JPH0589730A - Manufacture of multilayer ceramic superconductive conductor - Google Patents
Manufacture of multilayer ceramic superconductive conductorInfo
- Publication number
- JPH0589730A JPH0589730A JP3273295A JP27329591A JPH0589730A JP H0589730 A JPH0589730 A JP H0589730A JP 3273295 A JP3273295 A JP 3273295A JP 27329591 A JP27329591 A JP 27329591A JP H0589730 A JPH0589730 A JP H0589730A
- Authority
- JP
- Japan
- Prior art keywords
- tape
- composite billet
- multilayer
- multilayer ceramic
- ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Metal Extraction Processes (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、超電導特性に優れ、マ
グネットやケーブル等の導体として好適な多層セラミッ
クス超電導々体の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a multilayer ceramic superconducting body which has excellent superconducting properties and is suitable as a conductor for magnets and cables.
【0002】[0002]
【従来の技術】近年、液体窒素温度で超電導を示すY−
Ba−Cu−O系,Bi−(Pb)−Sr−Ca−Cu
−O系,Tl−Ba−Ca−Cu−O系等のセラミック
ス超電導体が見出され、各分野で実用化研究が進められ
ている。ところでこれらのセラミックス超電導体は脆い
為、これらを線材等に加工するには、例えば加工性に富
んだAgやCu等の金属製パイプにセラミックス超電導
体となし得る原料物質(以下、原料物質と略記する。)
を充填して複合ビレットを作製し、次いでこの複合ビレ
ットを延伸加工して所望形状の線素材となしたのち、こ
の線素材に所定の加熱処理を施して前記原料物質を超電
導体に反応せしめる複合加工法が用いられている。この
複合加工法では、前記の線素材は断面が円形,楕円形,
四角形,テープ状等任意の形状に加工される。そして例
えば、前記のテープ状の線素材は、この複数枚を平行に
又は同心状に又は渦巻状に積層し、次にこれらの積層体
を別に用意した純Ag製パイプ内に充填して多層複合ビ
レットとなし、これらの多層複合ビレットに前述と同じ
ように延伸加工と加熱処理を施して多層セラミックス超
電導々体が製造される。2. Description of the Related Art In recent years, Y- which exhibits superconductivity at liquid nitrogen temperature
Ba-Cu-O system, Bi- (Pb) -Sr-Ca-Cu
Ceramic superconductors such as -O type and Tl-Ba-Ca-Cu-O type have been found, and researches for practical use have been advanced in various fields. By the way, since these ceramics superconductors are fragile, in order to process them into a wire or the like, for example, a raw material (hereinafter abbreviated as raw material) which can be made into a ceramics superconductor can be formed on a metal pipe such as Ag or Cu which has high workability. Yes.)
To prepare a composite billet, and then draw and process this composite billet to form a wire material having a desired shape, and then subject this wire material to a predetermined heat treatment to react the raw material with a superconductor. The processing method is used. In this composite processing method, the wire material has a circular cross section, an elliptical cross section,
It is processed into an arbitrary shape such as a square or tape. Then, for example, the tape-shaped wire material is laminated in a plurality of layers in parallel, concentrically or spirally, and then these laminated bodies are filled in a separately prepared pipe made of Ag to obtain a multilayer composite. A billet is formed, and these multi-layer composite billets are subjected to the drawing process and the heat treatment in the same manner as described above to produce a multi-layer ceramic superconducting body.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、前述の
多層セラミックス超電導々体は、被覆する金属材料に軟
質なAg等の材料を用いる為、延伸加工の際に原料物質
層に十分な圧縮力が掛からず、得られる多層セラミック
ス超電導々体は、図2に示したようにセラミックス超電
導体層8が形状不良なものとなり又結晶配向性に劣り、
従って超電導特性が、バラツキの大きい低い値のものに
なるという問題があった。このことは、高性能を得るの
に延伸加工と加熱処理の工程を何度も施す必要のあるB
i系セラミックス超電導々体の製造において、特に深刻
な問題であった。However, in the above-mentioned multilayer ceramic superconducting body, since a material such as soft Ag is used as the metal material to be coated, a sufficient compressive force is applied to the raw material layer during stretching. In the resulting multilayer ceramic superconductor, as shown in FIG. 2, the ceramic superconductor layer 8 has a poor shape and is poor in crystal orientation.
