JPH0417190A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0417190A
JPH0417190A JP2119845A JP11984590A JPH0417190A JP H0417190 A JPH0417190 A JP H0417190A JP 2119845 A JP2119845 A JP 2119845A JP 11984590 A JP11984590 A JP 11984590A JP H0417190 A JPH0417190 A JP H0417190A
Authority
JP
Japan
Prior art keywords
circuit
voltage
differential amplifier
phase
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2119845A
Other languages
Japanese (ja)
Other versions
JP3102490B2 (en
Inventor
Shinichi Ikenaga
伸一 池永
Hitoshi Tanaka
均 田中
Jun Eto
潤 衛藤
Shinji Horiguchi
真志 堀口
Masakazu Aoki
正和 青木
Kiyoo Ito
清男 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi ULSI Engineering Corp
Hitachi Ltd
Original Assignee
Hitachi ULSI Engineering Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi ULSI Engineering Corp, Hitachi Ltd filed Critical Hitachi ULSI Engineering Corp
Priority to JP02119845A priority Critical patent/JP3102490B2/en
Publication of JPH0417190A publication Critical patent/JPH0417190A/en
Application granted granted Critical
Publication of JP3102490B2 publication Critical patent/JP3102490B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To attain stable operation by providing a phase compensation circuit comprising a resistor and a capacitor of series connection to an output terminal of a differential amplifier circuit of a drive circuit being a component of a voltage limiter. CONSTITUTION:A phase compensation circuit consists of not only a capacitor but also a resistor. When a capacitor and a resistor connected in series therewith is used for phase compensation, recovery phase characteristics 81, 82 as shown in figure take place, and the delay in the phase of a differential amplifier circuit AMP is recovered at a cut-off frequency fc where the gain of the gain- frequency characteristic of the entire drive circuit without feedback is the unity. In consequence, a stable operation is assured attaining 45 deg. phase margin. Thus, a stable internal voltage is received even in the presence of external power voltage fluctuation.

Description

【発明の詳細な説明】 【産業上の利用分野】 本発明は、外部電源電圧(以下電源電圧と略す)をチッ
プ内で降圧し、チップ内の微細なトランジスタに低電圧
を印加するための電圧リミッタに係り、安定な内部電源
電圧(以下内部電圧と略す)を得ることができる電圧リ
ミッタに関する。 [従来の技術] 近年、半導体集積回路の高集積化が進むにつれて、半導
体素子の微細化に伴う耐圧の低下が問題になってきた。 この問題は、半導体装置の電源電圧を下げれば解決でき
るが、これはその他の装置との電圧関係の互換性がなく
なる。そこで、外部から印加する電源電圧は、例えば従
来から広く用いられている5■としておき、それよりも
低い電圧(たとえば3.3V)の内部電圧を半導体装置
で作るという方法が提案されている。特開平11363
61は、この方法をDRAM (ダイナミック ランダ
ム アクセス メモ1月に適用した例、および電源電圧
から内部電圧を発生するための回路(電圧リミッタ)の
例について記述している。 第4図に上記従来例に掲載されている電圧リミッタの駆
動回路図を示す。図中、VRは電源電圧Vccより低い
基準電圧である。駆動回路は、電圧値がVRと同じで駆
動能力の大きい内部電圧V+、を発生する回路であり、
MOSトランジスタQ1〜Q5からなる差動増幅回路A
と、出力MO8hランジスタQ6と電流引き抜き用MO
SトランジスタQ7からなるバッファ回路Bによって構
成される。差動増幅回路Aの2個の入力端子のうち、方
にはVnが接続され、他方にはチップ内の内部電圧とな
るVLが帰還されているので、この回路は内部電圧■L
が基準電圧Vnに追随するように動作する。電圧リミッ
タの駆動能力は、出力MOSトランジスタQ6のチャネ
ル幅によって決まる。 したがって、Q6のチャネル幅を負荷の消費電流に見合
った大きさに設計しておけば、内部電圧VLを負荷回路
に供給することができる。 [発明が解決しようとする課題1 上記に示したような従来技術では、電圧リミッタの動作
の安定性について考慮されていない。以下、第4図、第
5図を用いてこれを説明する。 第4図は、」二足電圧リミッタと、これに対する負荷回
路として、DRAMを例にとり、そのチップ内の内部回
路を650pFの容量cしと常時50mA流れる電流I
+、で等価的に表わしたものである。 第5図は、第4図に示した回路の利得と位相の周波数特
性である。図中の実線は、帰還をがけないとき(開放ル
ープ)の駆動回路全体の利得、位相−周波数特性である
。破線および一点破線で示した特性は、それぞれ第4図
に示した差動増幅回路Aおよびバッファ回路Bの利得、
位相−周波数特性であり、差動増幅回路Aとバッファ回
路Bの周波数特性の和が、駆動回路全体の利得、位相周
波数特性となる。ここで、利得が1 (OdB)になる
周波数(遮断周波数)において、位相遅れが 180°にどれだけ余裕があるかを示す数値が、位相余
裕である。この例では、差動増幅回路Aとバッファ回路
Bの利得−周波数特性の帯域の差が一桁程度しかないた
め、位相余裕は正であっても余裕が小さく(10°)、
動作が不安定になる(位相余裕が負であれば帰還増幅器
は発振する)。 一般に安定に動作するためには、位相余裕は45°以上
必要であるとされている。 電圧リミッタは、内部回路に安定な内部電圧を供給する
ことが使命であるから、発振したり動作が不安定になっ
たりしてはならない。 この問題に対する対策としては、第3図に示すごとく、
負荷回路に並列に容量Coを入れて、バッファ回路Bの
利得−周波数特性の帯域を落として位相補償する方法が
ある。しかし、この補償容量Coは、約10000pF
と大きな容量が必要となる。このときの周波数特性を第
6図に示す。 同図かられかるように、バッファ回路Bの利得周波数特
性の帯域は、位相補償する前に比べて、約−桁下がって
おり、差動増幅回路Aとバッファ回路Bの利得−周波数
特性の帯域の差を二指程度にできる。この位相補償によ
って、位相余裕を45°確保できる。 一方、第2図に示すように差動増幅回路Aの出力端子に
容量 Cpを入れて、位相補償する方法も考えられる。 しかし、上記のようなりRAMのチップ内の内部回路を
負荷とする電圧リミッタでは、やはり約10000pF
の補償容量が必要となる。第7図に、このときの利得、
位相−周波数特性を示す。しかし、第2図に示す位相補
償方法は、CFが太きいだけではなく、電源電圧の変動
に対して、チップ内の内部電圧を安定化することが難し
いことを見出した。これを第9図に示す。第9図は、第
2図の回路の高周波の電源電圧変動に対する内部電圧V
Lの変動を示す。同図から判るように、高周波の電源電
圧変動に対して、電圧リミッタから出力されるチップ内
の内部電圧vしが大きく変動する。 これは、第7図において、差動増幅回路Aの利得−周波
数特性の帯域が下がりすぎており、差動増幅回路Aが高
周波の電源電圧変動に対して追従できなくなったものと
推定される。 このように、安定な動作を保証するには、位相補償によ
って位相余裕を45°以上確保すれば良いが、このとき
の容量値は10000pF以上と非常に大きな値を必要
とするため、半導体装置内にこの容量を入れることは、
レイアウト面積の面から現実的ではない。 本発明の目的は、上記の問題点を解決し、動作の安定な
電圧リミッタを提供することにある。 【課題を解決するための手段1 上記問題を解決するため、本発明では、電圧リミッタを
構成する駆動回路の差動増幅回路の出力端子に直列接続
の抵抗と容量からなる位相補償回路を入れる。 [作用] 電圧リミッタを構成する駆動回路の差動増幅回路の出力
端子に、位相補償容量とそれに直列に抵抗をつなぐこと
で、補償容量を極めて小さくでき、しかも、電源電圧の
変動が生じても安定な内部電圧を供給できることを見出
した。これにより、電圧リミッタにおける位相補償回路
の単導体装置内への集積化を可能にできる。 [実施例] 第1図に本発明の実施例を示す。電圧リミッタを構成す
る駆動回路は、MOSトランジスタQ^〜QEからなる
差動増幅回路AMPと、出力MO81〜ランジスタQF
(チャネル幅/チャネル長=3000/1.2)と電流
引き抜き用Mo5t〜ランジスタQaからなるバッファ
回路BFによって構成される。Vcc’は電源電圧、Φ
1′は駆動回路の動作モードを制御する信号である。V
 n ’は内部電圧VL″ (V R’ と同じ電圧値
)を得るための基準電圧である。上記駆動回路の負荷回
路としては、DRAMを例にとり、内部電圧V L ’
 を電源とするDRAMチップ内の回路を容量C+、′
 (650pF)と電流源IL’  (50mA)で等
価的に表わした。Rc、Ccは位相補償用の抵抗(30
0Ω)および容量(20p F)である。 本発明の特徴は、位相補償回路を容量のみでなく抵抗を
付加して構成したことにある。 第8図は、第1図に示した回路の利得と位相の周波数特
性である。図中の実線は、帰還をかけないときの駆動回
路全体の利得、位相−周波数特性である。破線および一
点破線で示した特性は、それぞれ第1図に示した差動増
幅回路AMPとバッファ回路BFの利得、位相−周波数
特性である。 第8図に示したように、位相補償として第1図に示した
ように容量と、これに直列に接続した抵抗を入れると、
第8図中81.82で示すような位相の廻りの回復現象
が起き、帰還をかけないときの駆動回路全体の利得−周
波数特性の利得が1(OdB)となる遮断周波数fCで
、差動増幅回路AMPの位相の遅れを取り戻すことがで
き、これによって位相余裕は45°となり、安定な動作
を保証できる。このときの補償容量の値は、第2図に示
した容量のみによる補償の場合に比べ、約三桁小さくで
きるので、位相補償回路のレイアウト面積を極めて小さ
くできる。 第10図は、高周波の電源電圧変動に対する内部電圧V
 L ’の変動を示している。同図から判るように、高
周波の電源電圧変動に対しても、内部電圧V L ’の
電圧変動はほとんど生じない。これは、第1図に示した
本発明による実施例では、第8図で示したように、差動
増幅回路AMPの利得−周波数特性の帯域を下げずに済
むために、高周波の電源電圧変動に対しても差動増幅回
路AMPが追従できるためとみることができる。 以上述べたように、差動増幅回路AMPの出力側で位相
補償する場合、位相補償容量に直列に抵抗を付加するこ
とによって、位相補償容量を約三桁小さくできる。さら
に、たとえ高周波の電源電圧変動があっても、安定な内
部電圧■し′を供給することができる。 なお、上記実施例において、Rc、Ccの値は任意でよ
いという訳ではない。すなわち、差動増幅回路AMPの
PMOSトランジスタQ^のトレインコンダクタンスを
gds^、NMO8I−ランジスタQcのトレインコン
ダクタンスをg dsc、バッファ回路の出力PMOS
トランジスタQ「のトレインコンダクタンスをg as
Fとし、それぞれrasA1 / g dsΔ、 rd
Sc= 1 / gdscs  1−dSF= 1 /
 gdsFと定義して、ras^とr dscが並列接
続となる抵抗とバッファ回路の出力PMOSトランジス
タQFのゲート容量Caによって決まる差動増幅回路の
極周波数(差動増幅回路の利得−周波数特性において、
利得が低周波数のときの値に対して、−3dB減少する
周波数)をfPよ(fP1’;1/(2π(rasAr
asc/  (rds八+へ rdsc)  )  C
c)  )  、 rd8Fと負荷容量CI、′ によ
って決まるバッファ回路の極周波数をfP、 (fP、
L:1/ (2πr、+sFc% ))、Rc、Ccの
挿入によって発生する零点周波数をfz、(fz、=1
/ (2πRcCc))、帰還をかけないときの駆動回
路全体の利得が1(OdB)となる周波数をfCとする
と、まず、第9図、第10図で説明した如く、電源電圧
(Vcc、Vcc’ )の変動に対する安定性の点から
fP2<fP□とすることが望ましい(条件I)。 また、第5図と第8図を比較すると判るように。 Rc、Ccの挿入により差動増幅回路AMPの見かけの
極周波数fP1′はfP2の近傍に移る。ここで、fP
1’<fP2となると、差動増幅回路AMPの帯域が下
がり、動作速度がバッファ回路BFよりも遅くなるので
、電源電圧の変動に対する安定性に問題が発生する。し
たがって、fP2<fP□′とすることが望ましい(条
件■)。 一方、第8図に示したように、零点周波数fz。 は位相補償後の差動増幅回路AMPの利得−周波数特性
の変極点であり、f Pl、 ’ < f Zlとなる
ので、差動増幅回路AMPの出力端子に入れたRc、C
cによる零点周波数fz工はfP2<fz□となる(条
件■′)。さらに、第8図に示した位相の廻りの回復現
象はfzlの近傍で起こるので、fC<fzlでは駆動
回路全体の利得が1(OdB)以下となる周波数で位相
補償することになり効果がない。したがって、fz□<
 f cとすることが望ましい(条件■)。 上記の条件を総合すると、それぞれの周波数の相互の関
係は、大略fP2<fz□< f cとすることが適当
であることが判る。 第8図中の差動増幅回路の特性の零点周波数fZ工での
利得は、前記のrds^とr dscとRcの並列抵抗
で決まり、Reの値の大小につれて増減する。 一方、差動増幅器の見かけの極周波数fP□″は、ra
s^とr asCの並列抵抗とCc十Caで決まり(f
P、’ 弁1/ (2π(rdsAr、+sc/ (r
as^+rasc))(C,c+ca))) 、Ccが
増えると低くなる。 今、ある適当なfz、を決めるとき、Rcをあまり小さ
くしすぎると、Ccは大きくなってしまい、fP、’<
fP2となって、上記の条件■を満足できなくなる。し
たがって、RcはfP□′をなるべくfP、よりも大き
くできるような値にすることが望ましい。 なお、バッファ回路の極周波数fP2は、第1図に示し
た本発明の実施例では上記のように(rdsF E 1
 / g dsFとすると、fP、弁1/(2πr d
sFCL’ )) 、PMO3トランジスタQFのドレ
インコンダクタンスg asFと負荷容量CL ’ に
よって決まる(第1図中のNMO8I−ランジスタQc
のインピーダンスはPMOSトランジスタQFのインピ
ーダンスに比べて充分高い)が、一般的には、バッファ
回路の出力インピーダンスX2と負荷容量CL’の積で
与えられる。 ここで、第1図の位相補償回路に用いた容量について説
明する。これらの容量としては、静電容量がかなり大き
く、しかも電圧依存性の小さいものが必要である。 第11図(a)に通常のCMOSプロセスでこれを実現
する一方法を示す。図中、1はP型半導体基板、2はN
型ウェル、3はN十拡散層、4はアイソレーション用の
SiO2,5はゲート絶縁膜、6はゲート電極である。 容量は、通常のMO8容量と同じように、ゲート絶縁膜
5をはさんで、ゲート電極6と基板表面との間に形成さ
れる。容量絶縁膜として薄いゲート絶縁膜を用いている
ために、比較的小面積で大きな静電容量が得られるのが
特徴である。ただし、MO8容量と異なる点は、ゲート
電極下にNウェルがあるために、しきい値電圧が負であ
ることである。 これを第11図(b)を用いて説明する。横軸は容量に
印加する電圧(ゲート電極側が正)、縦軸は静電容量で
ある。しきい値電圧(フラットバンド電圧)は、静電容
量が大きく変化するときの印加電圧■。であるが、V、
<Oである。したがって、ゲート電極側が正になるよう
に一方向の電圧が印加されるかぎり、その静電容量はほ
とんど一定であるという特徴がある。双方向の電圧が印
加されうる場合は、第11図(a)に示した容量を2個
用い、第11図(c)のように互いに逆方向に並列接続
すればよい。 本実施例の容量を作るのに必要な工程は、ウェル形成、
アイソレーシミン領域形成、ゲート絶縁膜形成、ゲート
電極形成、拡散層形成、および配線の各工程であるが、
これらはいずれも通常のCMOSプロセスに含まれてい
る工程である。したがって、CMOSプロセスで作られ
る半導体装置ならば、本容量を作るために特に工程を追
加する必要はない。 また、本発明を適用する半導体装置によっては、積層容
量が利用できることがある。たとえば、積層容量を半導
体基板表面上に形成するメモリセルの蓄積容量として用
いたDRAMがそうである。 このような場合は、積層容量を位相補償用容量として用
いてもよい。積層容量を用いたDRAMについては、ア
イ・イー・イー・イー・ジャーナル・オブ・ソリッド・
ステート・サーキッツ、SC第15巻、第4号、第66
1頁から第666頁、1980年8月(IEEE  J
ournal  ofSolid  5tate  C
1rcuits。 Vol、5C−22,No、3.pp、661−666
、Aug、1980)に記述されている。 【発明の効果] 以上説明したように、本発明によれば位相補償容量の値
を極めて小さくできる。さらに、外部からの電源電圧変
動があったとしても安定な内部電圧を供給できる。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a voltage for lowering an external power supply voltage (hereinafter abbreviated as power supply voltage) within a chip and applying a low voltage to minute transistors within the chip. The present invention relates to a limiter, and relates to a voltage limiter that can obtain a stable internal power supply voltage (hereinafter abbreviated as internal voltage). [Prior Art] In recent years, as semiconductor integrated circuits have become more highly integrated, a decrease in breakdown voltage due to miniaturization of semiconductor elements has become a problem. This problem can be solved by lowering the power supply voltage of the semiconductor device, but this will result in incompatibility with other devices in terms of voltage. Therefore, a method has been proposed in which the power supply voltage applied from the outside is set to, for example, the conventionally widely used 5V, and an internal voltage lower than that (for example, 3.3V) is generated by the semiconductor device. Japanese Patent Publication No. 11363
61 describes an example in which this method is applied to a DRAM (dynamic random access memo) and an example of a circuit (voltage limiter) for generating an internal voltage from a power supply voltage. Figure 4 shows the above conventional example. A drive circuit diagram of a voltage limiter published in 2008 is shown.In the figure, VR is a reference voltage lower than the power supply voltage Vcc.The drive circuit generates an internal voltage V+, which has the same voltage value as VR and has a large drive capacity. It is a circuit that
Differential amplifier circuit A consisting of MOS transistors Q1 to Q5
, output MO8h transistor Q6 and MO for current extraction.
It is constituted by a buffer circuit B consisting of an S transistor Q7. Of the two input terminals of differential amplifier circuit A, Vn is connected to one, and VL, which is the internal voltage within the chip, is fed back to the other, so this circuit maintains the internal voltage ■L.
operates so as to follow the reference voltage Vn. The driving ability of the voltage limiter is determined by the channel width of output MOS transistor Q6. Therefore, if the channel width of Q6 is designed to match the current consumption of the load, the internal voltage VL can be supplied to the load circuit. [Problem to be Solved by the Invention 1] In the prior art as shown above, stability of the operation of the voltage limiter is not considered. This will be explained below using FIGS. 4 and 5. Figure 4 shows a two-legged voltage limiter and a DRAM as an example of a load circuit for this.The internal circuit in the chip has a capacitance of 650 pF and a current of 50 mA constantly flows.
It is equivalently expressed as +. FIG. 5 shows the gain and phase frequency characteristics of the circuit shown in FIG. 4. The solid line in the figure represents the gain and phase-frequency characteristics of the entire drive circuit when no feedback is applied (open loop). The characteristics shown by the broken line and the dot-dashed line are the gain of the differential amplifier circuit A and the buffer circuit B shown in FIG. 4, respectively.
This is a phase-frequency characteristic, and the sum of the frequency characteristics of the differential amplifier circuit A and the buffer circuit B becomes the gain and phase frequency characteristic of the entire drive circuit. Here, at a frequency (cutoff frequency) at which the gain is 1 (OdB), a value indicating how much margin there is for a phase delay of 180° is the phase margin. In this example, the difference in the gain-frequency characteristic bands of differential amplifier circuit A and buffer circuit B is only about one order of magnitude, so even if the phase margin is positive, the margin is small (10°).
Operation becomes unstable (if the phase margin is negative, the feedback amplifier will oscillate). Generally, in order to operate stably, a phase margin of 45° or more is required. The voltage limiter's mission is to supply a stable internal voltage to the internal circuits, so it must not oscillate or become unstable. As a countermeasure to this problem, as shown in Figure 3,
There is a method of inserting a capacitor Co in parallel to the load circuit to lower the band of the gain-frequency characteristic of the buffer circuit B to perform phase compensation. However, this compensation capacitance Co is approximately 10,000 pF.
and a large capacity is required. The frequency characteristics at this time are shown in FIG. As can be seen from the figure, the band of the gain-frequency characteristic of buffer circuit B is lowered by about -0 orders of magnitude compared to before phase compensation, and the band of the gain-frequency characteristic of differential amplifier circuit A and buffer circuit B is lower than that before phase compensation. The difference can be as small as two fingers. With this phase compensation, a phase margin of 45° can be secured. On the other hand, as shown in FIG. 2, a method may be considered in which a capacitor Cp is inserted into the output terminal of the differential amplifier circuit A to perform phase compensation. However, in a voltage limiter like the one mentioned above whose load is the internal circuit inside the RAM chip, it is still about 10,000 pF.
compensation capacity is required. Figure 7 shows the gain at this time,
Shows phase-frequency characteristics. However, it has been found that the phase compensation method shown in FIG. 2 not only requires a large CF but also has difficulty in stabilizing the internal voltage within the chip against fluctuations in the power supply voltage. This is shown in FIG. Figure 9 shows the internal voltage V for the high frequency power supply voltage fluctuation of the circuit in Figure 2.
It shows the variation of L. As can be seen from the figure, the internal voltage v within the chip output from the voltage limiter fluctuates greatly in response to fluctuations in the high-frequency power supply voltage. This is presumed to be because the band of the gain-frequency characteristic of the differential amplifier circuit A has become too low in FIG. 7, and the differential amplifier circuit A is no longer able to follow high-frequency power supply voltage fluctuations. In this way, in order to guarantee stable operation, it is sufficient to secure a phase margin of 45 degrees or more through phase compensation, but since this requires a very large capacitance value of 10,000 pF or more, Putting this capacity into
This is not practical in terms of layout area. An object of the present invention is to solve the above problems and provide a voltage limiter with stable operation. Means for Solving the Problems 1 In order to solve the above problems, in the present invention, a phase compensation circuit consisting of a resistor and a capacitor connected in series is installed at the output terminal of the differential amplifier circuit of the drive circuit constituting the voltage limiter. [Function] By connecting a phase compensation capacitor and a resistor in series with the output terminal of the differential amplifier circuit of the drive circuit that constitutes the voltage limiter, the compensation capacitance can be made extremely small, and even when fluctuations in the power supply voltage occur, the compensation capacitance can be made extremely small. It was discovered that a stable internal voltage could be supplied. This makes it possible to integrate the phase compensation circuit in the voltage limiter into a single conductor device. [Example] FIG. 1 shows an example of the present invention. The drive circuit that constitutes the voltage limiter includes a differential amplifier circuit AMP consisting of MOS transistors Q^ to QE, and an output MO81 to transistor QF.
(Channel width/Channel length=3000/1.2) and a buffer circuit BF consisting of Mo5t for current extraction to transistor Qa. Vcc' is the power supply voltage, Φ
1' is a signal that controls the operation mode of the drive circuit. V
n' is a reference voltage for obtaining the internal voltage VL'' (same voltage value as V R'). Taking a DRAM as an example of the load circuit of the drive circuit, the internal voltage V L '
The circuit inside the DRAM chip whose power source is C+,'
(650 pF) and current source IL' (50 mA). Rc and Cc are phase compensation resistors (30
0Ω) and capacitance (20pF). A feature of the present invention is that the phase compensation circuit is configured by adding not only a capacitor but also a resistor. FIG. 8 shows the gain and phase frequency characteristics of the circuit shown in FIG. The solid line in the figure represents the gain and phase-frequency characteristics of the entire drive circuit when no feedback is applied. The characteristics shown by the broken line and the dot-dashed line are the gain and phase-frequency characteristics of the differential amplifier circuit AMP and buffer circuit BF shown in FIG. 1, respectively. As shown in Figure 8, if we include a capacitor and a resistor connected in series with it as shown in Figure 1 as phase compensation, we get
A recovery phenomenon around the phase as shown at 81.82 in Fig. 8 occurs, and the differential It is possible to recover the phase delay of the amplifier circuit AMP, thereby providing a phase margin of 45° and ensuring stable operation. The value of the compensation capacitance at this time can be reduced by about three orders of magnitude compared to the case of compensation using only capacitance as shown in FIG. 2, so the layout area of the phase compensation circuit can be made extremely small. Figure 10 shows the internal voltage V with respect to high frequency power supply voltage fluctuations.
It shows the fluctuation of L'. As can be seen from the figure, almost no voltage fluctuation occurs in the internal voltage V L ' even with high-frequency power supply voltage fluctuations. This is because, in the embodiment according to the present invention shown in FIG. 1, as shown in FIG. 8, there is no need to lower the band of the gain-frequency characteristic of the differential amplifier circuit AMP. This can be considered to be because the differential amplifier circuit AMP is able to follow the same. As described above, when phase compensation is performed on the output side of the differential amplifier circuit AMP, the phase compensation capacitance can be reduced by about three orders of magnitude by adding a resistor in series with the phase compensation capacitor. Furthermore, even if there are high-frequency power supply voltage fluctuations, a stable internal voltage can be supplied. In addition, in the above embodiment, the values of Rc and Cc are not necessarily arbitrary. That is, the train conductance of the PMOS transistor Q^ of the differential amplifier circuit AMP is gds^, the train conductance of the NMO8I-transistor Qc is gdsc, and the output PMOS of the buffer circuit is
The train conductance of transistor Q is g as
F and rasA1/g dsΔ, rd, respectively
Sc= 1/gdscs 1-dSF= 1/
Defined as gdsF, ras^ and r dsc are the pole frequency of the differential amplifier circuit determined by the resistor connected in parallel and the gate capacitance Ca of the output PMOS transistor QF of the buffer circuit (in the gain-frequency characteristics of the differential amplifier circuit,
The frequency at which the gain decreases by -3 dB with respect to the value at low frequencies) is expressed as fP (fP1'; 1/(2π(rasAr
asc/ (rds8+ to rdsc) ) C
c) ), the pole frequency of the buffer circuit determined by rd8F and load capacitance CI,' is fP, (fP,
L:1/ (2πr, +sFc%)), the zero point frequency generated by inserting Rc and Cc is expressed as fz, (fz, = 1
/ (2πRcCc)), and if fC is the frequency at which the gain of the entire drive circuit without feedback is 1 (OdB), first, as explained in Figs. 9 and 10, the power supply voltages (Vcc, Vcc ) It is desirable to set fP2<fP□ from the viewpoint of stability against fluctuations in (condition I). Also, as can be seen by comparing Figures 5 and 8. By inserting Rc and Cc, the apparent pole frequency fP1' of the differential amplifier circuit AMP moves to the vicinity of fP2. Here, fP
When 1'<fP2, the band of the differential amplifier circuit AMP decreases and the operating speed becomes slower than that of the buffer circuit BF, which causes a problem in stability against fluctuations in the power supply voltage. Therefore, it is desirable that fP2<fP□' (condition ■). On the other hand, as shown in FIG. 8, the zero point frequency fz. is the inflection point of the gain-frequency characteristic of the differential amplifier circuit AMP after phase compensation, and f Pl, '< f Zl, so Rc, C input to the output terminal of the differential amplifier circuit AMP
The zero point frequency fz due to c becomes fP2<fz□ (condition ■'). Furthermore, since the recovery phenomenon around the phase shown in Figure 8 occurs near fzl, if fC<fzl, phase compensation will be performed at a frequency where the gain of the entire drive circuit is 1 (OdB) or less, which is ineffective. . Therefore, fz□<
It is desirable to set f c (condition ■). Taking the above conditions together, it can be seen that the relationship between the respective frequencies is approximately fP2<fz□<fc. The gain at the zero point frequency fZ of the characteristics of the differential amplifier circuit shown in FIG. 8 is determined by the parallel resistances of rds^, rdsc, and Rc, and increases or decreases as the value of Re increases or decreases. On the other hand, the apparent pole frequency fP□″ of the differential amplifier is ra
Determined by the parallel resistance of s^ and r asC and Cc + Ca (f
P,' valve 1/ (2π(rdsAr, +sc/ (r
as^+rasc))(C,c+ca))) becomes lower as Cc increases. Now, when deciding on an appropriate fz, if Rc is made too small, Cc will become large, and fP,'<
fP2, and the above condition (2) cannot be satisfied. Therefore, it is desirable that Rc be set to a value that allows fP□' to be larger than fP as much as possible. In the embodiment of the present invention shown in FIG. 1, the polar frequency fP2 of the buffer circuit is determined as (rdsF E 1
/ g dsF, then fP, valve 1/(2πr d
sFCL' )) is determined by the drain conductance g asF of the PMO3 transistor QF and the load capacitance CL' (NMO8I-transistor Qc in Fig. 1).
(The impedance of the PMOS transistor QF is sufficiently higher than that of the PMOS transistor QF), but is generally given by the product of the output impedance X2 of the buffer circuit and the load capacitance CL'. Here, the capacitance used in the phase compensation circuit shown in FIG. 1 will be explained. These capacitors need to have fairly large capacitance and low voltage dependence. FIG. 11(a) shows one method for realizing this using a normal CMOS process. In the figure, 1 is a P-type semiconductor substrate, 2 is an N
3 is a type well, 3 is an N+ diffusion layer, 4 is SiO2 for isolation, 5 is a gate insulating film, and 6 is a gate electrode. The capacitor is formed between the gate electrode 6 and the substrate surface with the gate insulating film 5 in between, like a normal MO8 capacitor. Since a thin gate insulating film is used as the capacitive insulating film, a large capacitance can be obtained with a relatively small area. However, the difference from the MO8 capacitor is that the threshold voltage is negative because there is an N well under the gate electrode. This will be explained using FIG. 11(b). The horizontal axis is the voltage applied to the capacitance (positive on the gate electrode side), and the vertical axis is the capacitance. The threshold voltage (flat band voltage) is the applied voltage when the capacitance changes significantly■. However, V,
<O. Therefore, as long as a voltage is applied in one direction so that the gate electrode side is positive, the capacitance is almost constant. If a bidirectional voltage can be applied, two capacitors shown in FIG. 11(a) may be used and connected in parallel in opposite directions as shown in FIG. 11(c). The steps necessary to create the capacity of this example are well formation,
The steps of forming isolashimin region, forming gate insulating film, forming gate electrode, forming diffusion layer, and wiring,
These are all steps included in a normal CMOS process. Therefore, if the semiconductor device is manufactured using a CMOS process, there is no need to add any special steps to create this capacitance. Further, depending on the semiconductor device to which the present invention is applied, a stacked capacitor may be used. For example, a DRAM uses a stacked capacitor as a storage capacitor of a memory cell formed on the surface of a semiconductor substrate. In such a case, a laminated capacitor may be used as a phase compensation capacitor. Regarding DRAM using stacked capacitance, see IE Journal of Solid
State Circuits, SC Volume 15, No. 4, No. 66
Pages 1 to 666, August 1980 (IEEE J
internal ofSolid 5tate C
1rcuits. Vol, 5C-22, No, 3. pp, 661-666
, Aug, 1980). [Effects of the Invention] As explained above, according to the present invention, the value of the phase compensation capacitance can be made extremely small. Furthermore, a stable internal voltage can be supplied even if there are external power supply voltage fluctuations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す回路図、第2図、第3
図は従来の位相補償方法による回路図、第4図は従来例
を説明するための駆動回路図、第5図は第4図に示した
回路の利得特性図および位相−周波数特性図、第6図は
第3図に示した回路の利得特性図および位相−周波数特
性図、第7図は第2図に示した回路の利得特性図および
位相周波数特性図、第8図は第1図に示した本発明の実
施例の回路の利得特性図および位相−周波数特性図、第
9図は第2図に示した回路の高周波電源電圧変動に対す
る内部電圧の変動を示す図、第10図は第1図に示した
本発明の実施例の高周波電源電圧変動に対する内部電圧
の変動を示す図、第11図は第1図に示した位相補償容
量を通常のCMOSプロセスで実現した断面概略図およ
び上記(ト 彰 (9゛ン9ンθ 幇 1字 (’ap>rt 勧 曙 (qア)り 嚇 口Y (9″p)5) i [1! (A>苫 (A)1
Figure 1 is a circuit diagram showing one embodiment of the present invention, Figures 2 and 3 are circuit diagrams showing one embodiment of the present invention.
4 is a drive circuit diagram for explaining the conventional example, FIG. 5 is a gain characteristic diagram and a phase-frequency characteristic diagram of the circuit shown in FIG. 4, and FIG. 6 is a circuit diagram of a conventional phase compensation method. The figure shows the gain characteristic diagram and phase-frequency characteristic diagram of the circuit shown in Figure 3, Figure 7 shows the gain characteristic diagram and phase-frequency characteristic diagram of the circuit shown in Figure 2, and Figure 8 shows the diagram of the circuit shown in Figure 1. FIG. 9 is a diagram showing the gain characteristic diagram and phase-frequency characteristic diagram of the circuit according to the embodiment of the present invention, FIG. FIG. 11 is a cross-sectional schematic diagram of the phase compensation capacitor shown in FIG. 1 realized by a normal CMOS process, and the above ( Toaki (9 ゛ ん 9 θ 幇 1 character ('ap>rt invitation (qa) ri threatening mouth Y (9″p) 5) i [1! (A>Tom (A) 1

Claims (1)

【特許請求の範囲】 1、基準電圧が一方の入力となって他方の入力との間の
差の電圧を増幅する差動増幅回路と、この差動増幅回路
の出力により制御されて内部電源電圧を出力し、この内
部電源電圧を前記差動増幅回路の他方の入力としてフィ
ードバックするバッファ回路からなる駆動回路を内蔵す
る半導体装置において、上記差動増幅回路の出力端子に
抵抗、容量の直列接続からなる回路が付加されているこ
とを特徴とする半導体装置。 2、特許請求の範囲第1項記載の半導体装置において、
上記バッファ回路の出力インピーダンスによって決まる
極周波数をf_P_2、抵抗と容量の直列接続からなる
回路の零点周波数をf_Z_1、駆動回路全体の利得が
1となる周波数をf_Cとすると、f_P_2<f_Z
_1<f_Cとなることを特徴とする半導体装置。
[Claims] 1. A differential amplifier circuit that amplifies the voltage difference between one input of the reference voltage and the other input, and an internal power supply voltage controlled by the output of this differential amplifier circuit. In a semiconductor device having a built-in drive circuit consisting of a buffer circuit that outputs an internal power supply voltage and feeds back this internal power supply voltage as the other input of the differential amplifier circuit, the output terminal of the differential amplifier circuit is connected from a series connection of a resistor and a capacitor. A semiconductor device characterized in that a circuit is added thereto. 2. In the semiconductor device according to claim 1,
If the pole frequency determined by the output impedance of the buffer circuit described above is f_P_2, the zero point frequency of the circuit consisting of a series connection of a resistor and a capacitor is f_Z_1, and the frequency at which the gain of the entire drive circuit is 1 is f_C, f_P_2<f_Z.
A semiconductor device characterized in that _1<f_C.
JP02119845A 1990-05-11 1990-05-11 Semiconductor device Expired - Fee Related JP3102490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02119845A JP3102490B2 (en) 1990-05-11 1990-05-11 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02119845A JP3102490B2 (en) 1990-05-11 1990-05-11 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH0417190A true JPH0417190A (en) 1992-01-21
JP3102490B2 JP3102490B2 (en) 2000-10-23

Family

ID=14771691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02119845A Expired - Fee Related JP3102490B2 (en) 1990-05-11 1990-05-11 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3102490B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4333767A1 (en) * 1992-10-12 1994-04-14 Mitsubishi Electric Corp Stabilised voltage generating circuit with comparator - adjusts current magnitude flowing from voltage supply mode to output mode in response to voltage comparison
JP2002232243A (en) * 2001-02-01 2002-08-16 Hitachi Ltd Semiconductor integrated circuit device
US7208924B2 (en) 2002-06-20 2007-04-24 Renesas Technology Corporation Semiconductor integrated circuit device
JP2009088586A (en) * 2007-09-27 2009-04-23 Tdk Corp Amplifier circuit and optical pickup equipped with same
JP2009088584A (en) * 2007-09-27 2009-04-23 Tdk Corp Amplifier circuit and optical pickup having the same
JP2009225096A (en) * 2008-03-17 2009-10-01 Tdk Corp Photocurrent-voltage conversion circuit
CN113917970A (en) * 2021-09-24 2022-01-11 西安博瑞集信电子科技有限公司 Output buffer circuit, voltage-stabilizing active bias circuit and active bias circuit

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4333767A1 (en) * 1992-10-12 1994-04-14 Mitsubishi Electric Corp Stabilised voltage generating circuit with comparator - adjusts current magnitude flowing from voltage supply mode to output mode in response to voltage comparison
JPH06124590A (en) * 1992-10-12 1994-05-06 Mitsubishi Electric Corp Reference voltage generating circuit and internal stepdown circuit
JP2002232243A (en) * 2001-02-01 2002-08-16 Hitachi Ltd Semiconductor integrated circuit device
US7208924B2 (en) 2002-06-20 2007-04-24 Renesas Technology Corporation Semiconductor integrated circuit device
US7320482B2 (en) 2002-06-20 2008-01-22 Hitachi Ulsi Systems Co., Ltd. Semiconductor integrated circuit device
JP2009088586A (en) * 2007-09-27 2009-04-23 Tdk Corp Amplifier circuit and optical pickup equipped with same
JP2009088584A (en) * 2007-09-27 2009-04-23 Tdk Corp Amplifier circuit and optical pickup having the same
JP4706683B2 (en) * 2007-09-27 2011-06-22 Tdk株式会社 Amplifier circuit and optical pickup provided with the same
JP2009225096A (en) * 2008-03-17 2009-10-01 Tdk Corp Photocurrent-voltage conversion circuit
CN113917970A (en) * 2021-09-24 2022-01-11 西安博瑞集信电子科技有限公司 Output buffer circuit, voltage-stabilizing active bias circuit and active bias circuit

Also Published As

Publication number Publication date
JP3102490B2 (en) 2000-10-23

Similar Documents

Publication Publication Date Title
US9577613B2 (en) Dual loop voltage regulator based on inverter amplifier and voltage regulating method thereof
TWI259346B (en) Voltage regulator
US9684324B2 (en) Voltage regulator with improved electrical properties and corresponding control method
US5557193A (en) Stabilized voltage generating circuit and internal voltage down converter and a method of generating an internal operating power supply voltage for a dynamically operating circuit
JP3120795B2 (en) Internal voltage generation circuit
US20080284395A1 (en) Low Dropout Voltage regulator
US7402985B2 (en) Dual path linear voltage regulator
US20080284394A1 (en) Low dropout voltage regulator with improved voltage controlled current source
US7564225B2 (en) Low-power voltage reference
JPH06236686A (en) Semiconductor device
US9477246B2 (en) Low dropout voltage regulator circuits
CN110320956B (en) LDO (low dropout regulator) regulating circuit without off-chip capacitor in chip
JPH0417190A (en) Semiconductor device
US10261533B2 (en) Low dropout regulator (LDO) circuit
US5889395A (en) Integrated low voltage regulator for high capacitive loads
JP2005316788A (en) Power supply circuit
JP4814747B2 (en) Constant voltage circuit
JP2004235875A (en) Timing signal generation circuit and reception circuit
JP2798020B2 (en) Semiconductor integrated circuit
JPH02245810A (en) Reference voltage generating circuit
US10812029B2 (en) Operational amplifier
CN106643925A (en) Low voltage difference linear voltage regulator circuit
US9906195B2 (en) High bandwidth amplifier
US7561479B2 (en) Semiconductor memory device having a develop reference voltage generator for sense amplifiers
CN109508063B (en) Error amplifier with feedforward compensation network

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070825

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080825

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080825

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees