JPH04171612A - Manufacture of ceramic superconductive body - Google Patents

Manufacture of ceramic superconductive body

Info

Publication number
JPH04171612A
JPH04171612A JP2298500A JP29850090A JPH04171612A JP H04171612 A JPH04171612 A JP H04171612A JP 2298500 A JP2298500 A JP 2298500A JP 29850090 A JP29850090 A JP 29850090A JP H04171612 A JPH04171612 A JP H04171612A
Authority
JP
Japan
Prior art keywords
metal pipe
raw material
pipe
composite
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2298500A
Other languages
Japanese (ja)
Inventor
Sukeyuki Kikuchi
菊地 祐行
Kiyoshi Nemoto
清 根本
Masanao Mimura
三村 正直
Naoki Uno
直樹 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2298500A priority Critical patent/JPH04171612A/en
Publication of JPH04171612A publication Critical patent/JPH04171612A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve superconductive characteristics by filling a raw material to become a ceramic superconductive body in an interpipe space part for making complex billet, applying extention work thereto for forming a complex wire body having a hollow part, and applying heat treatment to the complex wire body. CONSTITUTION:In side a raw material layer 4 being turned into a ceramic superconductive body filled in a metal pipe 1, a metal pipe 3 having an air permeation property at its wall surface are arranged at a required interval to form complex billet 5, and an extension work is applied thereto with a specified range of surface reduction ratio for remaining the metal pipe as a hollow part to form a complex wire body 7. Thereafter, heat treatment is applied to this complex wire body, whereby gas generated from a raw material 4 at the time of heat treatment passes through the pipe 3 to the hollow part. With the constitution, there is no fear that an outermost metal pipe 1 doesnot swell up. It is thus possible to have a ceramic superconductive body excellent in its shape and superconductive characteristics.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、マグネット用、ケーブル用、電流リード用等
に適した電気的特性に優れた中空状のセラミックス超電
導々体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a hollow ceramic superconductor having excellent electrical properties and suitable for use in magnets, cables, current leads, and the like.

〔従来の技術〕[Conventional technology]

近年B1−3r−Ca−Cu−0系、Y−Ba−Cu−
0系、Tl−Ba−Ca−Cu−0系等の臨界温度(T
c)が液体窒素温度を超えるセラミックス超電導体が見
出され、種々分野で応用研究が進められている。
In recent years, B1-3r-Ca-Cu-0 series, Y-Ba-Cu-
0 system, Tl-Ba-Ca-Cu-0 system, etc.
A ceramic superconductor whose temperature (c) exceeds the temperature of liquid nitrogen has been discovered, and applied research is progressing in various fields.

ところで、これらのセラミックス超電導体は脆い為、こ
れらを所定形状のセラミックス超電導線状体に加工する
には、例えばセラミックス超電導体となし得る原料物質
を所定形状の圧粉成形体となし、或いは金属製パイプ内
に前記原料物質を充填した複合ビレットに伸延加工を施
して所定形状の複合線状体となし、次いでこれに所定の
加熱処理を施して前記原料物質をセラミックス超電導体
となす方法等が用いられている。
By the way, since these ceramic superconductors are brittle, in order to process them into ceramic superconducting wire bodies of a predetermined shape, for example, raw material that can be made into a ceramic superconductor must be made into a powder compact of a predetermined shape, or a metal A method is used in which a composite billet filled with the raw material material in a pipe is stretched to form a composite linear body of a predetermined shape, and then subjected to a predetermined heat treatment to form the raw material material into a ceramic superconductor. It is being

上記加工法のうち、金属製パイプと複合して加工する方
法は、長尺材の製造に適しており、広く実用化研究が進
められている。
Among the above-mentioned processing methods, the method of processing in combination with a metal pipe is suitable for manufacturing long materials, and research on its practical application is widely underway.

而して、上記金属製パイプは内部の原料物質層の加工性
を改善するとともに、得られたセラミックス超電導々体
に機械的強度並びに電気的安定性を付与する作用を果た
すものであって、か−る金属製パイプ材料には、加工性
並びに熱的、電気的伝導性に優れたAg、Ag合金、C
u、Cu合金等が用いられている。
The metal pipe has the function of improving the workability of the internal raw material layer and imparting mechanical strength and electrical stability to the obtained ceramic superconductor. - Metal pipe materials include Ag, Ag alloy, and C, which have excellent workability and thermal and electrical conductivity.
U, Cu alloy, etc. are used.

又前記複合ビレットを伸延加工する方法としては押出し
、圧延、引抜き、スェージング等従来の加工方法が適用
される。又複合ビレットを伸延加工して得られる複合線
状体の断面形状は、円形。
Conventional processing methods such as extrusion, rolling, drawing, and swaging may be used to stretch the composite billet. Furthermore, the cross-sectional shape of the composite linear body obtained by stretching the composite billet is circular.

楕円形、多角形、テープ状等任意の形状が適用される。Any shape such as ellipse, polygon, tape shape, etc. can be applied.

又上記複合線状体を複数本束ねて、再度金属製パイプ内
に挿入し、これに伸延加工を施して多芯複合線状体とな
し、或いはセラミックス超電導体と金属材料とを交互に
渦巻状又は同芯状に成形し、これに伸延加工を施して多
層又は多芯状の複合線状体となすことも可能である。
Alternatively, a plurality of the above-mentioned composite wire bodies may be bundled, inserted into a metal pipe again, and stretched to form a multicore composite wire body, or the ceramic superconductor and the metal material may be alternately spirally shaped. Alternatively, it is also possible to form a concentric shape and subject it to elongation to form a multilayered or multicore composite linear body.

而して、上記の如き複合線状体に施す原料物質をセラミ
ックス超電導体とならしめる為の加熱処理は、例えば、
Y系セラミンクス超電導体の場合は900〜950’C
,Bi系セラミックス超電導体の場合は850〜900
°C程度の温度で、酸素含有雰囲気中にて施され、原料
物質のセラミックス超電導体への反応がなされる。
Therefore, the heat treatment to make the raw material material into a ceramic superconductor, which is applied to the composite linear body as described above, is performed by, for example,
900-950'C for Y-based ceramic superconductor
, 850 to 900 for Bi-based ceramic superconductors
The process is carried out at a temperature of about °C in an oxygen-containing atmosphere to react the raw material to the ceramic superconductor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記の如き加熱処理を前記の複合線状体
に施すと原料物質からガスが発生し、このガスは金属被
覆層によって外部への放出が妨げられ、その結果、第6
図に示したように得られたセラミックス超電導々体のセ
ラミックス超電導体層8と金属被覆層9との間に空洞1
0が形成されて、セラミックス超電導々体が形状不良と
なり、更に超電導特性も著しく低下してしまうという問
題があった。
However, when the above-described heat treatment is applied to the composite linear body, gas is generated from the raw material, and this gas is prevented from being released to the outside by the metal coating layer, and as a result, the sixth
As shown in the figure, a cavity 1 is formed between the ceramic superconductor layer 8 and the metal coating layer 9 of the obtained ceramic superconductor.
There was a problem in that 0 was formed, causing the ceramic superconductor to have a defective shape, and furthermore, the superconducting properties were significantly deteriorated.

〔課題を解決する為の手段〕[Means to solve problems]

本発明はか\る状況に鑑み鋭意研究を行った結果なされ
たもので、その目的とするところは、膨れ等がなく形状
良好な、超電導特性に優れたセラミックス超電導々体の
製造方法を提供することにある。
The present invention has been made as a result of intensive research in view of the above situation, and its purpose is to provide a method for manufacturing a ceramic superconductor having excellent superconducting properties, free of bulges, good shape, etc. There is a particular thing.

即ち、本発明は、金属製パイプ内に、壁面に通気性を付
与した金属製パイプを間隔をあけて所望数配置し、而し
て形成されたパイプ間間隙部にセラミックス超電導体と
なし得る原料物質を充填して複合ビレットとなし、次い
で前記複合ビレットに伸延加工を施して中空部を有する
複合線状体となしたのち、前記複合線状体に所定の加熱
処理を施すことを特徴とするものである。
That is, the present invention arranges a desired number of metal pipes with air permeability on their walls at intervals within a metal pipe, and fills the gaps between the pipes with raw material that can be made into a ceramic superconductor. The method is characterized in that the composite billet is filled with a substance to form a composite billet, the composite billet is then stretched to form a composite linear body having a hollow portion, and then the composite linear body is subjected to a predetermined heat treatment. It is something.

