JPS6270215A - Production of molded carbon article - Google Patents

Production of molded carbon article

Info

Publication number
JPS6270215A
JPS6270215A JP60207758A JP20775885A JPS6270215A JP S6270215 A JPS6270215 A JP S6270215A JP 60207758 A JP60207758 A JP 60207758A JP 20775885 A JP20775885 A JP 20775885A JP S6270215 A JPS6270215 A JP S6270215A
Authority
JP
Japan
Prior art keywords
carbon
porosity
sheet
sheets
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60207758A
Other languages
Japanese (ja)
Other versions
JPH034508B2 (en
Inventor
Yasukado Komatsu
小松 靖門
Takeo Uemura
植村 武夫
Sadanori Kiyono
清野 定紀
Shigeru Murakami
村上 繁
Masaharu Toki
土岐 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP60207758A priority Critical patent/JPS6270215A/en
Publication of JPS6270215A publication Critical patent/JPS6270215A/en
Publication of JPH034508B2 publication Critical patent/JPH034508B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Fuel Cell (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To produce a carbon material having both high strength and different porosities, by contact bonding plural cellulose sheets impregnated with a thermosetting resin in different amounts and firing the resultant bonded sheets under specific conditions to form a composite molded carbon article having the different porosities. CONSTITUTION:Cellulose sheets having respective >=90wt% cellulosic content are impregnated with a thermosetting resin, e.g. phenolic resin, in respective different amounts. The resultant plural sheets are contact bonded and fired in a nonoxidizing atmosphere at least 600 deg.C temperature to give a molded carbon article consisting of amorphous carbon called glassy carbon or graphite and fibrous carbon having a high strength. The porosity of a layer with a low impregnation ratio is 85-20% and the porosity of a layer with a high impregnation ratio is <=15% depending on the different in the impregnation amount of the thermosetting resin. Thereby, the aimed carbon material having both high strength and different porosities is produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、炭素材料の製造方法に関するものであり、さ
らに詳しく述べるならば焼成による炭素成型体の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a carbon material, and more specifically, to a method for producing a carbon molded body by firing.

〔従来の技術〕[Conventional technology]

炭素材料は、古くから活性炭、触媒担体として使用され
、また板状のものはガス分散板、炉の断熱材、燃料電池
のセパレータ等として使用されている。
Carbon materials have long been used as activated carbon and catalyst carriers, and plate-shaped materials have been used as gas distribution plates, furnace insulation materials, fuel cell separators, and the like.

炭素材料は本来ぜい性材料であるために、実際の工業的
用途に使用するに際してはいかにして必要な強度を付与
するかが問題になる。特に、表面積を大きくとることが
必要な用途においては炭素材料部材の強度が著しく低下
する。比表面積を太き(、多孔質とした炭素材料を活性
炭、ガス分散板等と−して使用する場合には、炭素材料
は本来ぜい性材料であるため、強度が著しく低下しその
使用方法が制限されることになる。炭素材料部材を強化
するひとつの方法としてハニカム構造を採用する方法が
ある。この方法はガス流通抵抗が低いことを要求される
活性炭部材の製造に適用されるが、ハニカム構造を製作
する工程が非常に繁雑である。また、板状炭素材料部材
に溝加工をする強化方法も行なわれている。しかし、こ
の方法も炭素板を製作した後に溝加工を行なうプロセス
が一般に必要となり、工程的に有利な方法ではない。
Since carbon materials are inherently brittle materials, the problem is how to provide them with the necessary strength when used in actual industrial applications. In particular, in applications requiring a large surface area, the strength of the carbon material member is significantly reduced. When using a porous carbon material with a large specific surface area for activated carbon, gas dispersion plates, etc., the carbon material is inherently a brittle material, so its strength decreases significantly and the method of use One way to strengthen carbon material parts is to adopt a honeycomb structure.This method is applied to the production of activated carbon parts that require low gas flow resistance, but The process of manufacturing a honeycomb structure is very complicated.Also, there is a reinforcement method in which grooves are formed on a plate-shaped carbon material member.However, this method also requires a process of forming grooves after manufacturing the carbon plate. This is generally necessary and is not an advantageous method from a process standpoint.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本山願人は特願昭59−1677号および特願昭59−
3149号にてセルロースシートに充分な熱硬化性樹脂
を含浸し、成型硬化した後焼成することからなる高強度
炭素材料の製法を提案した。このようにして製造された
炭素材は高強度を有するが、気孔(オープンボア)をほ
とんどもたず、表面積が著しく小さい。よって、従来高
強度と気孔性を兼備した炭素材料の製法は従来提供され
ていなかったことに鑑み、かかる製法を提供することを
本発明の目的とする。
Motoyama Ganjin is the patent application No. 1677-1983 and the patent application No. 1983-
No. 3149 proposed a method for manufacturing a high-strength carbon material, which involves impregnating a cellulose sheet with a sufficient amount of thermosetting resin, molding it, hardening it, and then firing it. Although the carbon material produced in this manner has high strength, it has almost no pores (open pores) and has a significantly small surface area. Therefore, in view of the fact that a method for producing a carbon material that has both high strength and porosity has not been provided, it is an object of the present invention to provide such a method for producing a carbon material.

