに制限はないが、熱伝導率の高い銀や銀合金などの管を用いるのが好ましい。これにより、超電導体がクエンチ現象を部分的に生じた場合に発生した熱を金属管から速やかに取り去ることができる。   In addition, there is no restriction | limiting in particular as a metal pipe, However, It is preferable to use pipe | tubes, such as silver and silver alloy with high heat conductivity. Thereby, the heat generated when the superconductor partially causes a quench phenomenon can be quickly removed from the metal tube.

次に、原材料粉末を充填した金属管は、伸線加工により所望の直径の線材とされる(ステップS2)。これにより、酸化物超電導線材の原材料粉末を金属で被覆した形態を有する線材が得られる。この線材に1次圧延が行なわれる(ステップS3)。この1次圧延(ステップS3)後に1回目の熱処理が行なわれる(ステップS4)。これらの操作により原材料粉末から酸化物超電導相が生成される。   Next, the metal tube filled with the raw material powder is formed into a wire having a desired diameter by wire drawing (step S2). Thereby, the wire which has the form which coat | covered the raw material powder of the oxide superconducting wire with the metal is obtained. Primary rolling is performed on this wire (step S3). After this primary rolling (step S3), the first heat treatment is performed (step S4). By these operations, an oxide superconducting phase is generated from the raw material powder.

次に、この熱処理を施された線材に2次圧延が施される(ステップS5)。これにより1回目の熱処理で生じたボイドが除去される。この2次圧延(ステップS5)後に線材の端部の封止が行なわれる(ステップS11)。この線材の封止(ステップS11)後に、2次圧延された線材に2回目の熱処理が施される。(ステップS6)。2回目の熱処理で酸化物超電導相の焼結が進むと同時に酸化物超電導相の単相化が行なわれる。   Next, secondary rolling is performed on the heat-treated wire (step S5). As a result, voids generated by the first heat treatment are removed. After this secondary rolling (step S5), the end of the wire is sealed (step S11). After the sealing of the wire (step S11), the second heat treatment is performed on the second-rolled wire. (Step S6). The oxide superconducting phase is sintered in the second heat treatment, and at the same time, the oxide superconducting phase is converted into a single phase.

酸化物超電導線材の製造工程の上記一例においては、2次圧延(ステップS5)後で2回目の熱処理(ステップS6)前に線材の封止(ステップS11)が行われる場合を説明したが、他の一例として、図3に示すように、線材の封止(ステップS11)は、1次圧延(ステップS3)後で1回目の熱処理(ステップS4)前に行なうこともできる。   In the above example of the manufacturing process of the oxide superconducting wire, the case where the wire is sealed (step S11) after the second rolling (step S5) and before the second heat treatment (step S6) is described. As an example, as shown in FIG. 3, the sealing of the wire (step S11) can be performed after the first rolling (step S3) and before the first heat treatment (step S4).

ここで、酸化物超電導結晶間の空隙を低減して焼結密度を高める観点からは、図2に示すように、線材の端部の封止(ステップS11)は、2次圧延(ステップS5)後で2回目の熱処理(ステップS6)前に行なうことが好ましい。   Here, from the viewpoint of reducing the gap between the oxide superconducting crystals and increasing the sintered density, as shown in FIG. 2, the end of the wire (step S11) is subjected to secondary rolling (step S5). It is preferable to carry out before the second heat treatment (step S6) later.

本実施形態における封止工程は、線材を真空雰囲気中で保持する真空保持工程と、真空雰囲気中で保持された線材の端部を金属材料で封止する工程とを含むことが好ましい。図4(a)に示すように、圧延後の線材1においても酸化物超電導体フィラメント2中の酸化物超電導結晶2a間の空隙2bが存在するため、圧延後の線材1を真空雰囲気下に保持して空隙2b中のガスを除去した後、空隙2b中のガスが除去された線材1の端部11を金属材料で封止した後、加圧雰囲気下で熱処理することにより、図4(b)に示すように、酸化物超電導結晶2a間の空隙の無い超電導体フィラメント2を焼結することができるため、超電導線材の臨界電流密度を大きくすることができる。   The sealing step in the present embodiment preferably includes a vacuum holding step for holding the wire in a vacuum atmosphere and a step for sealing an end portion of the wire held in the vacuum atmosphere with a metal material. As shown in FIG. 4A, since the gap 2b between the oxide superconducting crystals 2a in the oxide superconductor filament 2 exists also in the rolled wire 1, the rolled wire 1 is maintained in a vacuum atmosphere. Then, after removing the gas in the gap 2b, the end portion 11 of the wire 1 from which the gas in the gap 2b has been removed is sealed with a metal material, and then heat-treated in a pressurized atmosphere, so that FIG. ), The superconductor filament 2 without voids between the oxide superconducting crystals 2a can be sintered, so that the critical current density of the superconducting wire can be increased.

また、本実施形態における封止工程は、線材を室温以上800℃以下の真空雰囲気中で保持する高温真空保持工程と、室温以上800℃以下の真空雰囲気中で保持された線材の端部を金属材料で封止する工程とを含むことがより好ましい。ここで、室温とは、人間が通常生活する室内における温度をいい、具体的には10℃〜30℃程度の温度をいう。   Further, the sealing step in this embodiment includes a high-temperature vacuum holding step for holding the wire in a vacuum atmosphere at room temperature to 800 ° C., and an end portion of the wire held in a vacuum atmosphere at room temperature to 800 ° C. It is more preferable to include a step of sealing with a material. Here, the room temperature refers to the temperature in a room where a person normally lives, and specifically refers to a temperature of about 10 ° C to 30 ° C.