即ち、本発明方法は、金属製パイプ内に間隔をあけて所
望数配置する金属製パイプとして例えば壁面に小穴を多
数あけて通気性を付与した金属製パイプを用い、これを
同心状に配置した金属製パイプ間の間隙部にセラミック
ス超電導体となし得る原料物質を充填し、これに伸延加
工を施して得た複合線状体を加熱処理する際に、前記原
料物質から発生するガスを、前記金属製パイプ壁面の小
穴を通して外方に放出し得るようにしたものである。
That is, in the method of the present invention, a desired number of metal pipes are arranged at intervals within a metal pipe, for example, metal pipes are made with a number of small holes in the wall surface to provide ventilation, and the metal pipes are arranged concentrically. When heating a composite linear body obtained by filling a gap between metal pipes with a raw material that can be made into a ceramic superconductor and subjecting it to drawing processing, the gas generated from the raw material is It is designed so that it can be released outward through a small hole in the wall of a metal pipe.

以下に本発明方法を図を参照して具体的に説明する。第
1図は本発明方法の態様例を示す工程説明図である。
The method of the present invention will be specifically explained below with reference to the drawings. FIG. 1 is a process explanatory diagram showing an embodiment of the method of the present invention.

最外周被覆層を形成する為の金属製パイプ1内に、壁面
に小穴2をあけた通気性金属パイプ3を同心状に配置し
く図イ)、次に前記2木のパイプ間の間隙部にセラミッ
クス超電導体となし得る原料物質4を充填して複合ビレ
ット5となしく図口)、次いでこの複合ビレット5に伸
延加工を施して、中空部6を有する複合線状体7となし
く図ハ)、しかるのち前記複合線状体に所定の加熱処理
を施して前記原料物質をセラミックス超電導体に反応せ
しめるものである。
Inside the metal pipe 1 for forming the outermost peripheral coating layer, a breathable metal pipe 3 with a small hole 2 in the wall surface is arranged concentrically (Fig. A), and then in the gap between the two pipes. A composite billet 5 is filled with a raw material material 4 that can be made into a ceramic superconductor (see Figure 5), and then this composite billet 5 is stretched to form a composite linear body 7 having a hollow portion 6. ), and then the composite linear body is subjected to a predetermined heat treatment to cause the raw material to react with the ceramic superconductor.

本発明方法において、通気性金属パイプには、第2図イ
〜ハに示したような矩形、円形、六角形等任意の形状の
金属製パイプの壁面に小穴2をあけた通気性金属パイプ
3が適用される。又上記通気性を付与する為の穴径はあ
まり小さいとガスが十分に抜けず、又大きすぎると加熱
処理の際に溶融した原料物質が漏れ出るので、0.1〜
1mmφ程度にするのが好ましい。又前記パイプ壁面に
設jJる小穴の占積率は5%未満ではガス放出が十分に
なされず40%を超えると通気性金属パイプの強度が低
下するので、5〜40%の範囲が好ましい。
In the method of the present invention, the permeable metal pipe 3 has a small hole 2 formed in the wall surface of the metal pipe of any shape such as rectangular, circular, hexagonal, etc. as shown in Fig. 2 A to C. applies. In addition, if the hole diameter for providing the above-mentioned air permeability is too small, gas will not be able to escape sufficiently, and if it is too large, the molten raw material will leak out during heat treatment, so the hole diameter should be 0.1~
It is preferable to set the diameter to about 1 mmφ. Further, if the space factor of the small holes formed in the pipe wall surface is less than 5%, sufficient gas release will not be achieved, and if it exceeds 40%, the strength of the breathable metal pipe will decrease, so it is preferably in the range of 5 to 40%.

本発明方法において、形成する複合ビレットの形状には
、用いた金属製パイプの形状により、第3図イ〜ハにそ
れぞれ示したように断面が矩形、円形、六角形等の金属
製パイプ1と通気性金属パイプ3の間にセラミックス超
電導体となし得る原料物質4を配置したもの、又は第4
図に示したように通気性金属パイプ3を複数本並列に配
置してガス抜き性を向上させたもの、又は第5図に示し
たように金属製パイプ1内に径の異なる円形の通気性金
属パイプ3を複数個、同心状に間隔をあげて配置し、各
々の通気性金属パイプ間間隙部にセラミックス超電導体
となし得る原料物質4を充填するようにして強度を上げ
たもの等がある。而して、上記原料物質の充填は、粉末
等の原料物質をそのま一充填しても、又は原料物質をC
IP成形酸形成焼結して成形したものを挿入し充填して
もよい。
In the method of the present invention, depending on the shape of the metal pipe used, the shape of the composite billet to be formed may be a metal pipe 1 having a rectangular, circular, or hexagonal cross section as shown in FIG. A material in which a raw material material 4 that can be made into a ceramic superconductor is arranged between a permeable metal pipe 3, or a fourth material
As shown in the figure, a plurality of air permeable metal pipes 3 are arranged in parallel to improve degassing performance, or as shown in Fig. There is a structure in which a plurality of metal pipes 3 are arranged concentrically at increased intervals, and the gap between each breathable metal pipe is filled with a raw material 4 that can be made into a ceramic superconductor to increase the strength. . Therefore, the above-mentioned raw material can be filled either by filling the raw material such as powder as is, or by filling the raw material such as powder with C.
IP molding Acid formed sintered molded material may be inserted and filled.

又金属製パイプと通気性金属パイプとは、必ずしもそれ
ぞれが相似形のものである必要はない。
Further, the metal pipe and the permeable metal pipe do not necessarily have to have similar shapes.

本発明方法で用いる通気性金属パイプには、上述のよう
な壁面に小穴を多数あけた金属製パイプの他、目の細か
いメツシュ又はネット等をパイプ状に成形したものを用
いることも可能である。
As the breathable metal pipe used in the method of the present invention, in addition to the above-mentioned metal pipe with many small holes in the wall surface, it is also possible to use a pipe made of fine mesh or net. .

本発明方法において、複合ビレットに施す伸延加工は、
伸延加工後得られる複合線状体に、中空部が残る程度の
減面加工率をもってなす必要がある。又前記伸延加工に
は、前述の如き従来の任意の加工法が適用される。
In the method of the present invention, the stretching process applied to the composite billet is
It is necessary to reduce the area by such a degree that a hollow portion remains in the composite linear body obtained after drawing. Further, any conventional processing method as described above may be applied to the stretching process.

本発明方法で用いる、前記金属製パイプ又は通気性金属
パイプの材料としては、fi、gXCu又はその合金が
、熱・電気伝導性等に優れていて好ましい材料であるが
、とりわけAg又はその合金が酸素の透過性に優れるの
で好ましい。又Ag合金の中にあってはAg−Au、A
g−Pd、Ag−Rh、Ag−Pt等がセラミックス超
電導体と非反応性の為特に適している。
As the material for the metal pipe or breathable metal pipe used in the method of the present invention, fi, gXCu, or an alloy thereof is preferable because it has excellent thermal and electrical conductivity, but Ag or an alloy thereof is particularly preferable. It is preferable because it has excellent oxygen permeability. Also, in Ag alloys, Ag-Au, A
g-Pd, Ag-Rh, Ag-Pt, etc. are particularly suitable because they are non-reactive with ceramic superconductors.

本発明方法で用いる、セラミックス超電導体となし得る
原料物質としては、前述のBl系、Y系。
The raw materials that can be used as ceramic superconductors used in the method of the present invention include the aforementioned Bl-based and Y-based materials.

Tl系等のセラミックス超電導体が広く適用されるに加
えて、上記セラミックス超電導体の前駆物質であるセラ
ミックス超電導体に合成されるまでの中間体、例えばセ
ラミックス超電導体構成元素の酸化物や炭酸塩等の混合
体又は共沈混合物又は酸素欠損型複合酸化物又は上記構
成元素の合金等の粉末が使用可能で、これらの前駆物質
は酸素含有雰囲気中で加熱処理することによりセラミッ
クス超電導体に反応するものである。
In addition to the wide application of Tl-based ceramic superconductors, intermediates used in the synthesis of ceramic superconductors, which are precursors of the above-mentioned ceramic superconductors, such as oxides and carbonates of ceramic superconductor constituent elements, etc. Powders such as mixtures or coprecipitation mixtures, oxygen-deficient composite oxides, or alloys of the above constituent elements can be used, and these precursors react with the ceramic superconductor by heat treatment in an oxygen-containing atmosphere. It is.