〔問題点を解決するための手段〕 本発明は、複数のセルロースシートあるいは炭素繊維原
料用有機変成繊維からなる複数のシートへ含浸量を異な
らしめて熱硬化性樹脂を含浸し、該複数のシートを圧着
した後非酸化性雰囲気中で少なくとも600℃の温度で
焼成することにより、含浸量の低い層が気孔率85〜2
0%、含浸量が高い層が気孔率15%以下の気孔率が異
なる複合炭素成型体を製造することを特徴とする。
[Means for Solving the Problems] The present invention impregnates a plurality of cellulose sheets or a plurality of sheets made of organic modified fibers for carbon fiber raw material with a thermosetting resin in different amounts, and then impregnates the plurality of sheets with a thermosetting resin in different amounts. By firing at a temperature of at least 600°C in a non-oxidizing atmosphere after pressing, the layer with a low impregnation amount has a porosity of 85 to 2.
The present invention is characterized in that it produces a composite carbon molded body having different porosity, in which the layer having a high impregnation amount has a porosity of 15% or less.

本発明に使用するセルロースシートは、アート紙等加工
されたものを除く通常の紙がいずれも使用可能であるが
、特に濾紙、クラフト紙、リンター紙等セルロース質の
含有量が90重量%以上のものが好ましい。
As the cellulose sheet used in the present invention, any ordinary paper other than processed paper such as art paper can be used, but in particular, paper with a cellulose content of 90% by weight or more such as filter paper, kraft paper, and linter paper can be used. Preferably.

また、本発明に使用する炭素繊維原料用有機繊維はポリ
アクリロニトリル、レーヨン、コールタールピッチ系の
繊維の不融化又は耐炎処理品であり、これをシート状に
加工したものを使用することができる。むろん、これら
の原料繊維をシート状にしてから不融化処理してもよい
Further, the organic fibers for carbon fiber raw materials used in the present invention are polyacrylonitrile, rayon, and coal tar pitch fibers treated to be infusible or flame-resistant, and these can be processed into sheets. Of course, these raw material fibers may be formed into a sheet and then subjected to infusibility treatment.

さらに、本発明に使用する熱硬化性樹脂は、フェノール
樹脂、フラン樹脂、ジビニルベンゼン樹脂など炭化性有
機物を主成分とする。
Furthermore, the thermosetting resin used in the present invention has a carbonizable organic substance such as a phenol resin, a furan resin, and a divinylbenzene resin as a main component.

本発明方法により製造された炭素成型体は、硬度が大き
く気密性の良い、ガラス状カーボンと呼ばれる非晶質炭
素もL <は黒鉛と強度の高い繊維状炭素とからできて
いる。
The carbon molded body produced by the method of the present invention is made of amorphous carbon called glassy carbon, which has high hardness and good airtightness, and L< is made of graphite and high-strength fibrous carbon.

また、熱硬化性樹脂の含浸量を積層体内部で板厚方向に
よって異ならしめることによって、気孔率が15%以下
の部分と、気孔率が20〜85%の部分よりなる複合炭
素板を得る。
Furthermore, by varying the amount of thermosetting resin impregnated inside the laminate in the thickness direction, a composite carbon plate is obtained that includes a portion with a porosity of 15% or less and a portion with a porosity of 20 to 85%.

〔作 用〕[For production]

炭素板全体がと記15%以下の気孔率の炭素材料のみか
らなると表面活性、通気性、多孔性が低くなり、一方上
記20%以上の炭素材のみからなると炭素板は曲げに対
して弱く、一端を持ち上げただけでヒビが入る程度弱く
構造材として実用的でないために、本発明においては1
5%以下の気孔率を有する稠蜜部分と、20〜85%以
下の気気孔率を有する多孔部分とを板厚方向に複合させ
ることとした。かかる複合炭素板の製造方法として、圧
力などの成型条件および温度雰囲気などの焼成条件を異
ならしめて各積層部を予め製造し、その後複合化する方
法も可能であろうが、単に熱硬化性樹脂の含浸量を異な
らしめるだけで複合炭素板を得ることができる点が本発
明の著しい利点である。而して、本発明はかかる利点を
達成するように構成されており、まず、樹脂として熱硬
化性樹脂を使用するのは、かかる樹脂は硬化後の炭化工
程で樹脂の流出の問題がないためであり、また炭化した
熱硬化性樹脂はガラス状を呈し、気密性が良好であるか
らである。さらに、焼成を非酸化性雰囲気中で行なうの
はセルロース、有機変成繊維もしくは熱硬化性樹脂を燃
焼させないためである。かかる非酸化性雰囲気としては
不活性ガスのみならずコークス充填材などを焼成炉内で
用いることによって目的が達成できる。焼成温度を60
0℃以上としたのは炭素化および高強度化のためである
If the entire carbon plate is made only of the carbon material with a porosity of 15% or less, the surface activity, air permeability, and porosity will be low.On the other hand, if the carbon plate is made only of the carbon material with a porosity of 20% or more, the carbon plate will be weak against bending. In the present invention, 1.
A dense portion having a porosity of 5% or less and a porous portion having a porosity of 20 to 85% are combined in the thickness direction. As a manufacturing method for such a composite carbon plate, it would be possible to manufacture each laminated part in advance using different molding conditions such as pressure and firing conditions such as temperature atmosphere, and then composite it. A significant advantage of the present invention is that composite carbon plates can be obtained simply by varying the amount of impregnation. Therefore, the present invention is configured to achieve such advantages. First, a thermosetting resin is used as the resin because such a resin does not have the problem of resin flowing out during the carbonization process after curing. This is also because the carbonized thermosetting resin has a glass-like appearance and has good airtightness. Furthermore, the reason why the firing is performed in a non-oxidizing atmosphere is to prevent the cellulose, organic modified fibers, or thermosetting resin from being burned. This purpose can be achieved by using not only an inert gas but also a coke filler or the like as the non-oxidizing atmosphere in the firing furnace. Firing temperature 60
The reason why the temperature is 0° C. or higher is for carbonization and high strength.

製品中の炭素の結晶度を高めた方が好ましい場合は、1
000℃以上加熱して黒鉛構造を発達させることができ
る。
If it is preferable to increase the crystallinity of carbon in the product, 1
A graphite structure can be developed by heating at 000°C or higher.

以下、本発明をさらに詳しく説明する。The present invention will be explained in more detail below.

本発明においては熱硬化性樹脂の含浸量をゼロとして、
焼成後気孔率が極めて高い炭素材料を含む複合炭素板を
得ることもできる。但しこの場合は樹脂含浸を行なう方
のセルロースシートもしくは変成有機繊維シートの厚さ
を相対的に厚くするかあるいは樹脂含浸量を多くするこ
とが必要である。かかる複合炭素板の用途は吸着速度の
大きい板状活性炭、電気化学用電極板等がある。以下、
特記しない限り、樹脂含浸量がゼロでない製法について
樹脂含浸量が多いセルロースシートもしくは有機変成繊
維シートをシート(A)、樹脂含浸量が少ないセルロー
スシートもしくは有機変成繊維シートをシート(B)と
表わして、説明を行なう。
In the present invention, the amount of thermosetting resin impregnated is set to zero,
It is also possible to obtain a composite carbon plate containing a carbon material with extremely high porosity after firing. However, in this case, it is necessary to relatively increase the thickness of the cellulose sheet or modified organic fiber sheet that is impregnated with resin, or to increase the amount of resin impregnated therein. Applications of such composite carbon plates include plate-shaped activated carbon with a high adsorption rate, electrode plates for electrochemistry, and the like. below,
Unless otherwise specified, for manufacturing methods in which the amount of resin impregnation is not zero, the cellulose sheet or organic modified fiber sheet with a large amount of resin impregnation is referred to as sheet (A), and the cellulose sheet or organic modified fiber sheet with a small amount of resin impregnation is referred to as sheet (B). , give an explanation.

シート(A)の含浸量は含yJ前の重量を100として
熱硬化性樹脂40〜12(l vnが好ましい。含浸量
が40部未満であると焼成後の強度が不十分となり易く
、また120部を越えると成型硬化時に樹脂が流れ出し
てしまう。焼成によって炭素残量の少いセルロース系紙
状物を使う時の樹脂量は少な目の方が焼成後の強度が高
い。
The amount of impregnation in the sheet (A) is preferably 40 to 12 (l vn) of the thermosetting resin, with the weight before yJ being 100. If the amount of impregnation is less than 40 parts, the strength after firing tends to be insufficient, and the weight before yJ is 100. If the amount of resin exceeds 100 mm, the resin will flow out when the mold hardens.When using cellulose-based paper with a small amount of residual carbon after firing, the smaller the amount of resin, the higher the strength after firing.

シート(B)の含浸量は炭素成型体の用途によって異な
るが、含浸前の重量を100として0.5〜15程度の
含浸量が最も広範囲の用途に適する。
The amount of impregnation in the sheet (B) varies depending on the use of the carbon molded product, but an amount of impregnation of about 0.5 to 15 is suitable for the widest range of uses, taking the weight before impregnation as 100.

シートCB)を作るには、低温で粘度の高い樹脂を入れ
た槽の中を紙状物をす早くくぐらせてから、しごき捧又
はロールにより余分に付着している樹脂を除くか、更に
含浸量が安定したシート(B)を得る為には、溶剤で希
釈した樹脂の中に浸積した後、一定圧一定速度でロール
を通した後、加熱乾燥することによって行なう。
To make sheet CB), the paper-like material is quickly passed through a tank containing high-viscosity resin at a low temperature, and then the excess resin is removed by ironing or rolling, or further impregnation is performed. In order to obtain a sheet (B) with a stable quantity, it is immersed in a resin diluted with a solvent, passed through a roll at a constant pressure and at a constant speed, and then heated and dried.

次にシー) (A)及びシー) (B)を加熱圧着しな
がら硬化させる。平板状複合物を成型する時は、所望の
枚数のシート(A)及びシート(B)を重ね合せこれを
平板状加熱板にはさんで、0.1〜30kg/cm”の
圧力下で樹脂の種類に適した温度条件で硬化させる。例
えば、フェノール樹脂の場合は、140〜150℃10
分間加熱し圧力をゆるめてガス抜きした後再び加圧しな
がら160℃、10〜20分間加熱して硬化し成型する
Next, C) (A) and C) (B) are cured while being heat-pressed. When molding a flat composite, the desired number of sheets (A) and (B) are stacked together, sandwiched between flat heating plates, and the resin is heated under a pressure of 0.1 to 30 kg/cm. Cure under temperature conditions suitable for the type of resin.For example, in the case of phenolic resin, 140-150℃10
After heating for a minute and releasing the pressure to degas, the product is heated at 160° C. for 10 to 20 minutes while applying pressure again to harden and mold.

シー) (A)及びシー) (B)の積層の仕方は炭素
成型体の用途による。例えば、炉の断熱壁や音響用振動
板を製作する時はABA、ガス吸着活性炭板や大表面積
電気化学的反応用電極を作る時はAB又はBABの組合
せとする。ここで積層されたそれぞれのシート(A)お
よびシート(B)の厚さも用途による。炉の断熱壁の場
合はシート(A)は0.1〜1.0 mm、シート(B
)は2〜20mm、音響用振動板の場合はシート(A)
は0゜05〜0、3 mm、シート(B)は0.5〜5
mmの範囲内の厚さが一般に採用される。また電極の場
合はシート(A)は0.3〜11、シート(B)は0.
1〜1mmの範囲内の厚さが一般に採用される。かかる
厚さは加熱圧着前の厚さであり、加熱圧着焼成後は10
〜35%の範囲で厚さが減少する。さらに上記範囲のシ
ー) (A)もしくはシート(B)の厚さを得るための
セルロースシートは必要により2枚以上のセルロースシ
ートを重ね合わせたものであってよいことは言うまでも
ない。さらに2枚以上のシートを重ね合わせたシートに
おいて、各シートの樹脂含浸量は通常同じであるが、含
浸量をシート毎に変える含浸プロセスの繁雑さを厭わな
ければ各シート毎に含浸量を変えてもよい。
The method of laminating C) (A) and C) (B) depends on the use of the carbon molded product. For example, a combination of ABA is used when making a heat insulating wall for a furnace or an acoustic diaphragm, and AB or BAB is used when making a gas adsorption activated carbon plate or an electrode for large surface area electrochemical reaction. The thickness of each of the laminated sheets (A) and (B) also depends on the application. For the insulated walls of the furnace, the sheet (A) has a thickness of 0.1 to 1.0 mm, the sheet (B
) is 2 to 20 mm, sheet (A) for acoustic diaphragm
is 0°05~0.3 mm, sheet (B) is 0.5~5
Thicknesses in the range of mm are generally employed. In the case of electrodes, the sheet (A) is 0.3 to 11, and the sheet (B) is 0.3 to 11.
Thicknesses in the range 1-1 mm are generally employed. This thickness is the thickness before thermocompression bonding, and after thermocompression baking, it is 10
The thickness decreases in the range of ~35%. Furthermore, it goes without saying that the cellulose sheet for obtaining the thickness of Sheet (A) or Sheet (B) within the above range may be a stack of two or more cellulose sheets, if necessary. Furthermore, in sheets made of two or more sheets stacked one on top of the other, the amount of resin impregnated in each sheet is usually the same, but if you do not mind the complexity of the impregnation process where the amount of impregnation is changed for each sheet, the amount of resin impregnated can be changed for each sheet. It's okay.

上述のようにして得られた熱硬化性樹脂含浸積層体をア
ルゴンガス、COガス、アルゴン+CO混合ガスなどの
非酸化性雰囲気中で焼成を行なう。
The thermosetting resin-impregnated laminate obtained as described above is fired in a non-oxidizing atmosphere such as argon gas, CO gas, or argon+CO mixed gas.

この際、積層体を耐火性板ではさんで焼成を行なうと積
層体の可燃成分の燃焼防止に一層の効果があり、また、
変形を防止できる。また、耐火性板はこれを介して焼成
中の積層体に圧力をかけ、圧力を調節することによって
炭素成型体の密度を調節する部材としても用いられる。
At this time, if the laminate is sandwiched between fire-resistant plates and fired, it will be more effective in preventing the combustible components of the laminate from burning.
Deformation can be prevented. The fireproof plate is also used as a member that applies pressure to the laminate during firing and adjusts the density of the carbon molded body by adjusting the pressure.

密度が0.3以下の著しい多孔層を形成しようとする時
は、耐火性板のは−さむ圧力がLog/cm”以下にな
るように留意しなくてはならない。さらに、耐火性板を
樹脂硬化のための加熱圧着の際の圧着板として使用して
所定圧力で圧着を行なった後に、焼成段階においては耐
火性板の圧力を加減して焼成を行なうことができる。
When attempting to form a highly porous layer with a density of 0.3 or less, care must be taken to ensure that the pressure between the fire-resistant plates is less than Log/cm. After the refractory plate is used as a press-bonding plate during heat-press bonding for hardening and press-bonding is performed at a predetermined pressure, the pressure of the refractory plate can be adjusted in the firing step.

上記方法は、平板状成型物の成型に限定されない。例え
ば、管状、らせん状、棒状、ラッパ状、など成型の型を
用意すれば多種形状の物を作ることができる。例えば、
管状断熱材を作る場合は、金属管にシート(A)及びシ
ート(B)をABAの順に巻き付けて、熱収縮フィルム
で覆って熱風を吹き付けることによりシート(A)及び
シート(B)を金属管に密着させ、60分程度保持する
ことにより成型することができる。これは、型から外し
た後、コークス粉末中などに埋めて焼成すると二重管状
成型体を得ることができる。
The above method is not limited to molding a flat plate-like molded article. For example, by preparing molds, you can make products of various shapes, such as tubes, spirals, rods, and trumpet shapes. for example,
When making a tubular insulation material, wrap sheet (A) and sheet (B) around a metal tube in the order of ABA, cover with heat shrink film, and blow hot air to wrap sheet (A) and sheet (B) into a metal tube. It can be molded by bringing it into close contact with the mold and holding it for about 60 minutes. After removing it from the mold, it can be buried in coke powder or the like and fired to obtain a double tubular molded body.

さらに、炭素成型板の用途により活性炭が必要な場合は
、焼成後、複合炭素板を水蒸気又は二酸化炭素雰囲気下
で加熱すれば、気、液吸着特性に優れた活性炭がシー1
− (B)の部分で生成される。
Furthermore, if activated carbon is required depending on the purpose of the carbon molded plate, heating the composite carbon plate in a steam or carbon dioxide atmosphere after firing will produce activated carbon with excellent gas and liquid adsorption properties.
- Generated in part (B).

本発明者の実験によると、二酸化炭素12部、水蒸気2
8部の雰囲気下で900℃60分間加熱して、シート(
B)が活性化された複合炭素板の表面活性を調べるため
、低温窒素ガス吸着によるBET法表面積と細孔容積を
測定したところ、表面積は1280m” / g 1細
孔容積は0.85 ml/ gであり、市販活性炭と同
等のものが得られた。
According to the inventor's experiments, 12 parts of carbon dioxide, 2 parts of water vapor
Heating at 900°C for 60 minutes in an atmosphere of 8 parts
In order to investigate the surface activity of the composite carbon plate with B) activated, the surface area and pore volume were measured using the BET method using low-temperature nitrogen gas adsorption, and the surface area was 1280 m"/g and the pore volume was 0.85 ml/ g, equivalent to commercially available activated carbon.

〔発明の効果〕〔Effect of the invention〕

本発明によると、気孔率が異なる複合炭素板を簡単なプ
ロセスにより製造することができ、各種用途に適合した
複合炭素板を自在に製造することが可能になる。
According to the present invention, composite carbon plates having different porosities can be manufactured by a simple process, and composite carbon plates suitable for various uses can be freely manufactured.

以下、用途別に本発明に係る複合炭素板の性能を説明す
る。
Hereinafter, the performance of the composite carbon plate according to the present invention will be explained for each application.

ABA型の複合炭素板を音響用振動板に使用すれば、曲
げ剛性が高いにもかかわらず軽量で、しかも炭素複合材
料に特有の高い内部摩擦値の故に音色の優れた特性が得
られる。
If an ABA type composite carbon plate is used as an acoustic diaphragm, it is lightweight despite having high bending rigidity, and excellent tone characteristics can be obtained due to the high internal friction value characteristic of carbon composite materials.

また、BAB型の複合炭素板を、リン酸型燃料電池に使
用する時は、シート(B)に例えば2mm巾溝をピンチ
2III11で堀ると、シート(B)がリン酸保持の機
能と反応ガスの案内溝の機能を有することになる。また
シート(A)の部分がセパレータの機能を有する。
In addition, when using a BAB type composite carbon plate in a phosphoric acid fuel cell, if a 2 mm wide groove is dug in the sheet (B) with a pinch 2III11, the sheet (B) will react with the phosphoric acid retention function. It has the function of a gas guide groove. Further, the sheet (A) portion has the function of a separator.

従来、リン酸型燃料電池のガス分散を兼ねた電極板は、
多孔質炭素板では強度が弱いので高価な炭素繊維フェル
トに溝加工を施して、リン酸担持、ガス分散を兼ねた電
極板を使用している0本発明による複合炭素板をフェル
トに接するセパレータ板として用い、これに上記のよう
に溝のある表面を賦与すれば、高価な炭素繊維不織布は
電極としての作用だけを受は持つことになり極く薄いも
ので間に合うのでその厚さを60〜75%削減し、大巾
なコスト切下げが可能になる。
Conventionally, the electrode plate that also serves as gas dispersion for phosphoric acid fuel cells is
Porous carbon plates have low strength, so an expensive carbon fiber felt is grooved to form an electrode plate that supports phosphoric acid and disperses gas.0 A separator plate in which the composite carbon plate of the present invention is in contact with the felt. If used as an electrode and provided with a grooved surface as described above, the expensive carbon fiber nonwoven fabric will only function as an electrode. % reduction, making it possible to significantly reduce costs.

また、本発明による複合板を電池の電極とすることもで
きる。この場合は反応面にB層を向け、反対面にA層を
配して、導電体兼容器壁とし、平板状、角型、円柱状な
ど所望の形状を持つ一次、二次電池を製作することがで
きる。
Moreover, the composite plate according to the present invention can also be used as an electrode for a battery. In this case, layer B is placed on the reaction surface, and layer A is placed on the opposite side to serve as a conductor and container wall, and primary and secondary batteries with the desired shape, such as flat, square, or cylindrical, are manufactured. be able to.

さらに、本発明の複合炭素板のシート(B)の部分を水
蒸気又は二酸化炭素雰囲気内で加熱することにより、気
、液吸着特性にすぐれた活性炭を生成し、該活性炭がシ
ート(A)の部分により強固に担持された材料を得るこ
とができる。
Further, by heating the sheet (B) portion of the composite carbon plate of the present invention in a steam or carbon dioxide atmosphere, activated carbon having excellent gas and liquid adsorption properties is produced, and the activated carbon is heated in the sheet (A) portion. A more firmly supported material can be obtained.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

〔実施例1〕 90 g/m”のリンター祇100重量部にフェノール
樹脂(昭和高分子層BRL−1202)を60重量部含
浸し、140℃3分間熱風乾燥してプリプレグシート(
A)を作った。次に、同質のリンター祇に上記フェノー
ル樹脂1部を5部のアセトンで希釈したものを含浸した
後、70°C2時間、100℃30分間乾燥してシー1
− (B)を作った。シート(B)の樹脂量は祇100
部に対し7部であった。
[Example 1] 100 parts by weight of 90 g/m'' linter was impregnated with 60 parts by weight of phenol resin (Showa Kobunshi Layer BRL-1202) and dried with hot air at 140°C for 3 minutes to form a prepreg sheet (
I made A). Next, a homogeneous linter was impregnated with 1 part of the above phenol resin diluted with 5 parts of acetone, and dried at 70°C for 2 hours and at 100°C for 30 minutes.
- I made (B). The amount of resin in the sheet (B) is 100
7 parts.

次にシート(A)及びシート(B)を15cmx30c
111に切り、A1枚B5枚A1枚の順に重ね合せ、金
属板にはさみ、7kg/cm”のプレス圧力下で150
℃10分、170℃15分間加熱圧着し厚さ1.2iの
硬化物を得た。これと黒鉛板にはさんで2g/cm”の
重力をかけながら、72時間かけ1100℃迄焼成した
。得られた炭素複合板は10.5cmX21cm、厚さ
0.8 R111+であり、シート(A)部及びシート
(B)部の気孔率がそれぞれ7.5%。
Next, sheet (A) and sheet (B) are 15cm x 30cm
Cut into 111 pieces, stack 1 A sheet, 5 B sheets, and 1 A sheet in that order, sandwich them between metal plates, and press under a press pressure of 7 kg/cm'' to 150 mm.
C. for 10 minutes and 170.degree. C. for 15 minutes to obtain a cured product with a thickness of 1.2i. This was sandwiched between a graphite plate and fired at 1100°C for 72 hours while applying a gravity of 2 g/cm.The obtained carbon composite plate was 10.5 cm x 21 cm, 0.8 R111+ thick, and a sheet (A ) part and the sheet (B) part each have a porosity of 7.5%.

57%であり曲げ強度780 kg/cm”弾性率22
00kg/mm”、平均密度0.95の平滑な板であっ
た。
57%, bending strength 780 kg/cm" elastic modulus 22
It was a smooth plate with a weight of 0.00 kg/mm'' and an average density of 0.95.

〔実施例2〕 プリプレグシー) (A)を8枚重ね、その両面にシー
1− (B)を10枚づつ重ね、金属プレートヒーター
にはさみ、15kg/cmzの圧力をかけながら、15
0℃10分、170℃15分加熱し圧着硬化した後、黒
鉛板にはさみ、不活性雰囲気下で96時間かけて100
0℃迄焼成した。得られた板は、曲げ強度770 kg
/cm” 、平均密度0.82.10.5cmX22c
m厚さ2.8 mmで両面が多孔質の炭素板であった。
[Example 2] 8 sheets of Prepreg Sea (A) were stacked, 10 sheets of Sea 1- (B) were stacked on both sides, and the sheets were sandwiched between metal plate heaters and heated at 15 kg/cmz while applying a pressure of 15 kg/cmz.
After heating for 10 minutes at 0°C and 15 minutes at 170°C to harden the pressure, it was sandwiched between graphite plates and heated to 100°C over 96 hours under an inert atmosphere.
It was fired to 0°C. The resulting board has a bending strength of 770 kg
/cm”, average density 0.82.10.5cmX22c
It was a carbon plate with a thickness of 2.8 mm and porous on both sides.

シート(A)部及びシート(B)部の気孔率はそれぞれ
6.9%、61%であった。
The porosity of the sheet (A) part and the sheet (B) part was 6.9% and 61%, respectively.

〔実施例3〕 フェノール樹脂(昭和高分子型BLS741)  1部
を50部のアセトンで希釈したものを300 g/m”
のクラフト紙に含浸し、ロールでしごいて余剰液を除去
した後110℃で30分熱風乾燥した。樹脂含浸量は0
.6wt%であった。これをプリプレグシート (B)
 とする。
[Example 3] Phenol resin (Showa Kobunshi type BLS741) 1 part diluted with 50 parts acetone to 300 g/m"
The mixture was impregnated into kraft paper, squeezed with a roll to remove excess liquid, and then dried with hot air at 110°C for 30 minutes. Resin impregnation amount is 0
.. It was 6wt%. This is prepreg sheet (B)
shall be.

実施例1と同一の処理をしたプリプレグシート(A)を
6枚重ねて、100 kg/ca+2の加圧下で140
℃1分間予備圧着し、その両面にプリプレグシー) (
B)を2枚づつ重ね、再び金属プレートヒーターにはさ
み5kg/cm!の加圧下で150℃、10分間、17
0℃、5分間加熱し、圧着硬化し、30cmX 30c
m厚さ2.6mmの板を得た。これを黒鉛板にはさみ、
不活性雰囲気下で950℃迄72時間かけて焼成し、2
0.5cmX 20.5cn+、厚さ1.41の複合炭
素板を得た。この複合炭素板の曲げ強度は1040kg
/m剛2であり、またシート(A)部及びシート(B)
部の気孔率は6.1%、81%であった。
Six sheets of prepreg sheets (A) treated in the same manner as in Example 1 were stacked and heated at 140 kg/ca+2 under a pressure of 100 kg/ca+2.
Pre-press for 1 minute at ℃, then apply pre-press on both sides
Stack two sheets of B) and put them on the metal plate heater again at 5kg/cm! 150°C for 10 minutes under pressure of 17
Heat at 0°C for 5 minutes, press and harden, 30cm x 30cm
A plate with a thickness of 2.6 mm was obtained. Sandwich this between graphite plates,
Baked at 950°C for 72 hours in an inert atmosphere,
A composite carbon plate having a size of 0.5 cm x 20.5 cn+ and a thickness of 1.41 mm was obtained. The bending strength of this composite carbon plate is 1040kg
/m stiffness 2, and sheet (A) part and sheet (B)
The porosity of the parts was 6.1% and 81%.

〔実施例4〕 実施例2の複合炭素板の多孔質面に深さ0.8mm、巾
21の角溝を2++u++毎に並行に表裏では直角に刻
みこれを濃リン酸液に浸し含浸した後引上げて重量変化
を測定した所60mg/co+”のリン酸を保持してい
ることがわかり、リン酸型燃料電池として良好なるリン
酸保持体であることがわかった。
[Example 4] On the porous surface of the composite carbon plate of Example 2, square grooves with a depth of 0.8 mm and a width of 21 were cut in parallel every 2++u++ and at right angles on the front and back sides, and then immersed in a concentrated phosphoric acid solution. When it was pulled up and the change in weight was measured, it was found that it retained 60 mg/co+'' of phosphoric acid, indicating that it was a good phosphoric acid retainer for use in phosphoric acid fuel cells.

〔実施例5〕 実施例3の複合炭素板のシート(B)部を活性化した後
に、10枚の複合炭素板を第1図のように並べた空気清
浄化装置を作成し、ベンゼン含有空気の浄化テストを実
施した。複合炭素板1を10mm間隙で配列し、その側
面とケース3の間に交互に15mmの間隙2をあけ、空
気の通路とした。
[Example 5] After activating the sheet (B) part of the composite carbon plate of Example 3, an air purifying device was created in which 10 composite carbon plates were arranged as shown in Figure 1, and the benzene-containing air was A purification test was conducted. Composite carbon plates 1 were arranged at intervals of 10 mm, and gaps 2 of 15 mm were alternately provided between the side surfaces and the case 3 to serve as air passages.

各複合炭素板1の活性両面によってベンゼンを50pp
r@含有する空気を流量0.15m3/minにて浄化
したところ、浄化された空気中のベンゼン濃度は10p
pmとなり、圧力低下はほとんど認められなかった。
50pp of benzene by active both sides of each composite carbon plate 1
When the air containing r@ was purified at a flow rate of 0.15m3/min, the benzene concentration in the purified air was 10p.
pm, and almost no pressure drop was observed.

このように本発明による活性化複合炭素板を用いると吸
着速度が大きく優れていることが分った。
As described above, it was found that the adsorption rate was greatly improved when the activated composite carbon plate according to the present invention was used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製法に係る複合炭素板を使用した空気
清浄化装置の概略図である。 1−複合炭素板、 2−間隙。
FIG. 1 is a schematic diagram of an air purifying device using a composite carbon plate according to the manufacturing method of the present invention. 1-Composite carbon plate, 2-Gap.

Claims (1)

【特許請求の範囲】 1、複数のセルロースシートへ含浸量を異ならしめて熱
硬化性樹脂を含浸し、該複数のセルロースシートを圧着
した後非酸化性雰囲気中で少なくとも600℃の温度で
焼成することにより、含浸量の低い層が気孔率85〜2
0%、含浸量が高い層が気孔率15%以下の気孔率が異
なる複合炭素成型体を製造することを特徴とする炭素成
型体の製造方法。 2、炭素繊維原料用有機変成繊維からなる複数のシート
へ含浸量を異ならしめて熱硬化性樹脂を含浸し、該複数
のシートを圧着した後非酸化性雰囲気中で少なくとも6
00℃の温度で焼成することにより、含浸量の低い層が
気孔率80〜20%、含浸量が高い層が気孔率15%以
下の気孔率が異なる複合炭素成型体を製造することを特
徴とする炭素成型体の製造方法。
[Scope of Claims] 1. Impregnating a plurality of cellulose sheets with a thermosetting resin in different amounts, pressing the plurality of cellulose sheets together, and then firing at a temperature of at least 600°C in a non-oxidizing atmosphere. As a result, the layer with low impregnation has a porosity of 85 to 2.
1. A method for manufacturing a carbon molded body, which comprises manufacturing a composite carbon molded body having different porosity, in which the layer having a high impregnation amount has a porosity of 15% or less. 2. After impregnating a plurality of sheets of organically modified fiber for carbon fiber raw material with a thermosetting resin in different amounts, and pressing the plurality of sheets together, at least
By firing at a temperature of 00°C, a composite carbon molded body with different porosity is produced, in which the layer with a low impregnated amount has a porosity of 80 to 20%, and the layer with a high impregnated amount has a porosity of 15% or less. A method for manufacturing a carbon molded body.
JP60207758A 1985-09-21 1985-09-21 Production of molded carbon article Granted JPS6270215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60207758A JPS6270215A (en) 1985-09-21 1985-09-21 Production of molded carbon article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60207758A JPS6270215A (en) 1985-09-21 1985-09-21 Production of molded carbon article

Publications (2)

Publication Number Publication Date
JPS6270215A true JPS6270215A (en) 1987-03-31
JPH034508B2 JPH034508B2 (en) 1991-01-23

Family

ID=16545057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60207758A Granted JPS6270215A (en) 1985-09-21 1985-09-21 Production of molded carbon article

Country Status (1)

Country Link
JP (1) JPS6270215A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01281105A (en) * 1988-04-28 1989-11-13 Showa Denko Kk Production of carbonaceous filter plate and filter pipe
JPH04164806A (en) * 1990-10-26 1992-06-10 Aomori Pref Gov Production of wood ceramics
JPH04209773A (en) * 1990-12-06 1992-07-31 Tokai Carbon Co Ltd Production of porous glass-like carbon material
JP2002302557A (en) * 2001-02-05 2002-10-18 Mitsubishi Rayon Co Ltd Wound body of resin-cured carbonaceous or porous carbonaceous sheet-like material, and method and apparatus for winding the same
JP2020049451A (en) * 2018-09-28 2020-04-02 関西熱化学株式会社 Activated carbon, and method for producing the activated carbon

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01281105A (en) * 1988-04-28 1989-11-13 Showa Denko Kk Production of carbonaceous filter plate and filter pipe
JPH04164806A (en) * 1990-10-26 1992-06-10 Aomori Pref Gov Production of wood ceramics
JPH04209773A (en) * 1990-12-06 1992-07-31 Tokai Carbon Co Ltd Production of porous glass-like carbon material
JP2002302557A (en) * 2001-02-05 2002-10-18 Mitsubishi Rayon Co Ltd Wound body of resin-cured carbonaceous or porous carbonaceous sheet-like material, and method and apparatus for winding the same
JP2020049451A (en) * 2018-09-28 2020-04-02 関西熱化学株式会社 Activated carbon, and method for producing the activated carbon

Also Published As

Publication number Publication date
JPH034508B2 (en) 1991-01-23

Similar Documents

Publication Publication Date Title
US20020175073A1 (en) Porous carbon electrode material, method fro manufacturing the same, and carbon fiber paper
EP1275162A2 (en) Conductive sheet material
JP2005297547A5 (en)
JPS6270215A (en) Production of molded carbon article
US4794043A (en) Carbon product comprising carbonaceous materials joined together, said carbon product for electrode substrate of fuel cells and process for production thereof
US4580337A (en) Process for producing electrode substrate for fuel cells
JP2007176750A (en) Porous carbon fiber sheet and method of manufacturing the same
JPH0559867B2 (en)
JP4080095B2 (en) Manufacturing method of thick porous carbon material
JPH01266223A (en) Production of anisotropic porous carbon formed product
JPS6059671A (en) Separator for fuel cell and its manufacture
JPH0360478A (en) Production of porous carbon sheet
JPH02184510A (en) Production of carbon plate
JPS62270331A (en) Carbon fiber sheet-shaped article
JPH03285873A (en) Carbon plate and production thereof
JPS645817B2 (en)
JPH0859360A (en) Production of porous carbon material
JPH0497948A (en) Porous carbon plate and its production
JP3131911B2 (en) Method for producing thick porous carbon material
JPH03105863A (en) Carbonaceous composite member of fuel cell and its manufacture
JPH04284363A (en) Manufacture of carbon plate
JPS6420132A (en) Laminate for heat insulation material and heat insulation method using same
JPH04294053A (en) Manufacture of carbon plate
JP2674317B2 (en) Porous carbon plate and method for producing the same
JP2607397B2 (en) Method for producing porous glassy carbon material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term