線材を室温以上800℃以下の高温真空雰囲気中で保持することにより、室温下の真空雰囲気中で保持する場合に比べて、酸化物超電導結晶間の空隙中のガスをより効率的に除去できる。高温真空雰囲気中の温度は高いほど好ましいが、780℃を超えると形成されたBi2223相が融解し始め、800℃を超えるとBi2223相の融解が促進するため、臨界電流値が低下する傾向にある。かかる観点から、高温真空雰囲気中の温度は800℃以下が好ましく、780℃以下がより好ましい。   By holding the wire in a high-temperature vacuum atmosphere at room temperature or higher and 800 ° C. or lower, the gas in the voids between the oxide superconducting crystals can be removed more efficiently than when held in a vacuum atmosphere at room temperature. The higher the temperature in the high-temperature vacuum atmosphere, the better. However, when the temperature exceeds 780 ° C., the formed Bi2223 phase starts to melt, and when it exceeds 800 ° C., the melting of the Bi2223 phase promotes, so that the critical current value tends to decrease. . From this viewpoint, the temperature in the high-temperature vacuum atmosphere is preferably 800 ° C. or lower, and more preferably 780 ° C. or lower.

本実施形態において、線材の端部の封止に用いられる金属材料は、特に制限はないが、上記熱処理温度より高い融点を有する金属材料であることが好ましい。熱処理温度より高い融点を有する金属材料を用いることにより、熱処理時における線材の端部から線材内部への加圧ガスの侵入を確実に防止することができる。超電導酸化物としてBi2223相を形成する場合は、大気雰囲気中で約840℃まで、または酸素含有量が8質量%の低酸素雰囲気中で約820℃まで、昇温させて線材を熱処理することが好ましいため、融点が840℃より高い金属を用いることが好ましい。このような金属材料としては、金(融点:1063℃)、銀(融点:950℃〜960℃)または金もしくは銀を含む合金(たとえば、金蝋)などが好ましく挙げられる。   In the present embodiment, the metal material used for sealing the end portion of the wire is not particularly limited, but is preferably a metal material having a melting point higher than the heat treatment temperature. By using a metal material having a melting point higher than the heat treatment temperature, it is possible to reliably prevent the pressurization gas from entering the wire from the end of the wire during the heat treatment. When forming the Bi2223 phase as a superconducting oxide, the wire may be heat-treated by raising the temperature to about 840 ° C. in an air atmosphere or to about 820 ° C. in a low oxygen atmosphere having an oxygen content of 8 mass%. Therefore, it is preferable to use a metal having a melting point higher than 840 ° C. Preferred examples of such a metal material include gold (melting point: 1063 ° C.), silver (melting point: 950 ° C. to 960 ° C.), or an alloy containing gold or silver (for example, gold wax).

本実施形態における線材の封止方法には特に制限は無いが、たとえば、線材の封止方法の一例として、図5に示すように、封止用金属材料21を用いて線材1の端部11を封止する方法(封止方法1)が好ましく用いられる。ここで、封止用金属材料21としては、線材1の端部11を封止できるものであれば特に制限は無く、融点が高く封止効果が高い観点から、金、銀、金蝋などが好ましく挙げられる。   Although there is no restriction | limiting in particular in the sealing method of the wire in this embodiment, For example, as shown in FIG. 5, as an example of the sealing method of a wire, the edge part 11 of the wire 1 is used using the metal material 21 for sealing. A method of sealing (sealing method 1) is preferably used. Here, the sealing metal material 21 is not particularly limited as long as the end portion 11 of the wire 1 can be sealed. From the viewpoint of a high melting point and a high sealing effect, gold, silver, gold wax, or the like can be used. Preferably mentioned.

また、上記金属材料として、線材の端部を被覆するための被覆用金属材料と、線材の端部および被覆用金属材料とを封止するための封止用金属材料とを用いて、線材の端部を封止することができる。たとえば、本実施形態における線材の封止方法の他の一例として、図6(a)に示すように、被覆用金属材料22を用いて線材1の端部11を被覆した後、図6(b)に示すように、線材1の端部11および被覆用金属材料22を封止用金属材料21を用いて封止する方法(封止方法2)が、封止を確実にする観点から、好ましく用いられる。なお、図6(a)においては、薄膜形状の被覆用金属材料22を線材1の端部11においてP、Q、Rの順に折り曲げることによって線材の端部を被覆しているが、他の方法により線材の端部を被覆することもできる。ここで、被覆用金属材料22としては、線材1の端部11を被覆できるものであれば特に制限はなく、金薄膜、銀薄膜などが好ましく挙げられる。   Further, as the metal material, a metal material for coating for covering the end portion of the wire, and a metal material for sealing for sealing the end portion of the wire and the metal material for coating, The end can be sealed. For example, as another example of the method for sealing a wire according to the present embodiment, as shown in FIG. 6A, the end 11 of the wire 1 is covered with a covering metal material 22, and then the wire 11 shown in FIG. ), The method of sealing the end portion 11 of the wire 1 and the covering metal material 22 with the sealing metal material 21 (sealing method 2) is preferable from the viewpoint of ensuring sealing. Used. In FIG. 6A, the end of the wire is covered by bending the thin film-shaped covering metal material 22 in the order of P, Q, and R at the end 11 of the wire 1. Thus, the end of the wire can be covered. Here, the coating metal material 22 is not particularly limited as long as it can cover the end portion 11 of the wire 1, and preferably a gold thin film, a silver thin film, or the like.

本実施形態においては、1回以上の熱処理のうち少なくとも線材の端部を金属材料で封止した後の熱処理(図2における2回目の熱処理、図3における1回目の熱処理(ステップS4)および/または2回目の熱処理(ステップS6))が、加圧雰囲気中で行なわれる。加えられる圧力には特に制限はないが、全圧力として1MPa以上50MPa未満の圧力を加えることが好ましい。   In the present embodiment, among the one or more heat treatments, heat treatment after sealing at least the ends of the wire with a metal material (second heat treatment in FIG. 2, first heat treatment in FIG. 3 (step S4) and / or Alternatively, the second heat treatment (step S6) is performed in a pressurized atmosphere. Although there is no restriction | limiting in particular in the applied pressure, It is preferable to apply the pressure of 1 Mpa or more and less than 50 Mpa as a total pressure.

この加圧雰囲気中における熱処理は、たとえば熱間等方圧加圧法(以下、HIPという)により行なわれる。このHIPについて以下に説明する。   The heat treatment in the pressurized atmosphere is performed, for example, by a hot isostatic pressing method (hereinafter referred to as HIP). This HIP will be described below.

図7を参照して、HIPを行なう装置(HIP装置70)は、圧力容器円筒71と、その圧力容器円筒71の両端を密閉する上蓋72および下蓋73と、圧力容器円筒71中に加圧ガスを導入するために上蓋72に設けられた加圧ガス導入口74と、線材1を加熱するヒータ75と、断熱層76と、線材1を支える支持具77とにより構成されている。   Referring to FIG. 7, a device for performing HIP (HIP device 70) includes a pressure vessel cylinder 71, an upper lid 72 and a lower lid 73 that seal both ends of the pressure vessel cylinder 71, and pressurization in the pressure vessel cylinder 71. A pressurized gas introduction port 74 provided in the upper lid 72 for introducing gas, a heater 75 for heating the wire 1, a heat insulating layer 76, and a support 77 for supporting the wire 1 are configured.

本実施形態では、原材料粉末を金属管に充填した後に伸線・圧延された線材1が、被熱処理品として圧力容器円筒71内で支持具77に支持される。この状態で、加圧ガス導入口74から所定の加圧ガス68が圧力容器円筒71内に導入されることで、圧力容器円筒71内は1MPa以上50MPa未満の加圧雰囲気とされ、その加圧雰囲気下でヒータ75により線材1が所定温度に加熱される。この熱処理は酸素雰囲気中で行なわれることが好ましく、酸素分圧は0.003MPa以上0.02MPa以下であることが好ましい。このようにして線材1にHIPによる熱処理が施される。ここで、圧力容器円筒71内に導入される加圧ガス68としては、酸素ガスと不活性ガスとの混合ガスが好ましく用いられる。不活性ガスとしては、窒素ガス、アルゴンガスなどが好ましく用いられる。   In the present embodiment, the wire 1 drawn and rolled after filling the raw material powder into the metal tube is supported by the support 77 in the pressure vessel cylinder 71 as a heat-treated product. In this state, a predetermined pressurized gas 68 is introduced into the pressure vessel cylinder 71 from the pressurized gas introduction port 74, whereby the pressure vessel cylinder 71 has a pressurized atmosphere of 1 MPa or more and less than 50 MPa. The wire 1 is heated to a predetermined temperature by the heater 75 in an atmosphere. This heat treatment is preferably performed in an oxygen atmosphere, and the oxygen partial pressure is preferably 0.003 MPa or more and 0.02 MPa or less. In this way, the wire 1 is heat-treated by HIP. Here, as the pressurized gas 68 introduced into the pressure vessel cylinder 71, a mixed gas of oxygen gas and inert gas is preferably used. As the inert gas, nitrogen gas, argon gas or the like is preferably used.

本実施形態の製造方法により製造された酸化物超電導線材は、線材の中央部および端部の焼結密度が100近くまで高くなるため、高い臨界電流密度を有する。   The oxide superconducting wire manufactured by the manufacturing method of this embodiment has a high critical current density because the sintered density at the center and end of the wire increases to nearly 100.

また、本実施形態の製造方法により製造された酸化物超電導線材を含む超電導機器は、高い臨界電流密度を有する酸化物超電導線材を含むことから、優れた超電導特性を有する。ここで、超電導機器は、上記酸化物超電導線材を含むものであれば特に制限は無く、超電導ケーブル、超電導変圧器、超電導限流器、超電導電力貯蔵装置などが挙げられる。   Moreover, since the superconducting device including the oxide superconducting wire manufactured by the manufacturing method of the present embodiment includes the oxide superconducting wire having a high critical current density, it has excellent superconducting characteristics. Here, the superconducting device is not particularly limited as long as it includes the oxide superconducting wire, and examples thereof include a superconducting cable, a superconducting transformer, a superconducting current limiter, and a superconducting power storage device.

(比較例1、実施例1〜実施例3)
酸化物超電導体の原料としてBi23、PbO、SrCO3、CaCO3およびCuOの粉末を、Bi:Pb:Sr:Ca:Cu=1.8:0.3:1.9:2.0:3.0のモル比になるような割合で混合し、熱処理と混合を繰り返して、Bi2212相と非超電導相で構成される原材料粉末を調製した。この原材料粉末を直径46mmの銀管に充填した後、伸線加工して、直径10mmのクラッド線を得た。この上記クラッド線61本を束ねて再び直径46mmの銀管に挿入し、伸線加工して、原材料粉末がフィラメント状となった長さ2000mの多芯線を得た。
(Comparative Example 1, Examples 1 to 3)
Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 and CuO powders are used as raw materials for the oxide superconductor, and Bi: Pb: Sr: Ca: Cu = 1.8: 0.3: 1.9: 2.0 : The raw material powder comprised by the Bi2212 phase and the non-superconducting phase was prepared by mixing at a molar ratio of 3.0 and repeating the heat treatment and mixing. The raw material powder was filled into a 46 mm diameter silver tube and then drawn to obtain a 10 mm diameter clad wire. The 61 clad wires were bundled and inserted again into a silver tube having a diameter of 46 mm and drawn to obtain a multicore wire having a length of 2000 m in which the raw material powder was in the form of a filament.

次に、上記多芯線を1次圧延して、銀比1.5で61芯のフィラメントで構成された幅4.2mm、厚さ0.24mm、長さ2000mのテープ状の銀被覆線材を得た。このテープ状銀被覆線材を、大気中、840℃、50時間の条件で1回目の熱処理を行なって、Bi2223相で構成される酸化物超電導体フィラメントを有する1次線材を得た。なお、銀比とは、線材の横断面(幅×厚さ方向の断面)における酸化物超電導体部分の面積に対する銀(金属)部分の面積の比をいう。   Next, the multifilamentary wire is subjected to primary rolling to obtain a tape-shaped silver-coated wire having a width of 4.2 mm, a thickness of 0.24 mm, and a length of 2000 m, which is composed of a 61-core filament with a silver ratio of 1.5. It was. This tape-shaped silver-coated wire was subjected to a first heat treatment in the atmosphere at 840 ° C. for 50 hours to obtain a primary wire having an oxide superconductor filament composed of a Bi2223 phase. The silver ratio means the ratio of the area of the silver (metal) part to the area of the oxide superconductor part in the cross section (width × thickness direction cross section) of the wire.

次に、上記1次線材を8%の圧下率で2次圧延を行なった。なお、圧下率とは、以下の式(1)
圧下率(%)={1−(圧延後の線材の厚さ)/(圧延前の線材の厚さ)}×100 ・・・(1)
で定義されるものである。
Next, the primary wire was subjected to secondary rolling at a rolling reduction of 8%. The rolling reduction is the following formula (1)
Reduction ratio (%) = {1- (Thickness of wire after rolling) / (Thickness of wire before rolling)} × 100 (1)
Is defined by

次いで、2次圧延後の線材を4分割して、分割された線材のひとつは端部を開放したままとし(以下、比較例1とする)、他のひとつは25℃の大気雰囲気中で端部を封止し(以下、実施例1とする)、また他のひとつは780℃、10Paの高温真空雰囲気中で5時間保持した後降温して25℃、10Paの真空雰囲気中で端部を封止した(以下、実施例2とする)、また他のひとつは800℃、10Paの高温真空雰囲気中で2時間保持した後降温して25℃、10Paの真空雰囲気中で端部を封止した。ここで、実施例1〜実施例3においては、線材の端部の封止は、上記封止方法2に準じて、線材の端部に銀薄膜を被覆した後、線材の端部および銀薄膜に融解した金蝋(融点が895℃、組成がAu:Ag:Cu=75.0:12.5:12.5(質量%))を塗布することにより、線材の端部を封止した。   Next, the wire rod after the secondary rolling is divided into four, one of the divided wires is left open (hereinafter, referred to as Comparative Example 1), and the other is end in an air atmosphere at 25 ° C. The other part is sealed (hereinafter referred to as Example 1), and the other is held at 780 ° C. and 10 Pa in a high-temperature vacuum atmosphere for 5 hours, and then cooled to 25 ° C. and 10 Pa in a vacuum atmosphere. Sealed (hereinafter referred to as Example 2), and the other was held in a high-temperature vacuum atmosphere at 800 ° C. and 10 Pa for 2 hours and then cooled to seal the end in a vacuum atmosphere at 25 ° C. and 10 Pa. did. Here, in Examples 1 to 3, the end of the wire is sealed in accordance with the sealing method 2 described above, after the end of the wire is covered with a silver thin film, and then the end of the wire and the silver thin film. The ends of the wire rods were sealed by applying melted gold wax (melting point: 895 ° C., composition: Au: Ag: Cu = 75.0: 12.5: 12.5 (mass%)).

次に、上記比較例1、実施例1〜実施例3の線材を、図7に示すHIP装置70の圧力容器円筒71内に加圧ガス68として酸素ガスとアルゴンガスとの混合ガスを導入して、圧力容器円筒内圧(全圧)28MPa、酸素分圧8kPa、820℃で50時間保持することにより、2回目の熱処理を行ない、2次圧延後の線材を加圧焼結して、それぞれ比較例1、実施例1〜実施例3の酸化物超電導線材(2次線材)を得た。   Next, a mixed gas of oxygen gas and argon gas was introduced as the pressurized gas 68 into the pressure vessel cylinder 71 of the HIP device 70 shown in FIG. The pressure vessel cylinder internal pressure (total pressure) is 28 MPa, the oxygen partial pressure is 8 kPa, and held at 820 ° C. for 50 hours, the second heat treatment is performed, and the wire rod after the secondary rolling is subjected to pressure sintering and compared. The oxide superconducting wire (secondary wire) of Example 1 and Examples 1 to 3 was obtained.

得られた酸化物超電導線材の臨界電流値を四端子法により液体窒素中で測定した。また、得られた酸化物超電導線材中の酸化物超電導体の焼結密度を後述するアルキメデス法(浮力法)により算出した。   The critical current value of the obtained oxide superconducting wire was measured in liquid nitrogen by the four probe method. Moreover, the sintered density of the oxide superconductor in the obtained oxide superconducting wire was calculated by the Archimedes method (buoyancy method) described later.

比較例1の酸化物超電導線材については、臨界電流値は平均が94A、標準偏差が9.4Aであり、焼結密度が中央部で98%、端部で95%であった。また、実施例1の酸化物超電導線材については、臨界電流値は平均が104A、標準偏差が1.2Aであり、焼結密度が中央部で99%、端部で98%であった。また、実施例2の酸化物超電導線材については、臨界電流値は平均が124A、標準偏差が0.8Aであり、焼結密度が中央部で100%、端部で100%であった。また、実施例3の酸化物超電導線材については、臨界電流値は平均が119A、標準偏差が2.5Aであり、焼結密度が中央部で100%、端部で100%であった。   The oxide superconducting wire of Comparative Example 1 had an average critical current value of 94A and a standard deviation of 9.4A, and a sintered density of 98% at the center and 95% at the ends. The oxide superconducting wire of Example 1 had an average critical current value of 104 A and a standard deviation of 1.2 A, and a sintered density of 99% at the center and 98% at the ends. The oxide superconducting wire of Example 2 had an average critical current value of 124 A and a standard deviation of 0.8 A, and a sintered density of 100% at the center and 100% at the end. The oxide superconducting wire of Example 3 had an average critical current value of 119 A and a standard deviation of 2.5 A, and a sintered density of 100% at the center and 100% at the ends.

結果を表1および図8に示す。ここで、図8において、Aは比較例1の場合、Bは実施例1の場合、Cは実施例2の場合を示す。   The results are shown in Table 1 and FIG. Here, in FIG. 8, A shows the case of Comparative Example 1, B shows the case of Example 1, and C shows the case of Example 2.

Figure 2006228665
Figure 2006228665

図8から明らかなように、線材の末端を封止しない場合(比較例1)は、線材の臨界電流が端部に行くほど低下する。これは、2次圧延後の線材においても、酸化物超電導フィラメント中の酸化物超電導結晶間に約7%の空隙が存在しているため、2回目の熱処理の際に加圧ガスが線材の端部から上記空隙に侵入することによるものと考えられる。   As is apparent from FIG. 8, when the end of the wire is not sealed (Comparative Example 1), the critical current of the wire decreases as it goes to the end. This is because, even in the wire after the secondary rolling, about 7% of voids exist between the oxide superconducting crystals in the oxide superconducting filament, so that the pressurized gas is at the end of the wire during the second heat treatment. This is thought to be due to the penetration of the gap into the gap.

ここで、本実施例および本比較例における2次圧延後の線材を高温で圧縮する場合の温度と圧縮耐力との関係は、図9に示すとおりである。図9の縦軸の圧縮耐力とは、酸化物超電導フィラメントの焼結密度を93%(空隙率7%)から100%(空隙率0%)にするのに必要な力をいう。すなわち、2次圧延後の線材厚さをさらに0.02mm薄く(0.22mmから0.20mに)するのに必要な力をいう。図9に示すように、本実施例および比較例における2回目の熱処理温度である820℃でHIP装置の圧力容器円筒内に加圧ガスを導入したとしても、圧力容器円筒内圧が20MPaに達するまでは、線材の端部から酸化物超伝導フィラメントの空隙に加圧ガスが侵入することになる。   Here, the relationship between the temperature and the compression strength when the wire rod after secondary rolling in this example and this comparative example is compressed at a high temperature is as shown in FIG. The compressive yield strength on the vertical axis in FIG. 9 refers to a force required to change the sintered density of the oxide superconducting filament from 93% (porosity 7%) to 100% (porosity 0%). That is, it refers to the force required to further reduce the wire thickness after secondary rolling by 0.02 mm (from 0.22 mm to 0.20 m). As shown in FIG. 9, even if the pressurized gas is introduced into the pressure vessel cylinder of the HIP apparatus at 820 ° C., which is the second heat treatment temperature in this example and the comparative example, the pressure vessel cylinder internal pressure reaches 20 MPa. Will cause the pressurized gas to enter the voids of the oxide superconducting filament from the end of the wire.

実施例1においては線材の焼結密度が中央部で99%、端部で98%と高くなり、実施例2および実施例3において線材の焼結密度が中央部および端部のいずれにおいても100%と高くなったのに対し、比較例1においては線材の焼結密度は中央部で98%、端部で95%に留まった。このことから、2回目の熱処理の際に線材の端部が封止されておらず、酸化物超電導フィラメントの空隙に加圧ガスが侵入すると高い焼結密度が得られないことがわかる。   In Example 1, the sintered density of the wire becomes high at 99% at the center and 98% at the end, and in Examples 2 and 3, the sintered density of the wire is 100 at both the center and the end. On the other hand, in Comparative Example 1, the sintered density of the wire remained at 98% at the center and 95% at the end. This shows that the end of the wire is not sealed during the second heat treatment, and a high sintering density cannot be obtained if pressurized gas enters the voids of the oxide superconducting filament.

ここで、焼結密度とは、以下の式(2)
焼結密度(%)=(ρf/6.45)×100 ・・・(2)
で定義されるものである。この式(2)において、ρfは酸化物超電導体フィラメントの測定密度、6.45は酸化物超電導体フィラメントの理論密度である。この酸化物超電導体フィラメントの理論密度は、本実施例または比較例における酸化物超電導線材中の酸化物超電導フィラメントのICP(Inductive Coupled Plasma)発光分析およびEDX(energy dispersive X-ray spectroscopy)分析により算出される酸化物超電導体フィラメント中のBi2223相の原子比と、X線回折法により算出されるBi2223相の格子定数(a軸およびc軸の値など)とを用いて算出される。
Here, the sintered density means the following formula (2)
Sintering density (%) = (ρ f /6.45)×100 (2)
Is defined by In this formula (2), ρ f is the measured density of the oxide superconductor filament, and 6.45 is the theoretical density of the oxide superconductor filament. The theoretical density of the oxide superconductor filament is calculated by ICP (Inductive Coupled Plasma) emission analysis and EDX (energy dispersive X-ray spectroscopy) analysis of the oxide superconducting filament in the oxide superconducting wire in this example or the comparative example. It is calculated using the atomic ratio of the Bi2223 phase in the oxide superconductor filament and the lattice constant of the Bi2223 phase (a-axis and c-axis values, etc.) calculated by the X-ray diffraction method.

一方、ρfは以下のアルキメデス法を用いて算出される。まず、Mt(g)の酸化物超電導線材が切り分けられる。次に、切り分けられた酸化物超電導線材をアルコールに浸し、アルコール中での線材の質量(W(g))を計測し、酸化物超電導線材に働く浮力が算出される。そして、既知のアルコール密度(ρ=0.789(g/cm3)を用いて酸化物超電導線材の体積(Vt(cm3))が算出される。具体的には、浮力をFとすると、以下の式(3)、(4)
t=Mt−W ・・・(3)
t=Ft/ρ ・・・(4)
によりVtが算出される。
On the other hand, ρ f is calculated using the following Archimedes method. First, an oxide superconducting wire of M t (g) is cut out. Next, the cut oxide superconducting wire is immersed in alcohol, and the mass (W (g)) of the wire in alcohol is measured, and the buoyancy acting on the oxide superconducting wire is calculated. Then, the volume (V t (cm 3 )) of the oxide superconducting wire is calculated using a known alcohol density (ρ = 0.789 (g / cm 3 ). Specifically, the buoyancy is expressed as F t . Then, the following equations (3), (4)
F t = M t −W (3)
V t = F t / ρ (4)
V t is calculated by.

続いて、酸化物超電導線材を硝酸に溶解し、その溶液をICP発光分析することにより銀を定量し、酸化物超電導線材の質量に占める銀の割合(Y)が算出される。そして、酸化物超電導線材の質量から、酸化物超電導体線材のフィラメント部との質量(Mf(g))と、シース部の質量(Ms(g))とが以下の式(5)、(6)
s=Mt×Y ・・・(5)
f=Mt−Ms ・・・(6)
により算出される。
Subsequently, the oxide superconducting wire is dissolved in nitric acid, and the solution is subjected to ICP emission analysis to quantify silver, and the ratio (Y) of silver in the mass of the oxide superconducting wire is calculated. Then, from the mass of the oxide superconducting wire, the mass of the filament portion of the oxide superconductor wire (M f (g)), the mass of the sheath (M s (g)) and has the following formula (5), (6)
M s = M t × Y (5)
M f = M t −Ms (6)
Is calculated by

次に、シース部の体積(Vs(cm3))が既知の銀比重(10.5(g/cm3))より算出され、シース部の体積から酸化物超電導体フィラメントの体積(Vf(cm3))が算出される。そして、酸化物超電導体フィラメントの体積から酸化物超電導体フィラメントの密度ρfが算出される。具体的には、以下の式(7)〜(9)
s=Ms/10.5 ・・・(7)
f=Vt−Vs ・・・(8)
ρf=Mf/Vf ・・・(9)
によりρfが算出される。
Next, the volume of the sheath portion (V s (cm 3 )) is calculated from the known silver specific gravity (10.5 (g / cm 3 )), and the volume of the oxide superconductor filament (V f ) is calculated from the volume of the sheath portion. (Cm 3 )) is calculated. Then, the density ρ f of the oxide superconductor filament is calculated from the volume of the oxide superconductor filament. Specifically, the following formulas (7) to (9)
V s = M s /10.5 (7)
V f = V t −V s (8)
ρ f = M f / V f (9)
To calculate ρ f .

比較例1と実施例1とを対比すると、線材の端部を封止して加圧雰囲気中で熱処理することにより、臨界電流値の平均が94Aから104Aに増大し、臨界電流値の標準偏差が9.4Aから1.2Aに低減したことがわかる。ここで、比較例1および実施例1の酸化物超電導線材はそれらの横断面積(横断面(幅×厚さ方向の断面)の面積)が同じであることから、線材の端部を封止して加圧雰囲気中で熱処理することにより臨界電流密度が大きく、そのばらつきが低減している酸化物超電導線材が得られることがわかる。   When comparing Comparative Example 1 and Example 1, the end of the wire was sealed and heat-treated in a pressurized atmosphere, whereby the average critical current value increased from 94 A to 104 A, and the standard deviation of the critical current value It can be seen that is reduced from 9.4 A to 1.2 A. Here, since the oxide superconducting wires of Comparative Example 1 and Example 1 have the same cross-sectional area (area of the transverse section (width × thickness section)), the ends of the wires are sealed. It can be seen that an oxide superconducting wire having a large critical current density and reduced variation can be obtained by heat treatment in a pressurized atmosphere.

また、実施例1と実施例2または実施例3とを対比すると、線材を室温以上800℃以下の真空雰囲気中で(具体的には、実施例2の場合は780℃、10Paで5時間、実施例3の場合は800℃、10Paで2時間)保持した後、線材の端部を封止して加圧雰囲気中で熱処理することにより、上記真空雰囲気中で保持しなかった場合に比べて、臨界電流値の平均が104Aから124Aまたは104Aから119Aに増大したことがわかる。ここで、実施例1〜実施例3の酸化物超電導線材はそれらの横断面積が同じであることから、線材を室温以上800℃以下の真空雰囲気中で保持した後、線材の端部を封止して加圧雰囲気中で熱処理することにより、臨界電流密度がより大きい酸化物超電導線材が得られることがわかる。   Further, when Example 1 was compared with Example 2 or Example 3, the wire was placed in a vacuum atmosphere at room temperature to 800 ° C. (specifically, in the case of Example 2, at 780 ° C. and 10 Pa for 5 hours, In the case of Example 3, after holding at 800 ° C. and 10 Pa for 2 hours, the end of the wire is sealed and heat-treated in a pressurized atmosphere, compared to the case where it is not held in the vacuum atmosphere. It can be seen that the average critical current value increased from 104A to 124A or from 104A to 119A. Here, since the oxide superconducting wires of Examples 1 to 3 have the same cross-sectional area, the ends of the wires are sealed after the wires are held in a vacuum atmosphere of room temperature to 800 ° C. It can be seen that an oxide superconducting wire having a higher critical current density can be obtained by heat treatment in a pressurized atmosphere.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

酸化物超電導線材の構成を概念的に示す部分的断面斜視模式図である。It is a partial section perspective schematic diagram showing the composition of an oxide superconducting wire notionally. 酸化物超電導線材の製造工程の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing process of an oxide superconducting wire. 酸化物超電導線材の製造工程の他の一例を示す模式図である。It is a schematic diagram which shows another example of the manufacturing process of an oxide superconducting wire. 酸化物超電導線材の縦断面(長さ×厚さ方向の断面)の一部を示す断面模式図である。It is a cross-sectional schematic diagram which shows a part of longitudinal cross-section (length x cross section of thickness direction) of an oxide superconducting wire. 酸化物超電導線材の端部の封止方法の一例を示す模式図である。It is a schematic diagram which shows an example of the sealing method of the edge part of an oxide superconducting wire. 酸化物超電導線材の端部の封止方法の他の一例を示す模式図である。It is a schematic diagram which shows another example of the sealing method of the edge part of an oxide superconducting wire. HIP装置の断面模式図である。It is a cross-sectional schematic diagram of a HIP device. 酸化物超電導線材の線材長さと臨界電流値との関係を示す図である。It is a figure which shows the relationship between the wire length of an oxide superconducting wire, and a critical current value. 2次圧延後の線材を高温で圧縮する場合の温度と圧縮耐力との関係を示す図である。It is a figure which shows the relationship between the temperature in the case of compressing the wire after secondary rolling at high temperature, and compression yield strength.

符号の説明Explanation of symbols

1 線材、2 酸化物超電導体フィラメント、2a 酸化物超電導結晶、2b 空隙、3 シース部、11 端部、21 封止用金属材料、22 被覆用金属材料、70 HIP装置、71 圧力容器円筒、72 上蓋、73 下蓋、74 加圧ガス導入口、75 ヒータ、76 断熱層、77 支持具。   DESCRIPTION OF SYMBOLS 1 Wire rod, 2 oxide superconductor filament, 2a oxide superconducting crystal, 2b space | gap, 3 sheath part, 11 edge part, 21 metal material for sealing, 22 metal material for coating | cover, 70 HIP apparatus, 71 pressure vessel cylinder, 72 Upper lid, 73 Lower lid, 74 Pressurized gas inlet, 75 heater, 76 heat insulation layer, 77 support.

Claims (7)

酸化物超電導体の原材料粉末を金属管で被覆した形態を有する線材を作製する工程と、前記線材の端部を金属材料で封止する封止工程と、前記端部を金属材料で封止した線材を加圧雰囲気中で熱処理する熱処理工程とを含む酸化物超電導線材の製造方法。   A step of producing a wire having a form in which a raw material powder of an oxide superconductor is covered with a metal tube, a sealing step of sealing an end of the wire with a metal material, and sealing the end with a metal material The manufacturing method of an oxide superconducting wire including the heat treatment process which heat-processes a wire in a pressurized atmosphere. 前記封止工程が、前記線材を真空雰囲気中で保持する真空保持工程と、前記真空雰囲気中で保持された線材の端部を金属材料で封止する工程とを含むことを特徴とする請求項1に記載の酸化物超電導線材の製造方法。   The sealing step includes a vacuum holding step of holding the wire in a vacuum atmosphere, and a step of sealing an end portion of the wire held in the vacuum atmosphere with a metal material. The manufacturing method of the oxide superconducting wire of 1. 前記封止工程が、前記線材を室温以上800℃以下の真空雰囲気中で保持する高温真空保持工程と、前記室温以上800℃以下の真空雰囲気中で保持された線材の端部を金属材料で封止する工程とを含むことを特徴とする請求項1に記載の酸化物超電導線材の製造方法。   The sealing step includes a high-temperature vacuum holding step for holding the wire in a vacuum atmosphere at room temperature to 800 ° C., and an end portion of the wire held in the vacuum atmosphere at room temperature to 800 ° C. is sealed with a metal material. The method for producing an oxide superconducting wire according to claim 1, further comprising a step of stopping. 前記金属材料として、前記熱処理温度より高い融点を有する金属材料を用いることを特徴とする請求項1から請求項3のいずれかに記載の酸化物超電導線材の製造方法。   The method for producing an oxide superconducting wire according to any one of claims 1 to 3, wherein a metal material having a melting point higher than the heat treatment temperature is used as the metal material. 前記金属材料として、前記線材の端部を被覆するための被覆用金属材料と、前記線材の端部および前記被覆用金属材料とを封止するための封止用金属材料とを用いることを特徴とする請求項1から請求項4のいずれかに記載の酸化物超電導線材の製造方法。   As the metal material, a metal material for covering for covering an end portion of the wire rod and a metal material for sealing for sealing the end portion of the wire rod and the metal material for covering are used. A method for producing an oxide superconducting wire according to any one of claims 1 to 4. 請求項1から請求項5のいずれかに記載の酸化物超電導線材の製造方法により製造された酸化物超電導線材。   The oxide superconducting wire manufactured by the manufacturing method of the oxide superconducting wire in any one of Claims 1-5. 請求項6に記載の酸化物超電導線材を含む超電導機器。   A superconducting device comprising the oxide superconducting wire according to claim 6.
JP2005043950A 2005-02-21 2005-02-21 Oxide superconducting wire material, manufacturing method thereof, and superconducting apparatus Pending JP2006228665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005043950A JP2006228665A (en) 2005-02-21 2005-02-21 Oxide superconducting wire material, manufacturing method thereof, and superconducting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005043950A JP2006228665A (en) 2005-02-21 2005-02-21 Oxide superconducting wire material, manufacturing method thereof, and superconducting apparatus

Publications (1)

Publication Number Publication Date
JP2006228665A true JP2006228665A (en) 2006-08-31

Family

ID=36989837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005043950A Pending JP2006228665A (en) 2005-02-21 2005-02-21 Oxide superconducting wire material, manufacturing method thereof, and superconducting apparatus

Country Status (1)

Country Link
JP (1) JP2006228665A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276973A (en) * 2007-04-25 2008-11-13 Sumitomo Electric Ind Ltd Manufacturing method of oxide superconductive wire material, and oxide superconductive wire material
JP2009133710A (en) * 2007-11-30 2009-06-18 Iwasaki Electric Co Ltd Detection method and device of active oxygen species
JP2014130789A (en) * 2012-11-30 2014-07-10 Fujikura Ltd Oxide superconductive wire material, connection structure of oxide superconductive wire material, its manufacturing method and superconductive device
JP2014130788A (en) * 2012-11-30 2014-07-10 Fujikura Ltd Connection structure of oxide superconductive wire material and superconductive appliance
JP2014167887A (en) * 2013-02-28 2014-09-11 Fujikura Ltd Connection structure of oxide superconducting wire, and manufacturing method of the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647434A (en) * 1987-06-30 1989-01-11 Kobe Steel Ltd Manufacture of ceramic superconductive wire
JPH0395806A (en) * 1989-09-07 1991-04-22 Furukawa Electric Co Ltd:The Superconductive conductor, its manufacture and superconducting coil formed by using the same superconductive conductor
JPH06309967A (en) * 1993-04-21 1994-11-04 Mitsubishi Cable Ind Ltd Manufacture of oxide type superconducting wire
JP2001184956A (en) * 1999-12-28 2001-07-06 Sumitomo Electric Ind Ltd Method of fabricating superconducting wire rod
JP2004087488A (en) * 2002-08-05 2004-03-18 Sumitomo Electric Ind Ltd Manufacturing method of superconductive cable

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647434A (en) * 1987-06-30 1989-01-11 Kobe Steel Ltd Manufacture of ceramic superconductive wire
JPH0395806A (en) * 1989-09-07 1991-04-22 Furukawa Electric Co Ltd:The Superconductive conductor, its manufacture and superconducting coil formed by using the same superconductive conductor
JPH06309967A (en) * 1993-04-21 1994-11-04 Mitsubishi Cable Ind Ltd Manufacture of oxide type superconducting wire
JP2001184956A (en) * 1999-12-28 2001-07-06 Sumitomo Electric Ind Ltd Method of fabricating superconducting wire rod
JP2004087488A (en) * 2002-08-05 2004-03-18 Sumitomo Electric Ind Ltd Manufacturing method of superconductive cable

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276973A (en) * 2007-04-25 2008-11-13 Sumitomo Electric Ind Ltd Manufacturing method of oxide superconductive wire material, and oxide superconductive wire material
JP2009133710A (en) * 2007-11-30 2009-06-18 Iwasaki Electric Co Ltd Detection method and device of active oxygen species
JP2014130789A (en) * 2012-11-30 2014-07-10 Fujikura Ltd Oxide superconductive wire material, connection structure of oxide superconductive wire material, its manufacturing method and superconductive device
JP2014130788A (en) * 2012-11-30 2014-07-10 Fujikura Ltd Connection structure of oxide superconductive wire material and superconductive appliance
JP2014167887A (en) * 2013-02-28 2014-09-11 Fujikura Ltd Connection structure of oxide superconducting wire, and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US20090197771A1 (en) Method of manufacturing oxide superconducting wire, method of modifying oxide superconducting wire and oxide superconducting wire
JP4016601B2 (en) Oxide superconducting wire manufacturing method and pressurized heat treatment apparatus used in the manufacturing method
WO2005029511A1 (en) Superconducting device and superconducting cable
JP2006228665A (en) Oxide superconducting wire material, manufacturing method thereof, and superconducting apparatus
JP4527399B2 (en) Method for manufacturing MgB2-based superconducting wire including heat treatment
EP0045584B1 (en) Methods of making multifilament superconductors
EP0837512B1 (en) Improved performance of oxide dispersion strengthened superconductor composites
JP2008140769A (en) METHOD FOR MANUFACTURING Bi2223 SUPERCONDUCTING WIRE ROD
JP4513567B2 (en) Method for producing oxide superconducting wire
KR20070085238A (en) Method for producing oxide superconducting wire
US6418331B1 (en) Multi-core BSCCO high-temperature superconductor
JP2006260854A (en) Manufacturing method of superconductive wire rod
JP4605156B2 (en) Superconducting wire manufacturing method
JP3721392B2 (en) Manufacturing method of high-temperature superconducting wire
WO2008015847A1 (en) Superconducting oxide wire and process for producing the same
US20020111277A1 (en) Oxide superconductor composite having smooth filament-matrix interface
US6960554B2 (en) Method of making a BSCCO superconductor article
JP5343526B2 (en) Superconducting wire manufacturing method
TW200407915A (en) Manufacturing method for oxide super conductivity wire
JP4507899B2 (en) Bismuth oxide superconducting wire and method for producing the same, superconducting equipment using the bismuth oxide superconducting wire
JP2006236939A (en) Bismuth system oxide superconductive wire rod, its manufacturing method and superconductive apparatus
JPH08306248A (en) Manufacture of oxide superconducting wire material
JPH02229753A (en) Preparation of ductile composite containing superconductive ceramic oxide
WO2001035423A1 (en) High-temperature oxide superconductor wire and method for preparing the same
JPH01175125A (en) Manufacture of multi-core oxide superconducting wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601