〔作用〕[Effect]

本発明方法では、金属製パイプ内に充填したセラミック
ス超電導体となし得る原料物質層の内部に、壁面に通気
性をイ」与した金属製パイプを所定間隔をあけて所望数
配置して複合ビレットとなし、この複合ビレットを前記
の通気性金属パイプが中空部として残る範囲内の減面率
で伸延加工して複合線状体となし、しかるのちこの複合
線状体に所定の加熱処理を施すので、加熱処理時に原料
物質から発生ずるガスは、前記通気性金属パイプを通過
して中空部に抜は出る。従って、最外層の金属製パイプ
に膨れを生じるようなことがなく、形状並びに超電導特
性に優れたセラミックス超電導々体が得られる。又複合
ビレッ1−の最外周には小穴のない金属製パイプを用い
るので、得られるセラミックス超電導々体は外観の優れ
たものとなる。
In the method of the present invention, a desired number of metal pipes having air permeability on the wall surface are arranged at predetermined intervals inside a layer of raw material that can be made into a ceramic superconductor filled in a metal pipe to form a composite billet. Then, this composite billet is stretched to form a composite linear body at a reduction in area within a range in which the above-mentioned air permeable metal pipe remains as a hollow portion, and then this composite linear body is subjected to a prescribed heat treatment. Therefore, the gas generated from the raw material during the heat treatment passes through the permeable metal pipe and exits into the hollow part. Therefore, the outermost layer of the metal pipe does not bulge, and a ceramic superconductor having excellent shape and superconducting properties can be obtained. Furthermore, since a metal pipe without small holes is used on the outermost periphery of the composite billet 1-, the resulting ceramic superconductor has an excellent appearance.

〔実施例〕〔Example〕

以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

実施例I B 1z03.SrCO3,CaCC)+ 、CuOの
粉末をBi :Sr :Ca :Cuが原子比で2:2
:1:2になるように配合し混合したのち、大気中で8
00°C×20時間加熱し、これを粉砕して仮焼成粉を
作製し、この仮焼成粉をCrP法により外部寸法が8 
mmX 4 mm、内部寸法が6mmX2mmの矩形状
パイプに成形した。次に上記仮焼成粉のパイプ状成形体
を、外部寸法が10 mmX 6 +n+n。
Example I B 1z03. SrCO3, CaCC)+, CuO powder with an atomic ratio of Bi:Sr:Ca:Cu of 2:2.
: After mixing in a ratio of 1:2,
Heated at 00°C for 20 hours, pulverized this to create a calcined powder, and processed this calcined powder into a powder with an external dimension of 8 by CrP method.
It was molded into a rectangular pipe with dimensions of 4 mm x 4 mm and internal dimensions of 6 mm x 2 mm. Next, a pipe-shaped molded body of the above-mentioned pre-sintered powder was formed to have an external dimension of 10 mm x 6 +n+n.

内部寸法が8.1 mmX 4.1 mmのAg製パイ
プ内に挿入し、更にこの仮焼成粉のパイプ状成形体内に
、外部寸法が5.9 mmX 1.9 mm、内部寸法
が5mmX1mmで壁面に多数の小穴を等間隔にあけた
Ag製の通気性金属パイプを挿入して複合ビレットとな
した。しかるのち前記複合ビレットに圧延加工を施して
幅15mm、厚さ3m+nの中空状のテープ状複合線状
体となした。
It was inserted into an Ag pipe with internal dimensions of 8.1 mm x 4.1 mm, and a wall surface with external dimensions of 5.9 mm x 1.9 mm and internal dimensions of 5 mm x 1 mm was inserted into the pipe-shaped molded body of the pre-sintered powder. A composite billet was created by inserting a breathable metal pipe made of Ag with many small holes at equal intervals. Thereafter, the composite billet was rolled to form a hollow tape-shaped composite linear body with a width of 15 mm and a thickness of 3 m+n.

実施例2 実施例1で作製した仮焼成粉をCIP法により外径7.
9mm、内径6.0mmの円形状パイプに成形した。次
に上記仮焼成粉の成形体を、外径10mm。
Example 2 The calcined powder produced in Example 1 was heated to an outer diameter of 7.5 mm by CIP method.
It was molded into a circular pipe with a diameter of 9 mm and an inner diameter of 6.0 mm. Next, a molded body of the above pre-fired powder was formed into an outer diameter of 10 mm.

内径8.0mmのAg製パイプ内に挿入し、更に前記仮
焼成粉のパイプ状成形体内に、外径5.9mm、内径4
mmで壁面に多数の小穴を等間隔にあけたAg製の通気
性金属パイプを挿入して複合ビレットとなした。しかる
のち前記複合ビレットにスェージング及び引抜加工を施
して、6.5門φの中空状の複合線状体となした。
It was inserted into an Ag pipe with an inner diameter of 8.0 mm, and further into the pipe-shaped molded body of the pre-sintered powder, an outer diameter of 5.9 mm and an inner diameter of 4 mm was inserted.
A composite billet was prepared by inserting a breathable metal pipe made of Ag with a large number of small holes equally spaced into the wall. Thereafter, the composite billet was subjected to swaging and drawing to form a hollow composite linear body with a diameter of 6.5 gates.

実施例3 外径10mm、内径8.5mmの金属製管内に、多数の
小穴を等間隔にあけた外径及び内径がそれぞれ8.0及
び7.5.6.5及び6.0.5.0及び4.5mmの
3本の通気性金属パイプを同心状に配置し、次いで各々
のパイプ間の間隙部に、実施例1で用いたのと同し仮焼
成粉を充填し複合ビレットとなしたのち、これに引抜加
工を施して、5mmφの中空状の複合線状体となした。
Example 3 A large number of small holes were made at equal intervals in a metal tube with an outer diameter of 10 mm and an inner diameter of 8.5 mm.The outer and inner diameters were 8.0, 7.5, 6.5, and 6.0.5, respectively. Three breathable metal pipes of 0 and 4.5 mm were arranged concentrically, and then the gap between each pipe was filled with the same calcined powder as used in Example 1 to form a composite billet. Thereafter, this was subjected to drawing processing to form a hollow composite linear body with a diameter of 5 mm.

尚、上記実施例1〜3において、通気性金属パイプにあ
けた小穴の径と占積率は第1表に示した如く種々に変化
させた。
In Examples 1 to 3 above, the diameter and space factor of the small hole drilled in the breathable metal pipe were varied as shown in Table 1.

比較例1 実施例1において、仮焼成粉のパイプ状成形体内に、小
穴をあけてないAg製パイプを挿入した他は、実施例1
と同じ方法により中空状の複合線状体を製造した。
Comparative Example 1 Example 1 was repeated except that an Ag pipe without a small hole was inserted into the pipe-shaped molded body of the calcined powder.
A hollow composite linear body was manufactured using the same method as described above.

比較例2 実施例1で用いたと同一の仮焼成粉をCIP法により外
部寸法が8mmX4mmの角棒に成形し、この角棒を外
部寸法が10 mmX 6 mm、内部寸法が8、1 
mmX 4.1 mmのAg製パイプ内に挿入して複合
ビレットとなしたのち、前記複合ビレットに圧延加工を
施して幅15m+n、厚さ3mmの中空状のテープ状複
合線状体を製造した。
Comparative Example 2 The same calcined powder used in Example 1 was formed into a square bar with external dimensions of 8 mm x 4 mm by the CIP method, and this square bar was shaped into a square bar with external dimensions of 10 mm x 6 mm and internal dimensions of 8.1 mm.
After inserting it into a Ag pipe measuring 4.1 mm x 4.1 mm to form a composite billet, the composite billet was rolled to produce a hollow tape-shaped composite linear body with a width of 15 m+n and a thickness of 3 mm.

比較例3 実施例2において、仮焼成粉のパイプ状成形体内に、小
穴をあけてないAg製パイプを挿入した他は、実施例2
と同じ方法により複合線状体を製造した。
Comparative Example 3 The same procedure as Example 2 was performed except that an Ag pipe without a small hole was inserted into the pipe-shaped molded body of the calcined powder.
A composite linear body was manufactured by the same method as above.

比較例4 実施例1で作製した仮焼成粉をCTP法により外径7.
9mmの丸棒に成形し、この丸棒成形体を、外径]0.
0mm、内径8.0mmのAg製バイブ内に挿入して複
合ビレットとなした他は、実施例2と同じ方法により6
.5mmφの中実状の複合線状体を製造した。
Comparative Example 4 The calcined powder produced in Example 1 was processed by the CTP method to have an outer diameter of 7.
The round bar molded body was formed into a 9 mm round bar, and the outside diameter was 0.
The same method as in Example 2 was used except that the billet was inserted into an Ag vibrator with an inner diameter of 8.0 mm and a composite billet.
.. A solid composite linear body having a diameter of 5 mm was manufactured.

比較例5 実施例3において、3本の通気性金属パイプすべてを、
小穴をあけてないAg製パイプに代えた他は、実施例3
と同じ方法により6mmφの中空状の複合線状体を製造
した。
Comparative Example 5 In Example 3, all three breathable metal pipes were
Example 3 except that the pipe was replaced with an Ag pipe without small holes.
A hollow composite linear body having a diameter of 6 mm was manufactured by the same method as described above.

比較例6 実施例3において、仮焼成粉を外径10.0 mm。Comparative example 6 In Example 3, the calcined powder had an outer diameter of 10.0 mm.

内径8.5mmのAg製パイプ内に挿入して複合ビレッ
トとなした他は、実施例3と同じ方法により6mmφの
中実状の複合線状体を製造した。
A solid composite linear body with a diameter of 6 mm was manufactured in the same manner as in Example 3, except that it was inserted into an Ag pipe with an inner diameter of 8.5 mm to form a composite billet.

このようにして得られた各々の複合線状体を、大気中に
て850″C×50時間の加熱処理を施して、セラミッ
クス超電導々体となした。
Each of the composite linear bodies thus obtained was subjected to a heat treatment of 850''C x 50 hours in the atmosphere to form a ceramic superconductor.

得られたセラミックス超電導々体について、形状調査並
びに臨界電流密度(J c)の測定を行った。結果は第
1表に示した。
The shape of the obtained ceramic superconductor was investigated and the critical current density (Jc) was measured. The results are shown in Table 1.

尚、Jcは液体窒素(77K)中、0磁場下で測定した
Note that Jc was measured in liquid nitrogen (77K) under zero magnetic field.

第1表 * Tcを断面積の平均I直で除した値5第1表より明
らかなように、本発明方法品(N。
Table 1 * Value obtained by dividing Tc by the average cross-sectional area I 5 As is clear from Table 1, the product manufactured by the method of the present invention (N).

1〜21)は、殆ど空洞が生ぜず、形状がほぼ良好で、
Jcも高い値のものであった。
1 to 21) have almost no cavities and almost good shape,
Jc was also high.

本発明方法品の中にあって、No、 6〜7.14〜1
520は、通気パイプの穴径又は人出積率が大きすぎて
、内部のセラミックス超電導体が漏れ出たり、或いは内
層の通気性金属パイプの強度がもたずに中空部が閉塞し
たりして、セラミックス超電導体層の密度が低下し、又
No、 8 、16.21は人出績率が低すぎてガスが
十分抜けずに、僅かながら膨れを生じたりした為、いず
れもJcが幾分低めの値となった。
Among the method products of the present invention, No. 6-7.14-1
520, the hole diameter of the ventilation pipe or the traffic area ratio is too large, and the ceramic superconductor inside leaks out, or the inner layer of the ventilation metal pipe does not have the strength and the hollow part becomes clogged. , the density of the ceramic superconductor layer decreased, and No. 8, No. 16.21 had a too low turnout rate and did not allow enough gas to escape, causing slight swelling, so Jc was somewhat low in all cases. The value was .

他方、比較方法品(No、22〜27)は、いずれも発
生ガスが全く抜けなかった為、膨れが多発し、又Jcが
大幅に低下した。
On the other hand, in the comparison method products (No. 22 to 27), the generated gas did not escape at all, so blistering occurred frequently and Jc decreased significantly.

上記実施例では、Bi系超超電導体場合について説明し
たが、本発明方法は他のセラミックス超電導体に適用し
ても同様の効果を発現するもので、特に、原料物質を半
溶融状態以上の温度に加熱して反応させる場合は原料物
質からのガス発生が多い為、不法の効果が顕著に現れる
In the above embodiments, the case of Bi-based superconductors was explained, but the method of the present invention can also be applied to other ceramic superconductors to achieve similar effects. If the reaction is carried out by heating, the illegal effects will be noticeable because a large amount of gas will be generated from the raw materials.

〔効果〕〔effect〕

以上述べたように、本発明方法によれば、形状が良好で
、超電導特性に優れたセラミックス超電導々体を容易に
製造することができ、工業上顕著な効果を奏する。
As described above, according to the method of the present invention, a ceramic superconducting body having a good shape and excellent superconducting properties can be easily manufactured, and a remarkable effect is produced industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イ〜ハは本発明方法の態様例を示す工程説明図、
第2図イ〜ハは本発明方法にて用いる通気性金属パイプ
の態様例を示すそれぞれ斜視図、第3.4.5図は本発
明方法にて用いる複合ビレットの態様例を示すそれぞれ
断面図、第6図は従来のセラミックス超電導り体の断面
図である。 工・・・金属製パイプ、2・・・小穴、3・・・通気性
金属パイプ、4・・・セラミックス超電導体となし得る
原料物質、訃・・複合ビレット、6・・・中空部、7・
・・複合線状体、8・・・セラミックス超電導体層、9
・・・金属被覆層、10・・空洞。
FIGS. 1A to 1C are process explanatory diagrams showing embodiments of the method of the present invention,
Figures 2A to 2C are perspective views showing embodiments of the permeable metal pipe used in the method of the present invention, and Figures 3.4.5 are sectional views showing embodiments of the composite billet used in the method of the invention. , FIG. 6 is a cross-sectional view of a conventional ceramic superconductor. Engineering...metal pipe, 2...small hole, 3...breathable metal pipe, 4...raw material that can be made into a ceramic superconductor, death...composite billet, 6...hollow part, 7・
... Composite linear body, 8 ... Ceramic superconductor layer, 9
...Metal coating layer, 10...Cavity.

Claims (1)

【特許請求の範囲】[Claims] 金属製パイプ内に、壁面に通気性を付与した金属製パイ
プを間隔をあけて所望数配置し、而して形成されたパイ
プ間間隙部にセラミックス超電導体となし得る原料物質
を充填して複合ビレットとなし、次いで前記複合ビレッ
トに伸延加工を施して中空部を有する複合線状体となし
たのち、前記複合線状体に所定の加熱処理を施すことを
特徴とするセラミックス超電導々体の製造方法。
A desired number of metal pipes with permeable walls are arranged at intervals within the metal pipe, and the gaps between the pipes are filled with a raw material that can be used as a ceramic superconductor to form a composite. Production of a ceramic superconductor, characterized in that the composite billet is made into a billet, the composite billet is then subjected to elongation processing to form a composite linear body having a hollow portion, and then the composite linear body is subjected to a predetermined heat treatment. Method.
JP2298500A 1990-11-02 1990-11-02 Manufacture of ceramic superconductive body Pending JPH04171612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2298500A JPH04171612A (en) 1990-11-02 1990-11-02 Manufacture of ceramic superconductive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2298500A JPH04171612A (en) 1990-11-02 1990-11-02 Manufacture of ceramic superconductive body

Publications (1)

Publication Number Publication Date
JPH04171612A true JPH04171612A (en) 1992-06-18

Family

ID=17860517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2298500A Pending JPH04171612A (en) 1990-11-02 1990-11-02 Manufacture of ceramic superconductive body

Country Status (1)

Country Link
JP (1) JPH04171612A (en)

Similar Documents

Publication Publication Date Title
JPH04171612A (en) Manufacture of ceramic superconductive body
CA2024806C (en) Method of producing ceramics-type superconductor wire
JPH04196015A (en) Ceramic superconductive wire
JPH04155715A (en) Manufacture of ceramic superconductor
JP3011962B2 (en) Method for manufacturing multi-core or multilayer ceramic superconductor
AU646419B2 (en) Method of densifying oxide superconducting wire
JPH04174913A (en) Manufacture of ceramic superconductor
JPH05151837A (en) Ceramic superconductive conductor
JPH04209419A (en) Manufacture of ceramic superconductor
JPH04277410A (en) Tape-like multi-core ceramic superconductor and cable using it
JPH05151843A (en) Manufacture of angular cross-section type multilayer ceramic superconductive conductor
JPH0668729A (en) Manufacture of multilayer ceramic superconducting conductor
JPH04249812A (en) Manufacture of tape-shaped ceramic superconducting wire rod
JPH05166426A (en) Manufacture for ceramics superconductor
JPH05182540A (en) Manufacture of ceramics superconductive conductor
JPH04264315A (en) Manufacture of large-capacity oxide superconducting conductor
JP3042548B2 (en) Manufacturing method of ceramic superconducting conductor
JPH0589730A (en) Manufacture of multilayer ceramic superconductive conductor
JPH04255615A (en) Manufacture of oxide superconducting wire rod
JPH05190035A (en) Manufacture of ceramics superconductive conductor
JPH0279310A (en) Manufacture of oxide superconductive wire
JPH01220307A (en) High strength superconductive wire having high critical current density and its manufacture
JPH0528847A (en) Ceramic superconductor
JPH04179006A (en) Manufacture of ceramic superconductive wire materials
JPH05182535A (en) Ceramics superconductor