JPH0589730A - Manufacture of multilayer ceramic superconductive conductor - Google Patents

Manufacture of multilayer ceramic superconductive conductor

Info

Publication number
JPH0589730A
JPH0589730A JP3273295A JP27329591A JPH0589730A JP H0589730 A JPH0589730 A JP H0589730A JP 3273295 A JP3273295 A JP 3273295A JP 27329591 A JP27329591 A JP 27329591A JP H0589730 A JPH0589730 A JP H0589730A
Authority
JP
Japan
Prior art keywords
tape
composite billet
multilayer
multilayer ceramic
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3273295A
Other languages
Japanese (ja)
Other versions
JP3029153B2 (en
Inventor
Kiyoshi Nemoto
清 根本
Sukeyuki Kikuchi
祐行 菊地
Masanao Mimura
正直 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3273295A priority Critical patent/JP3029153B2/en
Publication of JPH0589730A publication Critical patent/JPH0589730A/en
Application granted granted Critical
Publication of JP3029153B2 publication Critical patent/JP3029153B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Metal Extraction Processes (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide a method for manufacturing a multilayer ceramic superconductive conductor with small dispersion and excellent superconductive characteristic. CONSTITUTION:A required number of tape materials 3 having the structure of covering a raw material layer 1 which can form a ceramic superconductor with a metal material are laminated with hard metallic tapes 4 being interposed between adjacent tape materials 3, and the resulting laminated body 5 is inserted to a metallic pipe 6 to form a multilayered composite billet 7. The multilayer composite billet 7 is repeatedly subjected to processes of drawing and heating treatment a desired times to manufacture a multilayer ceramic superconductive conductor. When the multilayer composite billet 7 is drawn, the compressing force by drawing is uniformly and sufficiently added to the tape materials 3 through the hard metallic tapes 4, so that the internal ceramic superconductor layer has an uniform form and satisfactory crystal orienting property. Thus, a ceramic superconductive conductor 8 with small dispersion and excellent superconductive characteristic can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導特性に優れ、マ
グネットやケーブル等の導体として好適な多層セラミッ
クス超電導々体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a multilayer ceramic superconducting body which has excellent superconducting properties and is suitable as a conductor for magnets and cables.

【0002】[0002]

【従来の技術】近年、液体窒素温度で超電導を示すY−
Ba−Cu−O系,Bi−(Pb)−Sr−Ca−Cu
−O系,Tl−Ba−Ca−Cu−O系等のセラミック
ス超電導体が見出され、各分野で実用化研究が進められ
ている。ところでこれらのセラミックス超電導体は脆い
為、これらを線材等に加工するには、例えば加工性に富
んだAgやCu等の金属製パイプにセラミックス超電導
体となし得る原料物質(以下、原料物質と略記する。)
を充填して複合ビレットを作製し、次いでこの複合ビレ
ットを延伸加工して所望形状の線素材となしたのち、こ
の線素材に所定の加熱処理を施して前記原料物質を超電
導体に反応せしめる複合加工法が用いられている。この
複合加工法では、前記の線素材は断面が円形,楕円形,
四角形,テープ状等任意の形状に加工される。そして例
えば、前記のテープ状の線素材は、この複数枚を平行に
又は同心状に又は渦巻状に積層し、次にこれらの積層体
を別に用意した純Ag製パイプ内に充填して多層複合ビ
レットとなし、これらの多層複合ビレットに前述と同じ
ように延伸加工と加熱処理を施して多層セラミックス超
電導々体が製造される。
2. Description of the Related Art In recent years, Y- which exhibits superconductivity at liquid nitrogen temperature
Ba-Cu-O system, Bi- (Pb) -Sr-Ca-Cu
Ceramic superconductors such as -O type and Tl-Ba-Ca-Cu-O type have been found, and researches for practical use have been advanced in various fields. By the way, since these ceramics superconductors are fragile, in order to process them into a wire or the like, for example, a raw material (hereinafter abbreviated as raw material) which can be made into a ceramics superconductor can be formed on a metal pipe such as Ag or Cu which has high workability. Yes.)
To prepare a composite billet, and then draw and process this composite billet to form a wire material having a desired shape, and then subject this wire material to a predetermined heat treatment to react the raw material with a superconductor. The processing method is used. In this composite processing method, the wire material has a circular cross section, an elliptical cross section,
It is processed into an arbitrary shape such as a square or tape. Then, for example, the tape-shaped wire material is laminated in a plurality of layers in parallel, concentrically or spirally, and then these laminated bodies are filled in a separately prepared pipe made of Ag to obtain a multilayer composite. A billet is formed, and these multi-layer composite billets are subjected to the drawing process and the heat treatment in the same manner as described above to produce a multi-layer ceramic superconducting body.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述の
多層セラミックス超電導々体は、被覆する金属材料に軟
質なAg等の材料を用いる為、延伸加工の際に原料物質
層に十分な圧縮力が掛からず、得られる多層セラミック
ス超電導々体は、図2に示したようにセラミックス超電
導体層8が形状不良なものとなり又結晶配向性に劣り、
従って超電導特性が、バラツキの大きい低い値のものに
なるという問題があった。このことは、高性能を得るの
に延伸加工と加熱処理の工程を何度も施す必要のあるB
i系セラミックス超電導々体の製造において、特に深刻
な問題であった。
However, in the above-mentioned multilayer ceramic superconducting body, since a material such as soft Ag is used as the metal material to be coated, a sufficient compressive force is applied to the raw material layer during stretching. In the resulting multilayer ceramic superconductor, as shown in FIG. 2, the ceramic superconductor layer 8 has a poor shape and is poor in crystal orientation.
Therefore, there has been a problem that the superconducting characteristics have low values with large variations. This means that in order to obtain high performance, it is necessary to repeat the steps of stretching and heat treatment B
There has been a particularly serious problem in the production of i-based ceramics superconductors.

【0004】[0004]

【課題を解決するための手段】本発明は、かかる状況に
鑑み鋭意研究を行った結果なされたものでその目的とす
るところは、バラツキが小さく超電導特性に優れた多層
セラミックス超電導々体を製造する方法を提供すること
にある。即ち、本発明は、セラミックス超電導体となし
得る原料物質層を金属材料にて被覆した構造のテープ状
素材の所要数を積層し、この積層体を金属製パイプ内に
挿入して多層複合ビレットを作製し、この多層複合ビレ
ットに延伸加工と加熱処理の工程を所望回繰返し施す多
層セラミックス超電導々体の製造方法において、所要数
のテープ状素材を、隣接するテープ状素材間に硬質の金
属製テープを介在させて積層一体化することを特徴とす
るものである。
DISCLOSURE OF THE INVENTION The present invention has been made as a result of intensive studies in view of the above circumstances, and an object of the present invention is to produce a multilayer ceramic superconducting body with small variations and excellent superconducting properties. To provide a method. That is, according to the present invention, a required number of tape-shaped raw materials having a structure in which a raw material layer that can be a ceramics superconductor is coated with a metal material are laminated, and this laminated body is inserted into a metal pipe to form a multilayer composite billet. In the method for producing a multilayer ceramic superconducting body in which the multilayer composite billet is repeatedly subjected to a drawing process and a heat treatment process as many times as desired, a required number of tape-shaped materials are hard metal tapes between adjacent tape-shaped materials. It is characterized in that they are laminated and integrated by interposing.

【0005】本発明方法は、原料物質層を金属材料にて
被覆したテープ状素材を所要数、隣接するテープ状素材
間に硬質の金属製テープを介在させて積層し、この積層
体を金属製パイプ内に挿入して複合ビレットとなし、こ
の複合ビレットを延伸加工する際に、延伸加工による圧
縮力が前記硬質の金属製テープを介して前記原料物質層
に均一に且つ十分に掛かるようにしたものである。而し
て、得られる多層セラミックス超電導々体は、セラミッ
クス超電導体層が形状均一で且つ結晶配向性に富むもの
となり、従ってその超電導特性はバラツキの小さい高い
値のものとなる。本発明方法において、硬質の金属製テ
ープには、硬質で且つ酸素透過性に優れた金属材料、例
えばAgにPd,Rh,Pt,Ir等の合金元素を少な
くとも1種含有させたAg合金が好適である。
According to the method of the present invention, a required number of tape-shaped materials each having a raw material layer coated with a metal material are laminated with a hard metal tape interposed between adjacent tape-shaped materials, and the laminated body is made of metal. Inserted in a pipe to form a composite billet, and when the composite billet was stretched, the compressive force by the stretching process was applied uniformly and sufficiently to the raw material layer through the hard metal tape. It is a thing. Thus, in the obtained multilayer ceramic superconducting body, the ceramic superconducting layer has a uniform shape and is rich in crystal orientation, and therefore, the superconducting property has a high value with little variation. In the method of the present invention, the hard metal tape is preferably a hard and excellent oxygen-permeable metal material, for example, an Ag alloy in which Ag contains at least one alloy element such as Pd, Rh, Pt, and Ir. Is.

【0006】本発明の多層セラミックス超電導々体は、
例えば、原料物質を金属製パイプ内に充填して複合ビレ
ットとなし、この複合ビレットに延伸加工と加熱処理の
工程を所望回繰返し施してテープ状素材となし、次いで
図1イ〜ニに示したように、前述の原料物質層1を金属
被覆層2にて被覆したテープ状素材3(図イ)を複数
枚、隣接するテープ状素材3間に、硬質の金属製テープ
4を介在させて積層し(図ロ)、この積層体5を角型の
金属製パイプ6内に挿入して多層複合ビレット7を作製
(図ハ)し、しかるのち、この多層複合ビレット7に延
伸加工と加熱処理の工程を所望回繰返し施して、内部に
セラミックス超電導体層8が所要数積層された多層セラ
ミックス超電導々体9が製造される(図ニ)。上記にお
いて、複合ビレットは、所要数のテープ状素材を角型の
金属製パイプ内に挿入しておき、あとから前記のテープ
状素材の間隙に硬質の金属製テープを押込み介在させて
作製することもできる。
The multilayer ceramic superconducting body of the present invention is
For example, a raw material is filled in a metal pipe to form a composite billet, and the composite billet is repeatedly subjected to a stretching process and a heat treatment process a desired number of times to form a tape-shaped raw material, and then shown in FIGS. As described above, a plurality of tape-shaped raw materials 3 (Fig. A) in which the above-mentioned raw material layer 1 is covered with the metal coating layer 2 are stacked, and a hard metal tape 4 is interposed between the adjacent tape-shaped raw materials 3. Then, the laminated body 5 is inserted into a rectangular metal pipe 6 to produce a multi-layer composite billet 7 (Fig. C). Then, the multi-layer composite billet 7 is stretched and heat-treated. The steps are repeated a desired number of times to manufacture a multilayer ceramic superconducting body 9 in which a required number of ceramic superconducting layers 8 are laminated (FIG. 2). In the above, the composite billet is produced by inserting a required number of tape-shaped materials into a rectangular metal pipe, and then inserting a hard metal tape into the gap between the tape-shaped materials to interpose it. You can also

【0007】本発明方法において、原料物質には、前述
のY系、Bi系、Tl系等のセラミックス超電導体を始
め、酸素含有雰囲気中で加熱処理することによりセラミ
ックス超電導体に反応する中間体、例えばセラミックス
超電導体の構成元素の混合体、又は共沈混合物、又は前
記構成元素の酸化物又は炭酸塩の一次原料粉を各々所定
量配合し混合して混合原料となし、この混合原料を仮焼
成した酸素欠損型複合酸化物等が用いられる。又原料物
質を金属製パイプ内に充填するには、原料物質をそのま
ま充填する方法の他、原料物質を予めCIP法等により
所定形状に成形したり、或いはこの成形体を更に加熱焼
結して充填する方法が用いられる。このように原料物質
を成形体や焼結体に加工してから充填すると、得られる
セラミックス超電導々体の密度が高まり、Jc等の特性
が一段と向上する。本発明方法において、前述の多層複
合ビレットに施す延伸加工には、押出、引抜き、スエー
ジング、圧延、鍛造、プレス圧縮等の任意の加工法が適
用できるが、圧延加工法又はプレス圧縮加工法が超電導
体層の密度をより高めることができて好ましい。又複合
ビレットに施す加熱処理は原料物質をセラミックス超電
導体に反応させる為に行うもので、その加熱温度は、例
えばBi系セラミックス超電導体の場合は通常820〜
885℃の温度範囲である。又最後に施す加熱処理は、
延伸加工材をマグネットコイル等に成形したあと施した
方が内部のセラミックス超電導体層に割れ等が入り難く
好ましい。
In the method of the present invention, the raw materials include the above-mentioned Y-based, Bi-based, Tl-based ceramics superconductors, and intermediates that react with the ceramics superconductor by heat treatment in an oxygen-containing atmosphere, For example, a mixture of constituent elements of a ceramics superconductor, or a coprecipitation mixture, or primary raw material powders of oxides or carbonates of the above constituent elements are mixed in predetermined amounts to form a mixed raw material, and the mixed raw material is calcinated. Oxygen-deficient complex oxides are used. Further, in order to fill the raw material into the metal pipe, in addition to the method of directly filling the raw material, the raw material is preliminarily molded into a predetermined shape by the CIP method or the like, or the molded body is further heated and sintered. A filling method is used. When the raw material is processed into a compact or a sintered body and then filled, the density of the obtained ceramic superconducting body is increased, and the characteristics such as Jc are further improved. In the method of the present invention, the stretching process applied to the above-mentioned multilayer composite billet, extrusion, drawing, swaging, rolling, forging, can be applied any processing method such as press compression, but the rolling method or press compression method. It is preferable because the density of the superconductor layer can be further increased. The heat treatment applied to the composite billet is carried out in order to react the raw material with the ceramic superconductor, and the heating temperature is usually 820 to 820 in the case of Bi-based ceramic superconductor.
The temperature range is 885 ° C. The final heat treatment is
It is preferable to form the drawn material after forming it into a magnet coil or the like, because the ceramic superconductor layer inside is unlikely to be cracked or the like.

【0008】[0008]

【作用】本発明方法では、原料物質層を金属材料にて被
覆した所要数のテープ状素材を、隣接するテープ状素材
間に硬質の金属製テープを介在させて所要数積層し、こ
の積層体を金属製パイプ内に挿入して多層複合ビレット
を作製し、この多層複合ビレットに延伸加工と加熱処理
の工程を所望回繰返し施して多層セラミックス超電導々
体を製造するので、前記複合ビレットを延伸加工する際
に、延伸加工による圧縮力が前記硬質の金属製テープを
介して原料物質層に均一に且つ十分に掛かり、依って、
得られる多層セラミックス超電導々体のセラミックス超
電導体層は形状均一でしかも結晶配向性に富むものとな
り、その超電導特性はバラツキが小さく高い値のものと
なる。
In the method of the present invention, a required number of tape-shaped materials each having a raw material layer coated with a metal material are laminated with a hard metal tape interposed between adjacent tape-shaped materials, and the laminate is formed. Is inserted into a metal pipe to produce a multi-layer composite billet, and the multi-layer composite billet is subjected to repeated stretching and heat treatment steps a desired number of times to produce a multi-layer ceramic superconducting body. In doing so, the compressive force due to the stretching process is applied uniformly and sufficiently to the raw material layer through the hard metal tape, thus,
The ceramic superconducting layer of the obtained multilayer ceramic superconducting body has a uniform shape and is rich in crystal orientation, and the superconducting characteristics have small variations and high values.

【0009】[0009]

【実施例】以下に本発明を実施例により詳細に説明す
る。 実施例1 Bi23 ,PbO,SrCO3 ,CaCO3 ,CuO
等の一次原料粉体をそれぞれBi:Pb:Sr:Ca:
Cuが原子比で1.6:0.4:2:2:3となるよう
に混合し、この混合粉を大気中で800℃×50時間仮
焼成したのち、この仮焼成体を粉砕して平均粒径が約5
μmの仮焼粉となした。次いでこの仮焼粉を外径25m
mφ、内径20mmφのAg製丸型パイプに充填して複
合ビレットを作製した。次にこの複合ビレットにスエー
ジング加工及び圧延加工を施して幅7mm,厚さ1mm
のテープ状素材となし、次いでこのテープ状素材6枚
を、大気中で830℃×50時間の加熱処理を施したの
ち各々のテープ状素材間に厚さ0.2mmのAg合金製
硬質テープを介在させて、外径9mm,内径7mmのA
g製角型パイプ内に挿入して多層複合ビレットを作製し
た。次にこの多層複合ビレットに圧延加工を施して4m
m角の線素材となし、次いでこの線素材に大気中で83
0℃×50時間の加熱処理を施して多層セラミックス超
電導々体Aとなし、更に前記多層セラミックス超電導々
体Aを圧延加工して3mm角の線素材となし、この線素
材に再び830℃×50時間の加熱処理を施して多層セ
ラミックス超電導々体Bを製造した。テープ状素材間に
介在させたAg合金製硬質テープには、合金濃度が1,
3,5%のAg−Pd合金,Ag−Rh合金,Ag−P
t合金,Ag−Ir合金のいずれかのAg合金を用い
た。 比較例1 実施例1において、テープ状線材間に、硬質のAg合金
製テープに代えて軟質のAg製テープを介在させた他
は、実施例1と同じ方法により多層セラミックス超電導
々体を製造した。このようにして得られた各々の多層セ
ラミックス超電導々体について、液体窒素中(77
K)、0磁場下で、臨界電流(Ic)を測定した。又セ
ラミックス超電導々体BのについてはIc測定後セラミ
ックス超電導体層の結晶配向性をX線回折法により調査
した。更にセラミックス超電導体層の形状を観察した。
結果は表1に示した。
EXAMPLES The present invention will be described in detail below with reference to examples. Example 1 Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 , CuO
Primary raw material powders such as Bi: Pb: Sr: Ca:
Cu was mixed so that the atomic ratio was 1.6: 0.4: 2: 2: 3, and the mixed powder was calcined in the air at 800 ° C. for 50 hours, and then the calcined body was crushed. Average particle size is about 5
It was calcined powder of μm. This calcined powder is then 25m in outer diameter
A round bill pipe made of Ag with mφ and an inner diameter of 20 mmφ was filled to prepare a composite billet. Next, this composite billet is swaged and rolled to have a width of 7 mm and a thickness of 1 mm.
Of the tape-shaped material, and then 6 pieces of the tape-shaped material are heat-treated in the atmosphere at 830 ° C. for 50 hours, and then a 0.2 mm-thick Ag alloy hard tape is placed between the tape-shaped materials. A with an outer diameter of 9 mm and an inner diameter of 7 mm
The multi-layer composite billet was produced by inserting it into a square pipe made of g. Next, this multilayer composite billet is rolled to 4 m.
No m-square line material, then 83 in the air
Heat treatment was performed at 0 ° C. for 50 hours to form a multilayer ceramic superconducting body A, and the multilayer ceramic superconducting body A was further rolled to form a 3 mm square wire material. A multilayer ceramic superconducting body B was manufactured by performing heat treatment for a period of time. The Ag alloy hard tape interposed between the tape-shaped materials has an alloy concentration of 1,
3,5% Ag-Pd alloy, Ag-Rh alloy, Ag-P
Either Ag alloy of t alloy and Ag-Ir alloy was used. Comparative Example 1 A multilayer ceramic superconductor was manufactured by the same method as in Example 1, except that a soft Ag tape was used instead of the hard Ag alloy tape between the tape-shaped wire rods. .. Each of the multilayer ceramic superconductors obtained in this way was tested in liquid nitrogen (77
K), the critical current (Ic) was measured under 0 magnetic field. Regarding the ceramic superconductor B, after measuring Ic, the crystal orientation of the ceramic superconductor layer was investigated by the X-ray diffraction method. Further, the shape of the ceramic superconductor layer was observed.
The results are shown in Table 1.

【0010】[0010]

【表1】 [Table 1]

【0011】表1より明らかなように、本発明方法品
(No.1〜14)は、結晶配向性に富み又超電導体層の形
状が良好で、従ってIcが高く又バラツキが小さいもの
となった。Ag合金の強度つまり合金濃度の影響は、合
金濃度が3%のもの( No.2,5,8,11)が最もIcが高かっ
た。合金濃度が低いもの( No.1,4,7,10)は結晶配向性が
十分に高くならず、又合金濃度が高いもの( No.3,6,9,1
2)は金属マトリックスの電気及び熱伝導性が低下して耐
クエンチ特性が劣化して、いずれもIcが幾分低下し
た。又延伸加工と加熱処理の工程を1回余計に施した3
mm角のセラミックス超電導々体は4mm角のものより
Icが向上した。バラツキの増加は殆ど認められなかっ
た。他方、比較例品(No.15)は、Icが低く、バラツ
キが大きかった。これは延伸加工時に複合ビレット内部
の原料物質層に圧縮力が十分に掛からず、結晶配向性が
低下した為である。又3mm角のものは4mm角のもの
に比べて、Icは向上したものの、バラツキも大きくな
った。これは加工量が増えた分セラミックス超電導体層
の不均一変形が進んだことによるものである。以上テー
プ状素材を平行に積層した複合ビレットを用いた場合に
ついて説明したが、本発明方法は、テープ状素材を同心
状又は渦巻状に積層した複合ビレットに適用しても同様
の効果が得られるものである。
As is clear from Table 1, the method products of the present invention (Nos. 1 to 14) are rich in crystal orientation and have a good shape of the superconductor layer, and thus have a high Ic and a small variation. It was Regarding the influence of the strength of the Ag alloy, that is, the alloy concentration, the one having the alloy concentration of 3% (No. 2, 5, 8, 11) had the highest Ic. Those with low alloy concentration (No.1,4,7,10) do not have sufficiently high crystal orientation, and those with high alloy concentration (No.3,6,9,1)
In 2), the electrical and thermal conductivity of the metal matrix was lowered and the quenching resistance was deteriorated, and in each case, Ic was somewhat lowered. In addition, the drawing process and the heat treatment process were additionally performed once.
The ceramic superconducting material of square mm has improved Ic as compared with that of 4 mm square. Almost no increase in variation was observed. On the other hand, the comparative example product (No. 15) had a low Ic and a large variation. This is because the compressive force was not sufficiently applied to the raw material layer inside the composite billet during the stretching process, and the crystal orientation decreased. In addition, although the Ic of the 3 mm square one was improved as compared with the 4 mm square one, the variation was large. This is because the ceramic superconductor layer undergoes uneven deformation due to the increased processing amount. Although the case where the composite billet in which the tape-shaped materials are laminated in parallel is used has been described above, the same effect can be obtained even when the method of the present invention is applied to the composite billet in which the tape-shaped materials are concentrically or spirally laminated. It is a thing.

【0012】[0012]

【効果】以上述べたように、本発明方法によれば、バラ
ツキの小さい優れた超電導特性の多層セラミックス超電
導々体が得られ、工業上顕著な効果を奏する。
As described above, according to the method of the present invention, it is possible to obtain a multilayer ceramic superconducting body having excellent superconducting characteristics with a small variation, and to exert a remarkable industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にて用いる多層複合ビレットの作製方法
の態様例を示す工程説明図である。
FIG. 1 is a process explanatory view showing an example of a method of producing a multilayer composite billet used in the present invention.

【図2】従来法にて製造した多層セラミックス超電導々
体の横断面図である。
FIG. 2 is a cross-sectional view of a multilayer ceramic superconductor manufactured by a conventional method.

【符号の説明】[Explanation of symbols]

1 原料物質層 2 金属被覆層 3 テープ状素材 4 硬質の金属製テープ 5 積層体 6 金属製パイプ 7 多層複合ビレット 8 セラミックス超電導体層 9 多層セラミックス超電導々体 1 Raw Material Layer 2 Metal Covering Layer 3 Tape Material 4 Hard Metal Tape 5 Laminate 6 Metal Pipe 7 Multilayer Composite Billet 8 Ceramics Superconductor Layer 9 Multilayer Ceramics Superconductor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス超電導体となし得る原料物
質層を金属材料にて被覆した構造のテープ状素材の所要
数を積層し、この積層体を金属製パイプ内に挿入して多
層複合ビレットを作製し、この多層複合ビレットに延伸
加工と加熱処理の工程を所望回繰返し施す多層セラミッ
クス超電導々体の製造方法において、所要数のテープ状
素材を、隣接するテープ状素材間に硬質の金属製テープ
を介在させて積層一体化することを特徴とする多層セラ
ミックス超電導々体の製造方法。
1. A multilayer composite billet is manufactured by laminating a required number of tape-shaped raw materials having a structure in which a raw material layer that can be a ceramics superconductor is covered with a metallic material, and inserting the laminated body into a metallic pipe. Then, in the method for producing a multilayer ceramic superconducting body in which the steps of stretching and heat treatment are repeatedly performed on this multilayer composite billet a desired number of times, a required number of tape-shaped materials are formed by applying a hard metal tape between adjacent tape-shaped materials. A method of manufacturing a multilayer ceramic superconductor characterized by interposing and interposing a laminate.
JP3273295A 1991-09-25 1991-09-25 Manufacturing method of multilayer ceramic superconductor Expired - Fee Related JP3029153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3273295A JP3029153B2 (en) 1991-09-25 1991-09-25 Manufacturing method of multilayer ceramic superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3273295A JP3029153B2 (en) 1991-09-25 1991-09-25 Manufacturing method of multilayer ceramic superconductor

Publications (2)

Publication Number Publication Date
JPH0589730A true JPH0589730A (en) 1993-04-09
JP3029153B2 JP3029153B2 (en) 2000-04-04

Family

ID=17525865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3273295A Expired - Fee Related JP3029153B2 (en) 1991-09-25 1991-09-25 Manufacturing method of multilayer ceramic superconductor

Country Status (1)

Country Link
JP (1) JP3029153B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997028557A2 (en) * 1996-01-18 1997-08-07 American Superconductor Corporation Superconducting wires for magnet applications
US6642182B2 (en) 2000-02-22 2003-11-04 Sumitomo Electric Industries, Ltd. Method of manufacturing superconducting wire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997028557A2 (en) * 1996-01-18 1997-08-07 American Superconductor Corporation Superconducting wires for magnet applications
WO1997028557A3 (en) * 1996-01-18 1997-10-16 American Superconductor Corp Superconducting wires for magnet applications
US6202287B1 (en) 1996-01-18 2001-03-20 American Superconductor Corporation Method for producing biaxially aligned super conducting ceramics
US6642182B2 (en) 2000-02-22 2003-11-04 Sumitomo Electric Industries, Ltd. Method of manufacturing superconducting wire

Also Published As

Publication number Publication date
JP3029153B2 (en) 2000-04-04

Similar Documents

Publication Publication Date Title
US5347085A (en) Multifilamentary oxide superconducting wires and method of manufacturing the same
KR0158459B1 (en) Superconductive wire material and method of producing the same
JP3029153B2 (en) Manufacturing method of multilayer ceramic superconductor
JP2889286B2 (en) Superconducting body and superconducting coil formed using the superconducting body
JPH0554731A (en) Multicore ceramics superconducting wire rod and manufacture thereof
JPH05151843A (en) Manufacture of angular cross-section type multilayer ceramic superconductive conductor
JPH02273418A (en) Manufacture of oxide superconductive conductor
JPH05334921A (en) Ceramic superconductor
JPH01163914A (en) Manufacture of oxide superconductive wire
JPH05166426A (en) Manufacture for ceramics superconductor
JP3108543B2 (en) Manufacturing method of multilayer ceramic superconductor
JP2583311B2 (en) Manufacturing method of oxide superconducting conductor
JPH05182540A (en) Manufacture of ceramics superconductive conductor
AU742588B2 (en) Cryogenic deformation of ceramic superconductors
JPH06251929A (en) Manufacture of oxide superconducting coil
JP3011962B2 (en) Method for manufacturing multi-core or multilayer ceramic superconductor
JPH05190035A (en) Manufacture of ceramics superconductive conductor
JPH0644842A (en) Manufacture of multilayer ceramic superconductor
JPH04329218A (en) Superconductive wire material
JP3086237B2 (en) Manufacturing method of oxide superconducting wire
JPH01163913A (en) Manufacture of oxide superconductive wire
JPH04155715A (en) Manufacture of ceramic superconductor
JPH04338171A (en) Production of ceramic superconductor
JPH05120931A (en) Oxide superconductor and manufacture thereof
JPH03122917A (en) Manufacture of ceramics superconductive conductor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees