JPH04170311A - Production of vitreous carbon material - Google Patents

Production of vitreous carbon material

Info

Publication number
JPH04170311A
JPH04170311A JP2296335A JP29633590A JPH04170311A JP H04170311 A JPH04170311 A JP H04170311A JP 2296335 A JP2296335 A JP 2296335A JP 29633590 A JP29633590 A JP 29633590A JP H04170311 A JPH04170311 A JP H04170311A
Authority
JP
Japan
Prior art keywords
cured
thermosetting resin
thickness
molded
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2296335A
Other languages
Japanese (ja)
Other versions
JPH0725527B2 (en
Inventor
Toshiharu Uei
上井 敏治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2296335A priority Critical patent/JPH0725527B2/en
Publication of JPH04170311A publication Critical patent/JPH04170311A/en
Publication of JPH0725527B2 publication Critical patent/JPH0725527B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To efficiently obtain a vetreous carbon material free from structural defect by alternately depositing specified porous sheets and half-cured molded plates of a thermosetting resin which acts as the precursor of vitreous carbon, hot pressing the laminated body and then calcining. CONSTITUTION:A thermosetting resin which acts as the precursor of vitreous carbon (e.g. phenolic resin) is molded into plates and subjected to primary curing at 50-100 deg.C to form half-cured molded plates of >=8mm thickness. A paper essentially comprising cellulose fiber obtd. by mixing rayon fiber containing >90% alpha-cellulose with needle-leaf tree pulp and making into paper is impregnated with a thermosetting resin, dried at 50-120 deg.C and cured to obtain half-cured porous sheets 2 of 10-300mum thickness. Then the molded plates 1 and porous sheets 2 are alternately laminated, hot pressed under 1-100kg/cm<2> pressure at 140-200 deg.C to cure the resin component, and baked at >=800 deg.C in a nonoxidative atmosphere.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、厚肉板状のガラス状カーボン材を効率よく製
造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for efficiently manufacturing a thick plate-like glassy carbon material.

[従来の技術〕 ガラス状カーボン材は極めて緻密かつ均質なガラス状の
組織構造を有する炭素質物で、自己潤滑性、ガス不透過
性、耐摩耗性、表面平滑性など通常の炭素材料に比べて
優れた緒特性を備えているため、多様な分野で工業部材
として実用されている。
[Prior art] Glassy carbon material is a carbonaceous material that has an extremely dense and homogeneous glass-like structure, and has better self-lubricating properties, gas impermeability, abrasion resistance, and surface smoothness compared to ordinary carbon materials. Because of its excellent properties, it is used as an industrial component in a variety of fields.

通常、ガラス状カーボン材は、フラン系、フェノール系
のような炭化残留率の高い熱硬化性樹脂を成形した前駆
体を焼成炭化して製造される。前記の炭化過程は固相で
進行するから、前駆体樹脂の熱分解によって多量に発生
する揮発成分を固相外に排出し、体積収縮しながら炭化
物に転化する経過を辿る。この際、熱分解ガスが円滑に
固相内から排出されずに残留すると、ボイドの発生や膨
れ、割れ等の製品不良が生じる。このような熱分解ガス
の滞留は前駆体樹脂が厚肉形態である場合に発生が顕著
となるため、3m11以上の厚肉で高品位のガラス状カ
ーボン材を製造することは困難とされてきた。
Generally, a glassy carbon material is manufactured by firing and carbonizing a molded precursor of a thermosetting resin having a high carbonization residual rate, such as a furan type or phenol type. Since the carbonization process proceeds in the solid phase, a large amount of volatile components generated by thermal decomposition of the precursor resin are discharged out of the solid phase, and the volume shrinks while converting into carbide. At this time, if the pyrolysis gas is not smoothly discharged from the solid phase and remains, product defects such as voids, blisters, and cracks will occur. Such stagnation of pyrolysis gas occurs more prominently when the precursor resin is thick-walled, so it has been considered difficult to produce high-quality glassy carbon material with a wall thickness of 3m11 or more. .

このような問題点の解消を図る手段として、例えば動物
性繊維、植物性繊維、合成繊維などのような炭化収率が
低い繊維を熱硬化性樹脂と層状に配列して板を作り、こ
れを炭化することによって肉厚31III以上のガラス
状炭素板を製造する方法が提案されている (特開昭6
3−129070号公報)。
As a means of solving these problems, fibers with low carbonization yields such as animal fibers, vegetable fibers, and synthetic fibers are arranged in layers with thermosetting resin to make a board. A method of manufacturing a glassy carbon plate with a wall thickness of 31III or more by carbonization has been proposed (Japanese Unexamined Patent Publication No. 6
3-129070).

[発明が解決しようとする課題] 特開昭63−129070号公報の方法は、焼成段階で
先ず炭化収率の低い繊維層が熱分解して連続気孔組織が
形成され、ついで熱硬化性樹脂の炭化過程で発生する熱
分解ガスが前記の連続気孔を遣って外部に排出される機
構を介してガス体を円滑に除去し、よって厚内ガラス状
炭素板の製造を可能にしたものである。
[Problems to be Solved by the Invention] In the method of JP-A-63-129070, the fiber layer with a low carbonization yield is first thermally decomposed to form a continuous pore structure in the firing stage, and then the thermosetting resin is The pyrolysis gas generated during the carbonization process is discharged to the outside using the continuous pores, and the gas body is smoothly removed, thereby making it possible to manufacture a thick glass-like carbon plate.

ところが、この機構を利用する場合には、繊維層が熱分
解するまでの低温度域で熱硬化性樹脂から発生する揮発
ガス成分を排出することができないため、焼成炭化時の
条件制御を余程厳密に調整しないと欠陥組織が現出する
難点がある8本発明の目的は、このような先行技術の問
題点を解消し、焼成炭化時における原料樹脂からのガス
排出を一層円滑に進行させて効率よく厚肉板状のガラス
状カーボン材を製造する方法を提供することにある。
However, when using this mechanism, it is not possible to exhaust the volatile gas components generated from the thermosetting resin in the low temperature range until the fiber layer thermally decomposes, so it is difficult to control the conditions during firing and carbonization. If not precisely adjusted, defective structures may appear.8 The purpose of the present invention is to solve the problems of the prior art and to facilitate the smooth discharge of gas from the raw material resin during sintering and carbonization. An object of the present invention is to provide a method for efficiently manufacturing a glassy carbon material in the form of a thick plate.

(課題を解決しようとする課題) 上記の目的を達成するための本発明によるガラス状カー
ボン材の製造方法は、ガラス状カーボンの前駆体となる
熱硬化性樹脂の半硬化成形板を、セルロース繊維を主体
とする紙に熱硬化性樹脂を含浸させて半硬化した多孔質
シートと交互に配列積層し、熱圧ブレスを施して樹脂成
分を硬化したのち非酸化性雰囲気下で800℃以上の温
度域で焼成処理することを構成上の特徴とする。
(Problems to be Solved) A method for producing a glassy carbon material according to the present invention to achieve the above-mentioned object is to convert a semi-cured molded plate of a thermosetting resin, which is a precursor of glassy carbon, into a cellulose fiber. Paper mainly composed of is impregnated with a thermosetting resin and laminated alternately with semi-cured porous sheets, heat-press pressed to harden the resin component, and then heated to a temperature of 800°C or higher in a non-oxidizing atmosphere. The structural feature is that the firing process is performed in the area.

ガラス状カーボンの前駆体となる熱硬化性樹脂は、通常
、炭素化によりガラス状カーボンに転化するものであれ
ば種類に制限はない。典型的な原料樹脂は、フェノール
系樹脂およびフラン系樹脂である。これらの熱硬化性樹
脂は初期縮合段階にある液状で使用され、モールド成形
、流し込み成形、遠心成形など適宜な成形手段により板
状に成形し、ついで50−100℃の温度範囲で一次硬
化して半硬化成形板を作成する。
The type of thermosetting resin that serves as a precursor of glassy carbon is generally not limited as long as it can be converted into glassy carbon by carbonization. Typical raw resins are phenolic resins and furan resins. These thermosetting resins are used in a liquid state in the initial condensation stage, and are formed into a plate shape by an appropriate forming method such as molding, casting, or centrifugal molding, and are then primarily cured at a temperature range of 50-100°C. Create a semi-cured molded plate.

多孔質シートの基材となるセルロース繊維を主体とする
紙は、普通のバルブ製紙やレーヨン製紙などが用いられ
る1組織としての気孔径、繊維径、気孔率等にはとくに
制約はないが、樹脂含浸した後にガス透過が可能な通気
孔が形成されることが条件となる。この条件を満たす好
適な材料としては、α−セルロース分が90%以上のレ
ーヨン繊維と針葉樹パルプと混合抄紙した紙を挙げるこ
とができる。これらの紙は、熱硬化性樹脂液あるいはこ
れをメタノール、アセトン、水などで希釈した溶液中に
浸漬して含浸処理を施す。この工程で使用する熱硬化性
樹脂は、前述したガラス状カーボンの前駆体となる熱硬
化性樹脂と同一である必要はない、しかし、できれば両
者を同一樹脂とすることが望ましい、含浸処理後の紙は
、50〜120℃の温度域で乾燥および一次硬化して半
硬化状態の多孔質シートを作成する。
Paper mainly composed of cellulose fibers, which is the base material of porous sheets, has no particular restrictions on pore size, fiber diameter, porosity, etc. as a single structure, such as ordinary valve paper manufacturing or rayon paper manufacturing, but resin The condition is that vent holes that allow gas permeation are formed after impregnation. A suitable material that satisfies this condition is paper made by mixing rayon fiber with an α-cellulose content of 90% or more and softwood pulp. These papers are impregnated by being immersed in a thermosetting resin solution or a solution prepared by diluting this with methanol, acetone, water, or the like. The thermosetting resin used in this step does not need to be the same as the thermosetting resin that is the precursor of the glassy carbon described above, but it is desirable that both be the same resin. The paper is dried and primarily cured at a temperature range of 50 to 120°C to create a semi-cured porous sheet.

ついで、第1図に示すように、作成した熱硬化性樹脂の
半硬化成形板1と半硬化状の多孔質シート2を交互に配
列積層して、熱圧プレスする。積層化の条件は、熱硬化
性樹脂の各半硬化成形板の厚さを13mm以内とし、各
多孔質シートの厚さを100〜300μ−の範囲に設定
することで、この積層条件を採ることによって10mn
+を越える厚肉のガラス状カーボン板をも容易に製造す
ることが可能となる。また、熱圧の条件は、加圧力1〜
100 kg/cm”、加熱温度140〜200℃とし
、この段階で樹脂成分を完全に硬化させる。
Next, as shown in FIG. 1, the semi-cured molded plates 1 made of the thermosetting resin and the semi-cured porous sheets 2 are alternately arranged and laminated and hot-pressed. The lamination conditions are such that the thickness of each semi-cured molded plate of thermosetting resin is within 13 mm, and the thickness of each porous sheet is set in the range of 100 to 300 μ-. by 10mn
It becomes possible to easily manufacture a glass-like carbon plate with a thickness exceeding +. In addition, the heat pressure conditions are as follows:
100 kg/cm'' and a heating temperature of 140 to 200°C, and the resin component is completely cured at this stage.

積層硬化した板状成形体は、常法に従って非酸化性雰囲
気に保持された加熱炉に移し、s o o ’c以上の
温度域に昇温させて焼成炭化処理する。焼成炭化後の材
料は、必要により更に2000℃以上の温度域で黒鉛化
処理することもできる。
The laminated and hardened plate-like molded body is transferred to a heating furnace maintained in a non-oxidizing atmosphere according to a conventional method, and is heated to a temperature range of s o o'c or higher to undergo firing carbonization treatment. The material after firing and carbonization can be further graphitized at a temperature of 2000° C. or higher, if necessary.

焼成処理により熱硬化性樹脂は完全に炭化され、全体が
一体化したガラス状カーボン成形体に転化する。
The thermosetting resin is completely carbonized by the firing process, and the whole is converted into an integrated glass-like carbon molded body.

〔作 用〕[For production]

本発明の工程によれば、ガラス状カーボンの前駆体とな
る熱硬化性樹脂の半硬化成形板とセルロース繊維を主体
とする紙に熱硬化性樹脂を含浸させて半硬化した多孔質
シートとを交互に配列積層して熱圧成形・硬化した状態
で、前記多孔質シートがガス成分を透過する通気層とし
て眉間に介在する構造となる。したがって、これを焼成
処理する段階で発生する熱分解ガスは、低温時から多孔
質シートの通気層を介して円滑かつ迅速に外部に排出す
る。
According to the process of the present invention, a semi-cured molded plate of a thermosetting resin, which is a precursor of glassy carbon, and a semi-cured porous sheet made by impregnating a paper mainly composed of cellulose fibers with a thermosetting resin are used. When the sheets are alternately arranged and laminated, hot-press molded and cured, the porous sheet becomes a structure in which the porous sheet is interposed between the eyebrows as a ventilation layer through which gas components permeate. Therefore, the pyrolysis gas generated during the firing process is smoothly and quickly discharged to the outside through the ventilation layer of the porous sheet even at low temperatures.

このような作用により、熱分解ガスが固相内に気泡とし
て滞留する現象は効果的に回避され、厚肉材料であって
もボイドや膨れの発生、組織割れなどの品質欠陥を伴う
ことのない高品位のガラス状カーボン材に転化する。
Through this action, the phenomenon in which pyrolysis gas remains as bubbles in the solid phase is effectively avoided, and even thick materials are free from quality defects such as voids, blisters, and structural cracks. Converts into high-grade glassy carbon material.

また、多孔質シート層は焼成過程で収縮しながら炭化繊
維が混在するガラス状カーボンとなり、隣接するガラス
状カーボン層と一体化した組織構造となるから全体とし
て均質なガラス状カーボン材が形成される。
In addition, the porous sheet layer shrinks during the firing process and becomes glassy carbon with carbonized fibers mixed in, forming an integrated structure with the adjacent glassy carbon layer, forming a homogeneous glassy carbon material as a whole. .

〔実施例] 以下、本発明を実施例に基づいて説明する。〔Example] Hereinafter, the present invention will be explained based on examples.

実施例1 (1)熱硬化性樹脂の半硬化成形板の作成フェノール樹
脂の初期縮合物〔住友デエレズ■製、PR940)を平
板状の成形容器に流し込み成形したのち80℃の温度で
一次硬化し、縦横250mm、厚さ4mmの半硬化成形
板を作成した。
Example 1 (1) Creation of a semi-cured molded plate of thermosetting resin An initial condensate of phenolic resin (manufactured by Sumitomo Deerez ■, PR940) was poured into a flat molded container and molded, and then primary hardened at a temperature of 80°C. A semi-cured molded plate with dimensions of 250 mm in length and width and 4 mm in thickness was prepared.

(2)半硬化状多孔質シートの作成 α−セルロース分90%以上、太さ5デニール、長さ2
5m+1117)L/−ヨン繊III C大和紡1[1
1製) 80重量部と針葉樹パルプ(NBKP) 20
重量部を湿式抄紙し、厚さ200μ腸、平均気孔径10
0μ−の紙を得た。
(2) Creation of semi-cured porous sheet α-cellulose content 90% or more, thickness 5 denier, length 2
5m+1117) L/-Yonsen III C Yamatobo 1[1
1) 80 parts by weight and softwood pulp (NBKP) 20
Wet paper is made from the weight part, with a thickness of 200μ and an average pore diameter of 10.
A 0 μ- paper was obtained.

この紙をフェノール樹脂初期縮合物〔住友デュレズ■製
、Pl?940 )の20wt%アセトン溶液中に浸漬
し、ついで100℃の温度で乾燥および一次硬化して半
硬化状の多孔質シートを作成した。
This paper is coated with a phenolic resin initial condensate [manufactured by Sumitomo Durez ■, Pl? 940) in a 20 wt % acetone solution, and then dried and primary hardened at a temperature of 100° C. to create a semi-cured porous sheet.

(3)積層成形と焼成処理 熱硬化性樹脂の半硬化成形板3枚と半硬化状の多孔質シ
ート2枚を交互に配列積層し、圧力10kg/cm”、
温度180℃、時間10分の条件で熱圧ブレスを施した
(3) Lamination molding and firing treatment Three semi-cured thermosetting resin molded plates and two semi-cured porous sheets were alternately arranged and laminated at a pressure of 10 kg/cm.
Hot pressure pressing was performed at a temperature of 180° C. for 10 minutes.

成形した一体成形体を電気焼成炉に移し、周囲をコーク
スバッキングで被包した状態で2000℃の温度で焼成
炭化処理をおこなった。
The formed integral molded body was transferred to an electric firing furnace, and fired and carbonized at a temperature of 2000° C. with the surrounding area covered with coke backing.

(4)ガラス状カーボン材の評価 このようにして製造したガラス状カーボン材10枚につ
いて焼成後の状態を調査したところ、全体の厚さ (平
均)  9. 7mm、多孔質シート層の厚さ(平均)
52μ鴎、多孔質シート層の気孔径(平均)25μ−の
厚肉板状で一体化均質組織性状を備えており、焼成時の
割れや膨れは全く認められなかった。
(4) Evaluation of glassy carbon material When the state of the 10 sheets of glassy carbon material produced in this manner after firing was investigated, the overall thickness (average) was 9. 7mm, thickness of porous sheet layer (average)
The porous sheet layer had a thick plate shape with an average pore diameter of 25 μm and an integrated homogeneous structure, and no cracks or blisters were observed during firing.

実施[2 熱硬化性樹脂の半硬化成形板6枚と半硬化状の多孔質シ
ート5枚を交互に配列積層して成形したほかは、全て実
施例1と同一のプロセスおよび条件を用いてガラス状カ
ーボン材10枚を製造した。
Implementation [2] Glass was molded using the same process and conditions as in Example 1, except that six semi-cured thermosetting resin molded plates and five semi-cured porous sheets were alternately arranged and laminated and molded. Ten pieces of shaped carbon material were manufactured.

このガラス状カーボン材は、全体の厚さ(平均)19.
5mm、多孔質シート層の厚さ(平均)51μ厘、多孔
質シート層の気孔径(平均)23μmの厚肉板状で一体
化均質組織性状を備えており、焼成時の割れや膨れは全
く認められなかった。
This glassy carbon material has a total thickness (average) of 19.
5 mm, the thickness of the porous sheet layer (average) is 51 μm, and the pore diameter of the porous sheet layer (average) is 23 μm. I was not able to admit.

比較例1 実施例1で作成した熱硬化性樹脂の半硬化成形板をその
まま3枚重ねて熱圧プレスしたほかは、全て実施例1と
同一のプロセスおよび条件でガラス状カーボン材10枚
を製造した、 このガラス状カーボン材は、全体の厚さ(平均)9.6
vgの厚肉板状であったが、100枚重に膨れ現象が認
められ、そのうち1枚には焼成亀裂が発生した。
Comparative Example 1 Ten sheets of glassy carbon material were manufactured using the same process and conditions as in Example 1, except that three semi-cured thermosetting resin molded plates made in Example 1 were stacked and hot-pressed. This glassy carbon material has a total thickness (average) of 9.6
Although it was in the form of a thick plate of Vg, a blistering phenomenon was observed in 100 sheets, and firing cracks occurred in one of them.

比較例2 実施例1による熱硬化性樹脂の半硬化成形板を7.5@
IIの厚さに作成し、これを180″Cの温度で完全に
硬化した。この成形板を電気炉に移して直接に2000
℃の温度で焼成炭化処理をおこなった。
Comparative Example 2 A semi-cured molded plate of thermosetting resin according to Example 1 was heated to 7.5@
II thickness and was completely cured at a temperature of 180"C. This molded plate was transferred to an electric furnace and directly heated to a temperature of 200"C.
Firing carbonization treatment was performed at a temperature of °C.

得られたガラス状カーボン材(10枚)は、厚さ(平均
)6.0mmの厚肉板状であったが、2枚に膨れ現象が
みられ、1枚に焼成割れが認められた。
The obtained glassy carbon materials (10 sheets) were in the form of thick plates with a thickness (average) of 6.0 mm, but bulging was observed in two sheets, and firing cracking was observed in one sheet.

比較例3 実施Nlによる熱硬化性樹脂の半硬化成形板を10m−
の厚さに作成し、これを180℃の温度で完全に硬化し
た。この成形板を電気炉に移して直接に2000℃の温
度で焼成炭化処理をおこなった。
Comparative Example 3 A semi-cured molded plate of thermosetting resin according to Nl was 10m-
This was completely cured at a temperature of 180°C. This molded plate was transferred to an electric furnace and directly subjected to firing carbonization treatment at a temperature of 2000°C.

得られたガラス状カーボン材(’l 0枚)は、厚さ〔
平均)8,0+mの厚肉板状であったが、10枚全部に
膨れ現象が発注し、うち8枚には焼成割れが認められた
The obtained glassy carbon material ('l 0 pieces) has a thickness of [
Although the sheets were thick plates with an average diameter of 8.0+ m, all 10 sheets had a blistering phenomenon, and 8 of them had cracks during firing.

[発明の効果] 以上のとおり、本発明によれば熱硬化性樹脂の成形時に
特定の多孔質シートを交互に積層介在させることによっ
て厚さ1(Igmを越える厚肉板状であっても常に組織
欠陥のない高品質のガラス状カーボン材を効率よく製造
することができる。
[Effects of the Invention] As described above, according to the present invention, by alternately interposing specific porous sheets during molding of thermosetting resin, even if the thickness is more than 1 (Igm), A high quality glassy carbon material without structural defects can be efficiently produced.

したがって、厚肉タイプが要求される用途部材の製造方
法として工業的価値が高いものである。
Therefore, this method has high industrial value as a method for manufacturing application parts that require thick walls.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による配列積層の成形状態を示した斜視
説明図である。 1・・・熱硬化性樹脂の半硬化成形板 2・・・多孔質シート 出願人  東海カーボン株式会社 代理人 弁理士 高 畑 正 也
FIG. 1 is a perspective explanatory view showing a molded state of array stacking according to the present invention. 1... Semi-cured molded plate of thermosetting resin 2... Porous sheet Applicant Tokai Carbon Co., Ltd. Agent Patent attorney Masaya Takahata

Claims (1)

【特許請求の範囲】 1、ガラス状カーボンの前駆体となる熱硬化性樹脂の半
硬化成形板を、セルロース繊維を主体とする紙に熱硬化
性樹脂を含浸させて半硬化した多孔質シートと交互に配
列積層し、熱圧プレスを施して樹脂成分を硬化したのち
非酸化性雰囲気下で800℃以上の温度域で焼成処理す
ることを特徴とするガラス状カーボン材の製造方法。 2、熱硬化性樹脂の半硬化成形板の厚さを8mm以内と
し、多孔質シートの厚さを10〜300μmの範囲に設
定する請求項1記載のガラス状カーボン材の製造方法。
[Claims] 1. A semi-cured molded plate of a thermosetting resin that is a precursor of glassy carbon is used as a porous sheet made by impregnating paper mainly made of cellulose fibers with a thermosetting resin. A method for producing a glass-like carbon material, which comprises alternately arranging and laminating the resin components, hardening the resin component by hot-pressing, and then firing the resin components in a non-oxidizing atmosphere at a temperature of 800° C. or higher. 2. The method for producing a glassy carbon material according to claim 1, wherein the thickness of the semi-cured molded thermosetting resin plate is within 8 mm, and the thickness of the porous sheet is set in the range of 10 to 300 μm.
JP2296335A 1990-11-01 1990-11-01 Method for producing glassy carbon material Expired - Lifetime JPH0725527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2296335A JPH0725527B2 (en) 1990-11-01 1990-11-01 Method for producing glassy carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2296335A JPH0725527B2 (en) 1990-11-01 1990-11-01 Method for producing glassy carbon material

Publications (2)

Publication Number Publication Date
JPH04170311A true JPH04170311A (en) 1992-06-18
JPH0725527B2 JPH0725527B2 (en) 1995-03-22

Family

ID=17832212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2296335A Expired - Lifetime JPH0725527B2 (en) 1990-11-01 1990-11-01 Method for producing glassy carbon material

Country Status (1)

Country Link
JP (1) JPH0725527B2 (en)

Also Published As

Publication number Publication date
JPH0725527B2 (en) 1995-03-22

Similar Documents

Publication Publication Date Title
KR100662159B1 (en) Fibre-reinforced ceramic body and method for producing same
US3936535A (en) Method of producing fiber-reinforced composite members
EP0335736B1 (en) Process for producing carbon/carbon composites
JP3090462B2 (en) Method for producing sheet from aqueous dispersion
CN1307045C (en) Honeycomb-shaped carbon element
JPH03150266A (en) Production of carbon/carbon composite material
JPS6042213A (en) Manufacture of carbon sheet
KR20000009035A (en) Ceramic-contained carbon-carbon composite material and process for producing the same
JPH04170311A (en) Production of vitreous carbon material
JP4947352B2 (en) Method for producing porous carbon material
US7763192B2 (en) Resin transfer molding to toughen composite beam keys
JPH04338169A (en) Production of glassy formed carbon body
USH420H (en) Co-pyrolysis process for forming carbonized composite bodies
JPH10115396A (en) Manufacture of core material for vacuum insulation structure
JPH0211546B2 (en)
JPH0520386B2 (en)
JP4080095B2 (en) Manufacturing method of thick porous carbon material
JP3975496B2 (en) Method for producing carbon fiber reinforced carbon composite material
JPH03183672A (en) Production of porous carbon material
JPH0532457A (en) Carbon fiber-reinforced carbon composite material and its production
JPS60260469A (en) Manufacture of carbon material
JPS6270215A (en) Production of molded carbon article
JPH04284363A (en) Manufacture of carbon plate
RU2345972C2 (en) Method of making carbon ceramic objects from carbon ceramic material
JPH04182307A (en) Production of vetreous carbon material