Therefore, there has been a problem that the superconducting characteristics have low values with large variations. This means that in order to obtain high performance, it is necessary to repeat the steps of stretching and heat treatment B
There has been a particularly serious problem in the production of i-based ceramics superconductors.
【0004】[0004]
【課題を解決するための手段】本発明は、かかる状況に
鑑み鋭意研究を行った結果なされたものでその目的とす
るところは、バラツキが小さく超電導特性に優れた多層
セラミックス超電導々体を製造する方法を提供すること
にある。即ち、本発明は、セラミックス超電導体となし
得る原料物質層を金属材料にて被覆した構造のテープ状
素材の所要数を積層し、この積層体を金属製パイプ内に
挿入して多層複合ビレットを作製し、この多層複合ビレ
ットに延伸加工と加熱処理の工程を所望回繰返し施す多
層セラミックス超電導々体の製造方法において、所要数
のテープ状素材を、隣接するテープ状素材間に硬質の金
属製テープを介在させて積層一体化することを特徴とす
るものである。DISCLOSURE OF THE INVENTION The present invention has been made as a result of intensive studies in view of the above circumstances, and an object of the present invention is to produce a multilayer ceramic superconducting body with small variations and excellent superconducting properties. To provide a method. That is, according to the present invention, a required number of tape-shaped raw materials having a structure in which a raw material layer that can be a ceramics superconductor is coated with a metal material are laminated, and this laminated body is inserted into a metal pipe to form a multilayer composite billet. In the method for producing a multilayer ceramic superconducting body in which the multilayer composite billet is repeatedly subjected to a drawing process and a heat treatment process as many times as desired, a required number of tape-shaped materials are hard metal tapes between adjacent tape-shaped materials. It is characterized in that they are laminated and integrated by interposing.
【0005】本発明方法は、原料物質層を金属材料にて
被覆したテープ状素材を所要数、隣接するテープ状素材
間に硬質の金属製テープを介在させて積層し、この積層
体を金属製パイプ内に挿入して複合ビレットとなし、こ
の複合ビレットを延伸加工する際に、延伸加工による圧
縮力が前記硬質の金属製テープを介して前記原料物質層
に均一に且つ十分に掛かるようにしたものである。而し
て、得られる多層セラミックス超電導々体は、セラミッ
クス超電導体層が形状均一で且つ結晶配向性に富むもの
となり、従ってその超電導特性はバラツキの小さい高い
値のものとなる。本発明方法において、硬質の金属製テ
ープには、硬質で且つ酸素透過性に優れた金属材料、例
えばAgにPd,Rh,Pt,Ir等の合金元素を少な
くとも1種含有させたAg合金が好適である。According to the method of the present invention, a required number of tape-shaped materials each having a raw material layer coated with a metal material are laminated with a hard metal tape interposed between adjacent tape-shaped materials, and the laminated body is made of metal. Inserted in a pipe to form a composite billet, and when the composite billet was stretched, the compressive force by the stretching process was applied uniformly and sufficiently to the raw material layer through the hard metal tape. It is a thing. Thus, in the obtained multilayer ceramic superconducting body, the ceramic superconducting layer has a uniform shape and is rich in crystal orientation, and therefore, the superconducting property has a high value with little variation. In the method of the present invention, the hard metal tape is preferably a hard and excellent oxygen-permeable metal material, for example, an Ag alloy in which Ag contains at least one alloy element such as Pd, Rh, Pt, and Ir. Is.
【0006】本発明の多層セラミックス超電導々体は、
例えば、原料物質を金属製パイプ内に充填して複合ビレ
ットとなし、この複合ビレットに延伸加工と加熱処理の
工程を所望回繰返し施してテープ状素材となし、次いで
図1イ〜ニに示したように、前述の原料物質層1を金属
被覆層2にて被覆したテープ状素材3(図イ)を複数
枚、隣接するテープ状素材3間に、硬質の金属製テープ
4を介在させて積層し(図ロ)、この積層体5を角型の
金属製パイプ6内に挿入して多層複合ビレット7を作製
(図ハ)し、しかるのち、この多層複合ビレット7に延
伸加工と加熱処理の工程を所望回繰返し施して、内部に
セラミックス超電導体層8が所要数積層された多層セラ
ミックス超電導々体9が製造される(図ニ)。上記にお
いて、複合ビレットは、所要数のテープ状素材を角型の
金属製パイプ内に挿入しておき、あとから前記のテープ
状素材の間隙に硬質の金属製テープを押込み介在させて
作製することもできる。The multilayer ceramic superconducting body of the present invention is
For example, a raw material is filled in a metal pipe to form a composite billet, and the composite billet is repeatedly subjected to a stretching process and a heat treatment process a desired number of times to form a tape-shaped raw material, and then shown in FIGS. As described above, a plurality of tape-shaped raw materials 3 (Fig. A) in which the above-mentioned raw material layer 1 is covered with the metal coating layer 2 are stacked, and a hard metal tape 4 is interposed between the adjacent tape-shaped raw materials 3. Then, the laminated body 5 is inserted into a rectangular metal pipe 6 to produce a multi-layer composite billet 7 (Fig. C). Then, the multi-layer composite billet 7 is stretched and heat-treated. The steps are repeated a desired number of times to manufacture a multilayer ceramic superconducting body 9 in which a required number of ceramic superconducting layers 8 are laminated (FIG. 2). In the above, the composite billet is produced by inserting a required number of tape-shaped materials into a rectangular metal pipe, and then inserting a hard metal tape into the gap between the tape-shaped materials to interpose it. You can also
【0007】本発明方法において、原料物質には、前述
のY系、Bi系、Tl系等のセラミックス超電導体を始
め、酸素含有雰囲気中で加熱処理することによりセラミ
ックス超電導体に反応する中間体、例えばセラミックス
超電導体の構成元素の混合体、又は共沈混合物、又は前
記構成元素の酸化物又は炭酸塩の一次原料粉を各々所定
量配合し混合して混合原料となし、この混合原料を仮焼
成した酸素欠損型複合酸化物等が用いられる。又原料物
質を金属製パイプ内に充填するには、原料物質をそのま
ま充填する方法の他、原料物質を予めCIP法等により
所定形状に成形したり、或いはこの成形体を更に加熱焼
結して充填する方法が用いられる。このように原料物質
を成形体や焼結体に加工してから充填すると、得られる
セラミックス超電導々体の密度が高まり、Jc等の特性
が一段と向上する。本発明方法において、前述の多層複
合ビレットに施す延伸加工には、押出、引抜き、スエー
ジング、圧延、鍛造、プレス圧縮等の任意の加工法が適
用できるが、圧延加工法又はプレス圧縮加工法が超電導
体層の密度をより高めることができて好ましい。又複合
ビレットに施す加熱処理は原料物質をセラミックス超電
導体に反応させる為に行うもので、その加熱温度は、例
えばBi系セラミックス超電導体の場合は通常820〜
885℃の温度範囲である。又最後に施す加熱処理は、
延伸加工材をマグネットコイル等に成形したあと施した
方が内部のセラミックス超電導体層に割れ等が入り難く
好ましい。In the method of the present invention, the raw materials include the above-mentioned Y-based, Bi-based, Tl-based ceramics superconductors, and intermediates that react with the ceramics superconductor by heat treatment in an oxygen-containing atmosphere, For example, a mixture of constituent elements of a ceramics superconductor, or a coprecipitation mixture, or primary raw material powders of oxides or carbonates of the above constituent elements are mixed in predetermined amounts to form a mixed raw material, and the mixed raw material is calcinated. Oxygen-deficient complex oxides are used. Further, in order to fill the raw material into the metal pipe, in addition to the method of directly filling the raw material, the raw material is preliminarily molded into a predetermined shape by the CIP method or the like, or the molded body is further heated and sintered. A filling method is used. When the raw material is processed into a compact or a sintered body and then filled, the density of the obtained ceramic superconducting body is increased, and the characteristics such as Jc are further improved. In the method of the present invention, the stretching process applied to the above-mentioned multilayer composite billet, extrusion, drawing, swaging, rolling, forging, can be applied any processing method such as press compression, but the rolling method or press compression method. It is preferable because the density of the superconductor layer can be further increased. The heat treatment applied to the composite billet is carried out in order to react the raw material with the ceramic superconductor, and the heating temperature is usually 820 to 820 in the case of Bi-based ceramic superconductor.
The temperature range is 885 ° C. The final heat treatment is
It is preferable to form the drawn material after forming it into a magnet coil or the like, because the ceramic superconductor layer inside is unlikely to be cracked or the like.
【0008】[0008]
【作用】本発明方法では、原料物質層を金属材料にて被
覆した所要数のテープ状素材を、隣接するテープ状素材
間に硬質の金属製テープを介在させて所要数積層し、こ
の積層体を金属製パイプ内に挿入して多層複合ビレット
を作製し、この多層複合ビレットに延伸加工と加熱処理
の工程を所望回繰返し施して多層セラミックス超電導々
体を製造するので、前記複合ビレットを延伸加工する際
に、延伸加工による圧縮力が前記硬質の金属製テープを
介して原料物質層に均一に且つ十分に掛かり、依って、
得られる多層セラミックス超電導々体のセラミックス超
電導体層は形状均一でしかも結晶配向性に富むものとな
り、その超電導特性はバラツキが小さく高い値のものと
なる。In the method of the present invention, a required number of tape-shaped materials each having a raw material layer coated with a metal material are laminated with a hard metal tape interposed between adjacent tape-shaped materials, and the laminate is formed. Is inserted into a metal pipe to produce a multi-layer composite billet, and the multi-layer composite billet is subjected to repeated stretching and heat treatment steps a desired number of times to produce a multi-layer ceramic superconducting body. In doing so, the compressive force due to the stretching process is applied uniformly and sufficiently to the raw material layer through the hard metal tape, thus,
The ceramic superconducting layer of the obtained multilayer ceramic superconducting body has a uniform shape and is rich in crystal orientation, and the superconducting characteristics have small variations and high values.
【0009】[0009]
【実施例】以下に本発明を実施例により詳細に説明す
る。 実施例1 Bi2O3 ,PbO,SrCO3 ,CaCO3 ,CuO
等の一次原料粉体をそれぞれBi:Pb:Sr:Ca:
Cuが原子比で1.6:0.4:2:2:3となるよう
に混合し、この混合粉を大気中で800℃×50時間仮
焼成したのち、この仮焼成体を粉砕して平均粒径が約5
μmの仮焼粉となした。次いでこの仮焼粉を外径25m
mφ、内径20mmφのAg製丸型パイプに充填して複
合ビレットを作製した。次にこの複合ビレットにスエー
ジング加工及び圧延加工を施して幅7mm,厚さ1mm
のテープ状素材となし、次いでこのテープ状素材6枚
を、大気中で830℃×50時間の加熱処理を施したの
ち各々のテープ状素材間に厚さ0.2mmのAg合金製
硬質テープを介在させて、外径9mm,内径7mmのA
g製角型パイプ内に挿入して多層複合ビレットを作製し
た。次にこの多層複合ビレットに圧延加工を施して4m
m角の線素材となし、次いでこの線素材に大気中で83
0℃×50時間の加熱処理を施して多層セラミックス超
電導々体Aとなし、更に前記多層セラミックス超電導々
体Aを圧延加工して3mm角の線素材となし、この線素
材に再び830℃×50時間の加熱処理を施して多層セ
ラミックス超電導々体Bを製造した。テープ状素材間に
介在させたAg合金製硬質テープには、合金濃度が1,
3,5%のAg−Pd合金,Ag−Rh合金,Ag−P
t合金,Ag−Ir合金のいずれかのAg合金を用い
た。 比較例1 実施例1において、テープ状線材間に、硬質のAg合金
製テープに代えて軟質のAg製テープを介在させた他
は、実施例1と同じ方法により多層セラミックス超電導
々体を製造した。このようにして得られた各々の多層セ
ラミックス超電導々体について、液体窒素中(77
K)、0磁場下で、臨界電流(Ic)を測定した。又セ
ラミックス超電導々体BのについてはIc測定後セラミ
ックス超電導体層の結晶配向性をX線回折法により調査
した。更にセラミックス超電導体層の形状を観察した。
結果は表1に示した。EXAMPLES The present invention will be described in detail below with reference to examples. Example 1 Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 , CuO
Primary raw material powders such as Bi: Pb: Sr: Ca:
Cu was mixed so that the atomic ratio was 1.6: 0.4: 2: 2: 3, and the mixed powder was calcined in the air at 800 ° C. for 50 hours, and then the calcined body was crushed. Average particle size is about 5
It was calcined powder of μm. This calcined powder is then 25m in outer diameter
A round bill pipe made of Ag with mφ and an inner diameter of 20 mmφ was filled to prepare a composite billet. Next, this composite billet is swaged and rolled to have a width of 7 mm and a thickness of 1 mm.
Of the tape-shaped material, and then 6 pieces of the tape-shaped material are heat-treated in the atmosphere at 830 ° C. for 50 hours, and then a 0.2 mm-thick Ag alloy hard tape is placed between the tape-shaped materials. A with an outer diameter of 9 mm and an inner diameter of 7 mm
The multi-layer composite billet was produced by inserting it into a square pipe made of g. Next, this multilayer composite billet is rolled to 4 m.
No m-square line material, then 83 in the air
Heat treatment was performed at 0 ° C. for 50 hours to form a multilayer ceramic superconducting body A, and the multilayer ceramic superconducting body A was further rolled to form a 3 mm square wire material. A multilayer ceramic superconducting body B was manufactured by performing heat treatment for a period of time. The Ag alloy hard tape interposed between the tape-shaped materials has an alloy concentration of 1,
3,5% Ag-Pd alloy, Ag-Rh alloy, Ag-P
Either Ag alloy of t alloy and Ag-Ir alloy was used. Comparative Example 1 A multilayer ceramic superconductor was manufactured by the same method as in Example 1, except that a soft Ag tape was used instead of the hard Ag alloy tape between the tape-shaped wire rods. .. Each of the multilayer ceramic superconductors obtained in this way was tested in liquid nitrogen (77
K), the critical current (Ic) was measured under 0 magnetic field. Regarding the ceramic superconductor B, after measuring Ic, the crystal orientation of the ceramic superconductor layer was investigated by the X-ray diffraction method. Further, the shape of the ceramic superconductor layer was observed.
The results are shown in Table 1.
【0010】[0010]
【表1】 [Table 1]
【0011】表1より明らかなように、本発明方法品
(No.1〜14)は、結晶配向性に富み又超電導体層の形
状が良好で、従ってIcが高く又バラツキが小さいもの
となった。Ag合金の強度つまり合金濃度の影響は、合
金濃度が3%のもの( No.2,5,8,11)が最もIcが高かっ
た。合金濃度が低いもの( No.1,4,7,10)は結晶配向性が
十分に高くならず、又合金濃度が高いもの( No.3,6,9,1
2)は金属マトリックスの電気及び熱伝導性が低下して耐
クエンチ特性が劣化して、いずれもIcが幾分低下し
た。又延伸加工と加熱処理の工程を1回余計に施した3
mm角のセラミックス超電導々体は4mm角のものより
Icが向上した。バラツキの増加は殆ど認められなかっ
た。他方、比較例品(No.15)は、Icが低く、バラツ
キが大きかった。これは延伸加工時に複合ビレット内部
の原料物質層に圧縮力が十分に掛からず、結晶配向性が
低下した為である。又3mm角のものは4mm角のもの
に比べて、Icは向上したものの、バラツキも大きくな
った。これは加工量が増えた分セラミックス超電導体層
の不均一変形が進んだことによるものである。以上テー
プ状素材を平行に積層した複合ビレットを用いた場合に
ついて説明したが、本発明方法は、テープ状素材を同心
状又は渦巻状に積層した複合ビレットに適用しても同様
の効果が得られるものである。As is clear from Table 1, the method products of the present invention (Nos. 1 to 14) are rich in crystal orientation and have a good shape of the superconductor layer, and thus have a high Ic and a small variation. It was Regarding the influence of the strength of the Ag alloy, that is, the alloy concentration, the one having the alloy concentration of 3% (No. 2, 5, 8, 11) had the highest Ic. Those with low alloy concentration (No.1,4,7,10) do not have sufficiently high crystal orientation, and those with high alloy concentration (No.3,6,9,1)
In 2), the electrical and thermal conductivity of the metal matrix was lowered and the quenching resistance was deteriorated, and in each case, Ic was somewhat lowered. In addition, the drawing process and the heat treatment process were additionally performed once.
The ceramic superconducting material of square mm has improved Ic as compared with that of 4 mm square. Almost no increase in variation was observed. On the other hand, the comparative example product (No. 15) had a low Ic and a large variation. This is because the compressive force was not sufficiently applied to the raw material layer inside the composite billet during the stretching process, and the crystal orientation decreased. In addition, although the Ic of the 3 mm square one was improved as compared with the 4 mm square one, the variation was large. This is because the ceramic superconductor layer undergoes uneven deformation due to the increased processing amount. Although the case where the composite billet in which the tape-shaped materials are laminated in parallel is used has been described above, the same effect can be obtained even when the method of the present invention is applied to the composite billet in which the tape-shaped materials are concentrically or spirally laminated. It is a thing.
【0012】[0012]
【効果】以上述べたように、本発明方法によれば、バラ
ツキの小さい優れた超電導特性の多層セラミックス超電
導々体が得られ、工業上顕著な効果を奏する。As described above, according to the method of the present invention, it is possible to obtain a multilayer ceramic superconducting body having excellent superconducting characteristics with a small variation, and to exert a remarkable industrial effect.
【図1】本発明にて用いる多層複合ビレットの作製方法
の態様例を示す工程説明図である。FIG. 1 is a process explanatory view showing an example of a method of producing a multilayer composite billet used in the present invention.
【図2】従来法にて製造した多層セラミックス超電導々
体の横断面図である。FIG. 2 is a cross-sectional view of a multilayer ceramic superconductor manufactured by a conventional method.
1 原料物質層 2 金属被覆層 3 テープ状素材 4 硬質の金属製テープ 5 積層体 6 金属製パイプ 7 多層複合ビレット 8 セラミックス超電導体層 9 多層セラミックス超電導々体 1 Raw Material Layer 2 Metal Covering Layer 3 Tape Material 4 Hard Metal Tape 5 Laminate 6 Metal Pipe 7 Multilayer Composite Billet 8 Ceramics Superconductor Layer 9 Multilayer Ceramics Superconductor
Claims (1)
質層を金属材料にて被覆した構造のテープ状素材の所要
数を積層し、この積層体を金属製パイプ内に挿入して多
層複合ビレットを作製し、この多層複合ビレットに延伸
加工と加熱処理の工程を所望回繰返し施す多層セラミッ
クス超電導々体の製造方法において、所要数のテープ状
素材を、隣接するテープ状素材間に硬質の金属製テープ
を介在させて積層一体化することを特徴とする多層セラ
ミックス超電導々体の製造方法。1. A multilayer composite billet is manufactured by laminating a required number of tape-shaped raw materials having a structure in which a raw material layer that can be a ceramics superconductor is covered with a metallic material, and inserting the laminated body into a metallic pipe. Then, in the method for producing a multilayer ceramic superconducting body in which the steps of stretching and heat treatment are repeatedly performed on this multilayer composite billet a desired number of times, a required number of tape-shaped materials are formed by applying a hard metal tape between adjacent tape-shaped materials. A method of manufacturing a multilayer ceramic superconductor characterized by interposing and interposing a laminate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3273295A JP3029153B2 (en) | 1991-09-25 | 1991-09-25 | Manufacturing method of multilayer ceramic superconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3273295A JP3029153B2 (en) | 1991-09-25 | 1991-09-25 | Manufacturing method of multilayer ceramic superconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0589730A true JPH0589730A (en) | 1993-04-09 |
JP3029153B2 JP3029153B2 (en) | 2000-04-04 |
Family
ID=17525865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3273295A Expired - Fee Related JP3029153B2 (en) | 1991-09-25 | 1991-09-25 | Manufacturing method of multilayer ceramic superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3029153B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997028557A2 (en) * | 1996-01-18 | 1997-08-07 | American Superconductor Corporation | Superconducting wires for magnet applications |
US6642182B2 (en) | 2000-02-22 | 2003-11-04 | Sumitomo Electric Industries, Ltd. | Method of manufacturing superconducting wire |
-
1991
- 1991-09-25 JP JP3273295A patent/JP3029153B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997028557A2 (en) * | 1996-01-18 | 1997-08-07 | American Superconductor Corporation | Superconducting wires for magnet applications |
WO1997028557A3 (en) * | 1996-01-18 | 1997-10-16 | American Superconductor Corp | Superconducting wires for magnet applications |
US6202287B1 (en) | 1996-01-18 | 2001-03-20 | American Superconductor Corporation | Method for producing biaxially aligned super conducting ceramics |
US6642182B2 (en) | 2000-02-22 | 2003-11-04 | Sumitomo Electric Industries, Ltd. | Method of manufacturing superconducting wire |
Also Published As
Publication number | Publication date |
---|---|
JP3029153B2 (en) | 2000-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5347085A (en) | Multifilamentary oxide superconducting wires and method of manufacturing the same | |
KR0158459B1 (en) | Superconductive wire material and method of producing the same | |
JP3029153B2 (en) | Manufacturing method of multilayer ceramic superconductor | |
JP2889286B2 (en) | Superconducting body and superconducting coil formed using the superconducting body | |
JPH0554731A (en) | Multicore ceramics superconducting wire rod and manufacture thereof | |
JPH05151843A (en) | Manufacture of angular cross-section type multilayer ceramic superconductive conductor | |
JPH02273418A (en) | Manufacture of oxide superconductive conductor | |
JPH05334921A (en) | Ceramic superconductor | |
JPH01163914A (en) | Manufacture of oxide superconductive wire | |
JPH05166426A (en) | Manufacture for ceramics superconductor | |
JP3108543B2 (en) | Manufacturing method of multilayer ceramic superconductor | |
JP2583311B2 (en) | Manufacturing method of oxide superconducting conductor | |
JPH05182540A (en) | Manufacture of ceramics superconductive conductor | |
AU742588B2 (en) | Cryogenic deformation of ceramic superconductors | |
JPH06251929A (en) | Manufacture of oxide superconducting coil | |
JP3011962B2 (en) | Method for manufacturing multi-core or multilayer ceramic superconductor | |
JPH05190035A (en) | Manufacture of ceramics superconductive conductor | |
JPH0644842A (en) | Manufacture of multilayer ceramic superconductor | |
JPH04329218A (en) | Superconductive wire material | |
JP3086237B2 (en) | Manufacturing method of oxide superconducting wire | |
JPH01163913A (en) | Manufacture of oxide superconductive wire | |
JPH04155715A (en) | Manufacture of ceramic superconductor | |
JPH04338171A (en) | Production of ceramic superconductor | |
JPH05120931A (en) | Oxide superconductor and manufacture thereof | |
JPH03122917A (en) | Manufacture of ceramics superconductive conductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090204 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100204 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110204 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |