JPH0417303A - Manufacture of barium titanate porcelain semiconductor - Google Patents

Manufacture of barium titanate porcelain semiconductor

Info

Publication number
JPH0417303A
JPH0417303A JP12146990A JP12146990A JPH0417303A JP H0417303 A JPH0417303 A JP H0417303A JP 12146990 A JP12146990 A JP 12146990A JP 12146990 A JP12146990 A JP 12146990A JP H0417303 A JPH0417303 A JP H0417303A
Authority
JP
Japan
Prior art keywords
barium titanate
semiconductor
mixture
dried
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12146990A
Other languages
Japanese (ja)
Other versions
JP2839932B2 (en
Inventor
Tetsuya Nishi
哲也 西
Keishin Ohara
佳信 尾原
Naoki Katsuta
直樹 勝田
Tetsuo Yamaguchi
哲生 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2121469A priority Critical patent/JP2839932B2/en
Publication of JPH0417303A publication Critical patent/JPH0417303A/en
Application granted granted Critical
Publication of JP2839932B2 publication Critical patent/JP2839932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To obtain an element whose resistance temperature coefficient is positive at a temperature of a Curie point or higher and whose resistivity is very small at room temperature by a method wherein a specific amount of Sb2O3 is used as a semiconductor-forming agent. CONSTITUTION:A semiconductor-forming agent is added to a barium titanate- based composition containing a substance which moves a Curie point; the mixture is baked; and a barium titanate porcelain semiconductor is manufactured. When the semiconductor is manufactured, 0.075 to 0.14mol% of Sb2O3 as the semiconductor forming agent is added to the barium titanate-based composition. For example, 68.07g of BaCO3, 29.01g of TiO2, 2.68g of SrCO2, 0.0209g of MnCO3, 0.1091g of SiO2 and 0.1058g of Sb2O3 are wet-mixed under the existence of ethanol; and after that, the mixture is dried at 130 deg.C. The dried mixture is calcinated temporarily at 1150 deg.C. The temporarily baked mixture is crushed; and after that, the mixture is mixed with a PVA aqueous solution. The mixture is dried at 130 deg.C. The dried mixture obtained in this manner is crushed; the powder is pressurized under 1ton/cm<2> and molded; and the molded substance is baked at 1360 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、キュリー点以上の温度において正の抵抗温度
係数を有し、室温抵抗率が非常に小さいことによる優れ
たPTC特性を有するチタン酸バリウム系磁器半導体の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides titanic acid which has a positive temperature coefficient of resistance at temperatures above the Curie point and has excellent PTC properties due to very low room temperature resistivity. The present invention relates to a method for manufacturing a barium-based ceramic semiconductor.

〔従来の技術〕[Conventional technology]

ランタン、タンタル、セリウム、イツトリウム、ビスマ
ス、タングステン、銀、サマリウム、ディスプロシウム
等の酸化物をチタン酸バリウム系磁器に添加することに
よって、正の抵抗温度係数(PTC特性)を有する磁器
半導体を得ることは、従来から広く知られている。また
、希土類元素、タンタル、ニオブ、またはアンチモンを
含有するチタン酸バリウム系磁器半導体組成物に二酸化
ケイ素を添加し、酸素の存在下で焼成することによって
磁器半導体組成物の電気特性を向上させることも提案さ
れている(特開昭53−59888号公報参照)。
By adding oxides such as lanthanum, tantalum, cerium, yttrium, bismuth, tungsten, silver, samarium, dysprosium, etc. to barium titanate ceramic, a ceramic semiconductor having a positive temperature coefficient of resistance (PTC characteristic) is obtained. This has been widely known for a long time. Additionally, the electrical properties of the ceramic semiconductor composition can be improved by adding silicon dioxide to a barium titanate ceramic semiconductor composition containing a rare earth element, tantalum, niobium, or antimony and firing it in the presence of oxygen. It has been proposed (see Japanese Patent Laid-Open No. 53-59888).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記従来のチタン酸バリウム磁器半導体の製
造方法では、キュリー点以上の温度において正の抵抗温
度係数を有し、かつ室温において抵抗率の非常に小さい
素子を得るのは難しいという問題点を有している。
However, the conventional method for manufacturing barium titanate ceramic semiconductors described above has the problem that it is difficult to obtain an element that has a positive temperature coefficient of resistance at temperatures above the Curie point and has a very low resistivity at room temperature. are doing.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係るチタン酸バリウム磁器半導体の製造方法は
、上記課題を解決するために、キュリー点移動物質を含
むチタン酸バリウム基体組成物に半導体化剤を加えて焼
成してなるチタン酸バリウム磁器半導体の製造方法にお
いて、半導体化剤として、チタン酸バリウム基体組成物
に対してSb2O3を使用することを特徴としている。
In order to solve the above-mentioned problems, a barium titanate porcelain semiconductor according to the present invention is produced by adding a semiconducting agent to a barium titanate base composition containing a Curie point transfer substance and firing the mixture. The manufacturing method is characterized in that Sb2O3 is used as a semiconducting agent for a barium titanate base composition.

なお、5b20.の添加量は、好ましくは0.075モ
ル%〜0.14モル%の範囲である。
In addition, 5b20. The amount added is preferably in the range of 0.075 mol% to 0.14 mol%.

〔作 用〕[For production]

上記の構成によれば、半導体化剤として添加した0、0
75モル%〜0.14モル%の5bzO3によって、半
導体化が容易に行え、しかも室温での抵抗率をより小さ
(設定することができるので、電流容量の小さい回路中
に対応することができる汎用性に優れた低抵抗PCT素
子を製造することができる。
According to the above configuration, 0, 0 added as a semiconducting agent
With 75 mol% to 0.14 mol% of 5bzO3, it can be easily made into a semiconductor, and the resistivity at room temperature can be set to a lower value, so it is a general-purpose product that can be used in circuits with small current capacity. A low resistance PCT element with excellent properties can be manufactured.

〔実施例〕〔Example〕

本発明の一実施例を第1図に基づいて説明すれば、以下
のとおりである。
An embodiment of the present invention will be described below based on FIG.

本実施例は、キュリー点移動物質を含むチタン酸バリウ
ム基体組成物に半導体化剤を加えて焼成することからな
るチタン酸バリウム磁器半導体の製造方法において、半
導体化剤として、チタン酸バリウム基体組成物に対して
0.070モル%〜0.180モル%の酸化アンチモン
(5bzO+ )を使用した時に、5bzo、の添加量
によって室温における抵抗率がどのように変化し、その
結果、チタン酸バリウム磁器半導体の製造に対して好ま
しい5b2o、の添加量の範囲を限定することを開示し
ている。
This example describes a method for producing a barium titanate ceramic semiconductor, which comprises adding a semiconducting agent to a barium titanate base composition containing a Curie point transfer substance and firing the mixture. When antimony oxide (5bzO+) is used in an amount of 0.070 mol% to 0.180 mol% relative to barium titanate ceramic semiconductor, how does the resistivity at room temperature change depending on the amount of 5bzo added? It is disclosed that the range of the amount of 5b2o added is preferably limited for the production of 5b2o.

本実施例においては、炭酸ストロンチウム(SrCOl
)等のキュリー点移動物質を含むチタン酸バリウム基体
組成物に対して0.070モル%〜0.150モル%の
酸化アンチモン(5bzOz )を配合するが、その際
、この配合物に鉱化剤として炭酸マンガン(MnC03
)を、また電圧依存性安定荊として二酸化ケイ素(5i
Oz )等を配合している。
In this example, strontium carbonate (SrCOl
0.070 mol% to 0.150 mol% of antimony oxide (5bzOz) is blended into a barium titanate base composition containing a Curie point transfer substance such as as manganese carbonate (MnC03
), and silicon dioxide (5i
Oz) etc. are blended.

この配合物を自動乳鉢において1時間〜24時間、エタ
ノール(特級試薬)の存在下で湿式混合し、乾燥した後
、1000’C〜1400°Cにおいて1時間〜3時間
仮焼する。仮焼した配合物は、粉砕し、自動乳鉢におい
てPVA(ポリビニルアルコール)2wt%〜8wt%
の水溶液を加えて1時間〜6時間混合し、乾燥した後に
十分粉砕する。このようにしてできた粉末を円盤状成形
器において成形した後、その成形物を1300°C〜1
400°Cにおいて0時間〜10時間保持し、焼成して
チタン酸バリウム磁器半導体が得られる。
The formulation is wet mixed in an automatic mortar for 1 to 24 hours in the presence of ethanol (special grade reagent), dried, and then calcined at 1000'C to 1400C for 1 to 3 hours. The calcined compound is crushed and mixed with PVA (polyvinyl alcohol) 2wt% to 8wt% in an automatic mortar.
Add an aqueous solution of , mix for 1 to 6 hours, dry, and then thoroughly pulverize. After molding the powder thus produced in a disc molding machine, the molded product was heated to 1300°C to 1
The barium titanate ceramic semiconductor is obtained by holding at 400°C for 0 to 10 hours and firing.

以下において本発明を〔実施例工〕ないし〔実施例4〕
に基づいて、さらに詳細に説明する。
The present invention will be described below with reference to [Example Work] to [Example 4].
This will be explained in more detail based on the following.

〔実施例1〕 無水炭酸バリウム(BaCOz 、日本化学工業製高純
度品) 68.07 g、高純度二酸化チタン(TiO
□、東邦チタニウム社製) 29.01 g、無水炭酸
ストロンチウム(SrCO,、本荘ケミカル社製)2.
68g、炭酸マンガン(Mnco3、和光純薬社製99
.9%)0゜0209 g、二酸化ケイ素(SiOz、
東芝セラミックス製 us−85) 0.1091g、
酸化アンチモン(SbJ:+、レアメタリック社製 9
9.99%試薬) 0.1058gを内径200III
Ilのアルミナ乳鉢に入れ、自動乳鉢において3時間エ
タノール(特級試薬)の存在下で湿式混合した後、その
混合物を130℃において乾燥した。その乾燥混合物を
90mmX90mmのアルミナルツボ(三菱鉱業セメン
ト類、DFA−PS99)に入れ、これを電気炉に入れ
て180°C/hの昇温速度で加熱し、1150°Cで
2時間仮焼した。
[Example 1] 68.07 g of anhydrous barium carbonate (BaCOz, high-purity product manufactured by Nihon Kagaku Kogyo), high-purity titanium dioxide (TiO
□, manufactured by Toho Titanium Co., Ltd.) 29.01 g, anhydrous strontium carbonate (SrCO, manufactured by Honjo Chemical Co., Ltd.)2.
68g, manganese carbonate (Mnco3, manufactured by Wako Pure Chemical Industries, Ltd. 99
.. 9%) 0°0209 g, silicon dioxide (SiOz,
Toshiba Ceramics us-85) 0.1091g,
Antimony oxide (SbJ:+, manufactured by Rare Metallic Co., Ltd. 9
9.99% reagent) 0.1058g to inner diameter 200III
After wet mixing in an automatic mortar for 3 hours in the presence of ethanol (special grade reagent), the mixture was dried at 130°C. The dry mixture was placed in a 90 mm x 90 mm aluminum crucible (Mitsubishi Mining Cement, DFA-PS99), placed in an electric furnace, heated at a temperature increase rate of 180°C/h, and calcined at 1150°C for 2 hours. .

その仮焼物を乳鉢で粉砕した後、自動乳鉢においてPV
A(ポリビニルアルコール)2−t%水溶液を約100
 ccとともに3時間部合し、130″Cで乾燥した。
After crushing the calcined product in a mortar, PV
About 100% A (polyvinyl alcohol) 2-t% aqueous solution
cc for 3 hours and dried at 130''C.

このようにして得られた乾燥物を乳鉢でよく粉砕し、P
VA配合の粉末を成形用成形器(12,5mm(径) 
X35am (高さ)]に入れ、1 ton /crl
の加圧下に成形し、その成形物を次の条件において焼成
した。
Thoroughly crush the dried product thus obtained in a mortar, and
A molding machine (12.5 mm (diameter)) for molding powder containing VA
x35am (height)], 1 ton/crl
The molded product was then fired under the following conditions.

温度範囲     昇温または降温の条件室温 〜80
0°C145°c/hの昇温800°C2時間保持 800°C〜1360°C150°C/hの昇温136
0″CI5分間保持 1360″C−1000″C360℃/hの降温100
0°C〜550°C245°C/hの降温550°C温
度コントロールの終了 室温に冷却した後、錠剤状成形物の円盤面にオーミック
性の銀電極(デグサ社製)を塗布し、580゛Cにおい
て5分間焼付けて電極を形成し、その電極上にカバー電
極(デグサ社製)を塗布し、さらに560℃において5
分間焼付けを行って、チタン酸バリウム磁器半導体の試
料を得た。
Temperature range: Conditions for heating or cooling Room temperature ~80
Temperature increase at 0°C 145°C/h 800°C Hold for 2 hours 800°C - 1360°C Temperature increase at 150°C/h 136
0″CI held for 5 minutes 1360″C-1000″C 360°C/h temperature drop 100
0°C to 550°C 245°C/h temperature drop 550°C End of temperature control After cooling to room temperature, an ohmic silver electrode (manufactured by Degussa) was applied to the disk surface of the tablet-shaped molded product, and the temperature was lowered to 580°C. Baking for 5 minutes at 560°C to form an electrode, coating the electrode with a cover electrode (manufactured by Degussa), and baking at 560°C for 5 minutes.
Baking was performed for a minute to obtain a sample of barium titanate porcelain semiconductor.

このチタン酸バリウム磁器半導体の原料の配合組成は次
のとおりであった。
The composition of the raw materials for this barium titanate ceramic semiconductor was as follows.

(Ba、、、 qsSro、 os ) TiO3+ 
O,OO05MnOz +0.005SiOz+0.0
010sb、o3 この試料の抵抗の温度変化を測定した結果、正の抵抗温
度係数を示す領域が生じる温度(キュリー点)は103
°Cであり、抵抗の立ち上がり幅は4.2桁であった。
(Ba,..., qsSro, os) TiO3+
O,OO05MnOz +0.005SiOz+0.0
010sb, o3 As a result of measuring the temperature change of the resistance of this sample, the temperature (Curie point) at which a region exhibiting a positive temperature coefficient of resistance occurs is 103
°C, and the rise width of the resistance was 4.2 digits.

このとき室温での抵抗率は14.00Ω・lであった。At this time, the resistivity at room temperature was 14.00 Ω·l.

〔実施例2〕 無水炭酸バリウム(BaC0z ) 68.05 g、
高純度二酸化チタン(TiO□) 29.00 g、無
水炭酸ストロンチウム(5rCOz) 2.68g、炭
酸マンガン(MncO:+ )0.0209 g、二酸
化ケイ素(5iOz ) 0.10908、酸化77+
モア(5bZO3) 0.1375gt−使用したこと
以外は上記実施例1と同様にしてチタン酸バリウム磁器
半導体の試料を得た。
[Example 2] Anhydrous barium carbonate (BaC0z) 68.05 g,
High purity titanium dioxide (TiO□) 29.00 g, anhydrous strontium carbonate (5rCOz) 2.68g, manganese carbonate (MncO:+) 0.0209 g, silicon dioxide (5iOz) 0.10908, oxidation 77+
A barium titanate ceramic semiconductor sample was obtained in the same manner as in Example 1 above, except that 0.1375 gt of Moa (5bZO3) was used.

このチタン酸バリウム磁器半導体の原料の配合組成は次
のとおりである。
The composition of the raw materials for this barium titanate ceramic semiconductor is as follows.

(Baa、 qssro、 as ) TiO3+0.
0005MnO2+0.005SiO2十0.0013
SbzO3 この試料の抵抗の温度変化を測定した結果、正の抵抗温
度係数を示す領域が生じる温度(キュリー点)は105
℃であり、抵抗の立ち上がり幅は3.5桁であった。こ
のとき室温での抵抗率は4.94Ω・1であった。
(Baa, qssro, as) TiO3+0.
0005MnO2 + 0.005SiO2 0.0013
SbzO3 As a result of measuring temperature changes in the resistance of this sample, the temperature at which a region exhibiting a positive temperature coefficient of resistance occurs (Curie point) is 105
℃, and the resistance rise width was 3.5 digits. At this time, the resistivity at room temperature was 4.94Ω·1.

〔実施例3〕 無水炭酸バリウム(BaCOx ) 69.00 g、
高純度二酸化チタン(TiO□) 29.02 g、無
水炭酸ストロンチウム(5rCO:+ ) 2.68g
、炭酸マンガン(MncOs )0.0209 g、二
酸化ケイ素(5iOz ) 0.1091g、酸化アン
チモン(sb、o、 ) 0.0741 gを使用した
こと以外は上記実施例1と同様にしてチタン酸バリウム
磁器の試料を得た。
[Example 3] Anhydrous barium carbonate (BaCOx) 69.00 g,
High purity titanium dioxide (TiO□) 29.02 g, anhydrous strontium carbonate (5rCO:+) 2.68 g
Barium titanate porcelain was prepared in the same manner as in Example 1 above, except that 0.0209 g of manganese carbonate (MncOs), 0.1091 g of silicon dioxide (5iOz), and 0.0741 g of antimony oxide (SB, O, ) were used. samples were obtained.

このチタン酸バリウム磁器の原料の配合組成は次のとお
りである。
The composition of the raw materials for this barium titanate porcelain is as follows.

(Bao、 qsSro、 as ) TiO:+ +
 O,OO05MnOz +〇、 005SiOz+O
,0O07Sb202 この試料の室温での抵抗率は、3.4 XIO’Ω・l
であったが、半導体とならず、上記諸特性の測定は不可
能であった。
(Bao, qsSro, as) TiO: + +
O, OO05MnOz +〇, 005SiOz+O
,0O07Sb202 The resistivity of this sample at room temperature is 3.4 XIO'Ω・l
However, it did not become a semiconductor, and it was impossible to measure the above characteristics.

〔実施例4] 無水炭酸バリウム(BaC03) 68.04 g、高
純度二酸化チタン(Ti0z ) 29.00 g、無
水炭酸ストロンチウム(SrCO3) 2.68g、炭
酸マンガン(MncOz )0.0209 g、二酸化
ケイ素(5iOz ) 0.1090g、酸化アンチモ
ン(5b2o、 ) 0.1587gを使用したこと以
外は上記実施例1と同様にしてチタン酸バリウム磁器の
試料を得た。
[Example 4] Anhydrous barium carbonate (BaC03) 68.04 g, high purity titanium dioxide (Ti0z) 29.00 g, anhydrous strontium carbonate (SrCO3) 2.68 g, manganese carbonate (MncOz) 0.0209 g, silicon dioxide A sample of barium titanate porcelain was obtained in the same manner as in Example 1 above, except that 0.1090 g of (5 iOz) and 0.1587 g of antimony oxide (5b2O, ) were used.

このチタン酸バリウム磁器の原料の配合組成は次のとお
りである。
The composition of the raw materials for this barium titanate porcelain is as follows.

(Baa、 9SsrO,os) TiO3+ 0.0
005MnOz + 0.005SiOz+0.001
5SbzO+ この試料は絶縁体化して半導体とならず、上記諸特性の
測定は不可能であった。
(Baa, 9SsrO,os) TiO3+ 0.0
005MnOz + 0.005SiOz+0.001
5SbzO+ This sample became an insulator and did not become a semiconductor, so it was impossible to measure the above characteristics.

以上より、〔実施例1〕ないし〔実施例4]の結果を整
理すると、第1表に示すようになる。第1表から明らか
なように、半導体化剤として、チタン酸バリウム基体組
成物に対して酸化アンチモン(5bzOs’)を使用す
ることによって、室温における抵抗率を非常に小さくす
ることができる。また、上記チタン酸バリウム磁器半導
体の5b20a添加量依存性(〔実施例1]ないし〔実
施例3〕の各試料の特性に対応する)は、第1図に示す
ようになる。即ち、第1図に示すように、チタン酸バリ
ウム磁器半導体の5bzOz添加量が0.075モル%
よりも小さいか、または0.14モル%よりも大きい場
合、室温における抵抗率(比抵抗)は大きくなってしま
う。よって、5bzOzの添加量は、好ましくは、0.
075モル%〜0.14モル%の範囲であることがわか
る。
From the above, the results of [Example 1] to [Example 4] are summarized as shown in Table 1. As is clear from Table 1, by using antimony oxide (5bzOs') as a semiconducting agent for the barium titanate base composition, the resistivity at room temperature can be made very low. Further, the dependence of the 5b20a addition amount of the barium titanate ceramic semiconductor (corresponding to the characteristics of each sample of [Example 1] to [Example 3]) is shown in FIG. That is, as shown in FIG. 1, the amount of 5bzOz added to the barium titanate ceramic semiconductor is 0.075 mol%.
or greater than 0.14 mol%, the resistivity (specific resistance) at room temperature will become large. Therefore, the amount of 5bzOz added is preferably 0.
It can be seen that the content ranges from 0.075 mol% to 0.14 mol%.

二こで、原料の配合組成の異なる上記各種チタン酸バリ
ウム磁器半導体の試料の諸物性の測定方法を以下に説明
する。
Now, methods for measuring various physical properties of samples of the above-mentioned barium titanate ceramic semiconductors having different compositions of raw materials will be explained below.

(1)キュリー点の測定 チタン酸バリウム磁器半導体の試料を測定用の試料ホル
ダーに取り付け、測定槽(MINI−5IIBZERO
にC−810P  タバイ ニスペック■製)内に装着
して、−50°Cから190℃までの温度変化に対する
試料の電気抵抗の変化を直流抵抗計(マルチメーター3
478A Y HP製)を用いて測定した。
(1) Measurement of Curie point Attach the barium titanate porcelain semiconductor sample to the measurement sample holder, and place it in the measurement tank (MINI-5IIBZERO
C-810P (manufactured by Nisspec ■) in a DC resistance meter (Multimeter 3
478A (manufactured by HP).

測定により得られた電気抵抗−温度のプロットより、抵
抗値が室温における抵抗値の2倍になるときの温度をキ
ュリー点とした。
From the electrical resistance-temperature plot obtained by measurement, the temperature at which the resistance value becomes twice the resistance value at room temperature was defined as the Curie point.

(2)室温抵抗率の測定 チタン酸バリウム磁器半導体の試料を25°Cの測定槽
において、直流抵抗計(マルチメーター3478AYH
P製)を用いて電気抵抗値を測定した。
(2) Measurement of room temperature resistivity A barium titanate porcelain semiconductor sample was placed in a measurement tank at 25°C using a DC resistance meter (multimeter 3478AYH).
The electrical resistance value was measured using a commercially available product (manufactured by P.P.).

チタン酸バリウム磁器半導体の試料の調製において、電
極塗布前に試料の大きさ(径および厚さ)を測定してお
き、次式により比抵抗(ρ)を算出し、これを抵抗率と
した。
In preparing a barium titanate porcelain semiconductor sample, the size (diameter and thickness) of the sample was measured before applying the electrode, and the specific resistance (ρ) was calculated using the following formula, and this was taken as the resistivity.

ρ=R−S/l ρ: 比抵抗(抵抗率)  〔Ω・1〕R: 電気抵抗
の測定値 〔Ω〕 S: 電極の面積    (c4) t: 試料の厚さ    〔Ω〕 (3)抵抗率の立ち上がり幅の測定 キュリー点の測定の温度変化(−50℃から190”c
 >に対する試料の電気抵抗の変化の測定を、さらに2
00℃を超える温度まで続行し、その抵抗率−温度プロ
ットにおいて、キュリー点における電気抵抗の急激な立
ち上がりのときの抵抗率と、200°Cにおける抵抗率
とを比較して、その桁数の対数比を抵抗率の立ち上がり
幅とした。
ρ=R-S/l ρ: Specific resistance (resistivity) [Ω・1] R: Measured value of electrical resistance [Ω] S: Area of electrode (c4) t: Thickness of sample [Ω] (3) Measurement of rise width of resistivity Temperature change for measurement of Curie point (from -50℃ to 190"C)
>The change in electrical resistance of the sample was measured for 2 more times.
Continue until the temperature exceeds 00°C, and in the resistivity-temperature plot, compare the resistivity at the sudden rise in electrical resistance at the Curie point with the resistivity at 200°C, and calculate the logarithm of the number of digits. The ratio was taken as the rise width of resistivity.

なお、本発明に係るチタン酸バリウム磁器半導体は、室
温において抵抗率が小さいので、電流容量の小さい回路
における低抵抗PTC素子として使用することができ、
例えば温度ヒユーズスイッチング電源のコンパレータと
しても使用することができる。本発明に係るチタン酸バ
リウム磁器半導体は、上記以外に、電解コンデンサーの
保護回路、カラーTV自動消磁装置、自動車等のモータ
起動装置、電子機器の過熱防止装置、遅延素子、タイマ
、液面計、無接点スイッチ、リレー接点保護装置などに
利用することができる。
In addition, since the barium titanate ceramic semiconductor according to the present invention has a low resistivity at room temperature, it can be used as a low resistance PTC element in a circuit with a small current capacity.
For example, it can also be used as a comparator for a temperature fuse switching power supply. In addition to the above, the barium titanate ceramic semiconductor according to the present invention can be applied to electrolytic capacitor protection circuits, color TV automatic degaussing devices, motor starting devices for automobiles, overheat prevention devices for electronic equipment, delay elements, timers, liquid level gauges, etc. Can be used for non-contact switches, relay contact protection devices, etc.

(以下余白) 第1表 (以下余日) [発明の効果] 本発明に係るチタン酸バリウム磁器半導体の製造方法は
、半導体化剤として、チタン酸バリウム基体組成物に対
して0.075モル%〜0.14モル%の5bzO3を
使用する構成をなしている。
(Hereinafter in the margins) Table 1 (hereinafter in the remaining days) [Effects of the invention] The method for producing a barium titanate ceramic semiconductor according to the present invention uses 0.075 mol% of the barium titanate base composition as a semiconducting agent. The composition uses ~0.14 mol% of 5bzO3.

それゆえ、半導体化がより容易に行え、しかもキュリー
点以上の温度において正の抵抗温度係数を有すると共に
、室温での抵抗率をより小さく設定することができるの
で、電流容量の小さい回路中に対応することができる汎
用性に優れた低抵抗PTC素子を製造できるという効果
を奏する。
Therefore, it can be made into a semiconductor more easily, has a positive temperature coefficient of resistance at temperatures above the Curie point, and can be set to a smaller resistivity at room temperature, making it suitable for use in circuits with small current capacity. It is possible to manufacture a low-resistance PTC element with excellent versatility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すものであり、本発明に
係るチタン酸バリウム磁器半導体の比抵抗の酸化アンチ
モン(SbzOx )添加量依存性を示す説明図である
。 特許出願人    積水化成品工業株式会社代理人  
弁理士  原    謙
FIG. 1 shows an embodiment of the present invention, and is an explanatory diagram showing the dependence of the resistivity of a barium titanate ceramic semiconductor according to the present invention on the amount of antimony oxide (SbzOx) added. Patent applicant Sekisui Plastics Co., Ltd. Agent
Patent attorney Ken Hara

Claims (1)

【特許請求の範囲】[Claims] 1.キュリー点移動物質を含むチタン酸バリウム基体組
成物に半導体化剤を加えて焼成してなるチタン酸バリウ
ム磁器半導体の製造方法において、半導体化剤として、
チタン酸バリウム基体組成物に対して0.075モル%
〜0.14モル%のSb_2O_3を使用することを特
徴とするチタン酸バリウム磁器半導体の製造方法。
1. In a method for producing a barium titanate ceramic semiconductor by adding a semiconducting agent to a barium titanate base composition containing a Curie point transfer substance and firing the mixture, as the semiconducting agent,
0.075 mol% based on barium titanate base composition
A method for producing a barium titanate ceramic semiconductor, characterized in that ~0.14 mol% of Sb_2O_3 is used.
JP2121469A 1990-05-10 1990-05-10 Method for producing barium titanate porcelain semiconductor Expired - Fee Related JP2839932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2121469A JP2839932B2 (en) 1990-05-10 1990-05-10 Method for producing barium titanate porcelain semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2121469A JP2839932B2 (en) 1990-05-10 1990-05-10 Method for producing barium titanate porcelain semiconductor

Publications (2)

Publication Number Publication Date
JPH0417303A true JPH0417303A (en) 1992-01-22
JP2839932B2 JP2839932B2 (en) 1998-12-24

Family

ID=14811923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2121469A Expired - Fee Related JP2839932B2 (en) 1990-05-10 1990-05-10 Method for producing barium titanate porcelain semiconductor

Country Status (1)

Country Link
JP (1) JP2839932B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147292A (en) * 1974-10-18 1976-04-22 Matsushita Electric Ind Co Ltd
JPS5595673A (en) * 1978-12-27 1980-07-21 Matsushita Electric Ind Co Ltd Semiconductive ceramic material and production thereof
JPS58147004A (en) * 1982-02-25 1983-09-01 松下冷機株式会社 Method of producing semiconductor porcelain material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147292A (en) * 1974-10-18 1976-04-22 Matsushita Electric Ind Co Ltd
JPS5595673A (en) * 1978-12-27 1980-07-21 Matsushita Electric Ind Co Ltd Semiconductive ceramic material and production thereof
JPS58147004A (en) * 1982-02-25 1983-09-01 松下冷機株式会社 Method of producing semiconductor porcelain material

Also Published As

Publication number Publication date
JP2839932B2 (en) 1998-12-24

Similar Documents

Publication Publication Date Title
US6071842A (en) Barium titanate-based semiconductor ceramic
JP5988388B2 (en) Semiconductor porcelain composition and method for producing the same
JP4058140B2 (en) Barium titanate semiconductor porcelain
JPH0417303A (en) Manufacture of barium titanate porcelain semiconductor
JP2613327B2 (en) Barium titanate-based porcelain semiconductor
JP2690597B2 (en) Method for producing barium titanate porcelain semiconductor
JP4217337B2 (en) Manufacturing method of semiconductor porcelain
JPH01143202A (en) Positive temperature coefficient(ptc) thermister for moderate high temperature
JP2000264726A (en) Semiconductor porcelain
JP2595385B2 (en) Method for producing barium titanate-based porcelain semiconductor
JPS6243522B2 (en)
JP6075877B2 (en) Semiconductor porcelain composition and method for producing the same
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JP2705019B2 (en) Porcelain semiconductor composition and method for producing the same
JPH0822773B2 (en) Method for manufacturing barium titanate porcelain semiconductor
JPH07118061A (en) Barium titanate-based semiconductor porcelain composition
JP2566335B2 (en) Method for manufacturing barium titanate porcelain semiconductor
JPH03218966A (en) Production of barium titanate-based porcelain semiconductor
JP2511561B2 (en) Method for manufacturing barium titanate porcelain semiconductor
JP2613323B2 (en) Barium titanate-based porcelain semiconductor
JPH02283665A (en) Production of barium titanate porcelain semiconductor
JPH04144201A (en) Positive temperature coefficient thermistor and manufacture thereof
JPS5948521B2 (en) Method for manufacturing positive characteristic semiconductor porcelain
JPH04238860A (en) Production of barium titanate-based porcelain semiconductor
JPS63280401A (en) Semiconductor porcelain composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees