JPH04169856A - Semiconductor acceleration sensor - Google Patents

Semiconductor acceleration sensor

Info

Publication number
JPH04169856A
JPH04169856A JP2293618A JP29361890A JPH04169856A JP H04169856 A JPH04169856 A JP H04169856A JP 2293618 A JP2293618 A JP 2293618A JP 29361890 A JP29361890 A JP 29361890A JP H04169856 A JPH04169856 A JP H04169856A
Authority
JP
Japan
Prior art keywords
thick
thick part
thin
acceleration
walled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2293618A
Other languages
Japanese (ja)
Other versions
JP3010725B2 (en
Inventor
Yoshihisa Suzuki
鈴木 淑久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2293618A priority Critical patent/JP3010725B2/en
Publication of JPH04169856A publication Critical patent/JPH04169856A/en
Application granted granted Critical
Publication of JP3010725B2 publication Critical patent/JP3010725B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To enable the detection of three-dimensional acceleration at a high sensitivity with a small device by connecting a central thick part, a medium thick part and a medium thick part surrounding it at a specified interval and a peripheral thick part surrounding them at a specified interval with thin support parts separately. CONSTITUTION:For example, acceleration is applied in a direction (x), an inertial force works on a central thick part 5 and a medium thick part 6. As a (z) axis-wise deviation l is caused between a center of gravity G of the thick part 5 and thin support parts 9 and 11, a compression stress works on the support part 9 more with an access to a peripheral thick part 7 while a tension stress works thereon more with an access to the thick part 6. The compression stress and the tension stress work on the support part 11 in a full opposition to each other. So, a difference is determined between outputs of bridge circuits made up of strain gauges 2 and 4 as provided respectively on the support parts 9 and 11 to detect an electrical signal corresponding to acceleration working in the direction (x). Likewise, the acceleration working in the direction (y) is determined by measuring a difference of a stress working on thin support parts 8 and 10 as caused by an inertial force working on the thick part 5 with the strain gauges 1 and 3 to detect an electrical signal corresponding to the acceleration.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、三次元の加速度が検出可能な半導体加速度セ
ンサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a semiconductor acceleration sensor capable of detecting three-dimensional acceleration.

(従来の技術) 従来の半導体加速度センサとしては、例えば第5図に示
すようなものがある(特開昭63−169078号公報
参照)。ここで、第5図り)は上面図、第5図(b)は
第5図(a)におけるB−B断面図である。
(Prior Art) As a conventional semiconductor acceleration sensor, there is, for example, one shown in FIG. 5 (see Japanese Patent Laid-Open No. 169078/1983). Here, Fig. 5) is a top view, and Fig. 5(b) is a sectional view taken along line BB in Fig. 5(a).

即ち、周辺厚肉部21は、正方形の中央厚肉部20の周
囲を、この中央厚肉部20から所定の間隔22をおいて
口の字状に囲うように形成されている。中央厚肉部20
と周辺厚肉部21は、2方向表側同一平面上で薄肉支持
部23〜26によって連結支持されている。各支持部の
上には、ピエゾ抵抗4本からなる歪ゲージ群16〜19
が拡散等によって形成されていて、加速度によって生じ
る応力の)c、y、z成分を検出している。
That is, the peripheral thick wall portion 21 is formed to surround the square central thick wall portion 20 at a predetermined distance 22 from the central thick wall portion 20 in a square shape. Central thick part 20
The peripheral thick portion 21 is connected and supported by thin support portions 23 to 26 on the same plane on the front side in two directions. Above each support section, strain gauge groups 16 to 19 consisting of four piezoresistors are placed.
is formed by diffusion, etc., and the c, y, and z components of stress caused by acceleration are detected.

(発明が解決しようとする課題) しかしながら、このような従来の半導体装置度センサに
あっては、検出したい加速度が小さくなると、少なくと
も四ケ所で中央厚肉部を連結支持している薄肉支持部に
生しる応力も小さくなることから、検出の精度に限界が
あった。この検出の精度を高くするため、つまり感度を
良くするためには、検出のための変位を生じさせる慣性
力がはたらく中央厚肉部の質量を増加させて、慣性力を
増大させなければならず、その結果、加速度センサ全体
が大きくなってしまうという不都合があった。
(Problem to be Solved by the Invention) However, in such a conventional semiconductor device degree sensor, when the acceleration to be detected becomes small, the thin support part connecting and supporting the central thick part at at least four places Since the stress generated is also small, there is a limit to the accuracy of detection. In order to improve the accuracy of this detection, that is, to improve the sensitivity, it is necessary to increase the mass of the central thick part where the inertial force that causes the displacement for detection acts, thereby increasing the inertial force. As a result, there was a problem that the entire acceleration sensor became large.

本発明は上記課題に鑑みてなされたもので、小型で、し
かも感度の良好な半導体加速度センサを提供することを
目的としている。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a semiconductor acceleration sensor that is small in size and has good sensitivity.

[発明の構成] (課題を解決するための手段) 上記目的を達成するために、本発明における半導体加速
度センサは、厚肉状の中央厚肉部と、前記中央厚肉部か
ら所定の間隔をおいて該中央厚肉部を囲むように形成し
た厚肉状の中間厚肉部と、前記中間厚肉部から所定の間
隔をおいて該中間厚肉部を囲むように形成した厚肉状の
周辺厚肉部と、少くとも同一線上の二ケ所で前記中央厚
肉部を前記中間厚肉部に連結して該中央厚肉部を支持す
る薄肉状の第1の薄肉支持部と、少くとも前記同一線上
の二ケ所の第1の薄肉支持部を結ぶ直線に垂直な同一線
上の二ケ所で前記中間厚肉部を前記周辺厚内部に連結し
て該中間厚肉部を支持する薄肉状の第2の薄肉支持部と
、前記第1及び第2の薄肉支持部の上側に形成された歪
ゲージを有することを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the semiconductor acceleration sensor of the present invention includes a thick central thick portion and a predetermined interval from the central thick portion. a thick intermediate thick part formed to surround the central thick part; and a thick intermediate thick part formed to surround the intermediate thick part at a predetermined distance from the intermediate thick part. a thin-walled first thin-walled support portion that connects the central thick-walled portion to the intermediate thick-walled portion and supports the central thick-walled portion at at least two locations on the same line as the peripheral thick-walled portion; A thin-walled portion that connects the intermediate thick-walled portion to the inside of the peripheral thickness and supports the intermediate thick-walled portion at two locations on the same line perpendicular to the straight line connecting the two first thin-walled support portions on the same line. It is characterized by having a second thin support part and a strain gauge formed above the first and second thin support parts.

(作用) 本発明による半導体加速度センサによれば、加速度が作
用した場合、検出のための変位を生じさせる慣性力がは
たらく部分は、検出する三方向のうち一方向に関しては
中央厚肉部であり、該−方向に直交する他の一方向に関
しては中央厚肉部を含む中間厚肉部である。また、中央
厚肉部を連結支持する第1の薄肉支持部及び中間厚肉部
を連結支持ちる第2の薄肉支持部は、それぞれその検出
方向にある二ケ所ずつだけで済み、その二ケ所以外では
慣性力がはたらく部分は周囲と分離している。したがっ
て、これらの二方向の検出に関して、上側に歪ゲージを
形成している第1及び第2の薄肉支持部が変位し易くな
り、よって、より良好な感度が得られる。
(Function) According to the semiconductor acceleration sensor according to the present invention, when acceleration acts, the part on which the inertial force that causes the displacement for detection acts is the central thick part in one of the three detection directions. , and the other direction perpendicular to the − direction is an intermediate thick portion including the central thick portion. In addition, the first thin support part that connects and supports the central thick part and the second thin support part that connects and supports the middle thick part are only required at two locations in the detection direction, and only at two locations other than those two locations. In this case, the part where the inertial force acts is separated from the surroundings. Therefore, regarding detection in these two directions, the first and second thin supports forming the strain gauges on the upper side are easily displaced, and therefore better sensitivity can be obtained.

(実施例) 以下、本発明の実施例を図面に基づいて詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図は、本発明による半導体加速度センサの一実施例
であり、第1図像)は上面図、第1図(b)は第1図り
)におけるA−A断面図である。以下その構成から説明
する。
FIG. 1 shows an embodiment of a semiconductor acceleration sensor according to the present invention, in which the first image) is a top view, and FIG. 1(b) is a sectional view taken along the line A-A in the first image). The configuration will be explained below.

中間厚内部6が、正方形の中央厚肉部5の周囲を、この
中央厚肉部5から所定の間隔13をおいて、口の字状に
取り囲むように設けられている。
The intermediate thickness interior 6 is provided so as to surround the square central thick part 5 at a predetermined distance 13 from the central thick part 5 in a square shape.

この間隔13は、例えば電界エツチング等の異方性エツ
チングによって容易に形成される。この中央厚肉部5と
中間厚肉部6とは、第1図におけるX軸上の二ケ所で、
2方向表面同一平面上で薄肉状の第1の薄肉支持部とし
ての薄肉支持部8.10によって連結支持されている。
This spacing 13 is easily formed by anisotropic etching, such as electric field etching. The central thick portion 5 and the intermediate thick portion 6 are located at two locations on the X axis in FIG.
It is connected and supported by a thin support part 8.10, which is a thin first support part, on the same plane in two directions.

さらに周辺厚肉部7が、中間厚肉部6の周囲を、この中
間厚肉部6から所定の間隔12をおいて、口の字状に取
り囲むように設けられている。この間隔12も、前記間
隔13と同様の方法によって形成される。この中間厚肉
部6と周辺厚肉部7は、前記y軸と直交するX軸上の二
ケ所で、2方向表面同一平面上で前記薄肉支持部8.1
0と同様な第2の薄肉支持部としての薄肉支持部9,1
1によって連結支持されている。
Further, a peripheral thick wall portion 7 is provided so as to surround the middle thick wall portion 6 at a predetermined distance 12 from the middle thick wall portion 6 in a square shape. This interval 12 is also formed by the same method as the interval 13. The intermediate thick part 6 and the peripheral thick part 7 are located at two places on the X-axis perpendicular to the y-axis, and the thin support part 8.1 is located on the same plane in two directions.
Thin support parts 9, 1 as second thin support parts similar to 0
It is connected and supported by 1.

以上四ケ所の薄肉支持部8〜11の上側には、拡散等に
よって形成されたピエゾ抵抗素子である四本の歪抵抗ゲ
ージからなる歪抵抗ゲージ群1〜4が設けられ、これら
の歪抵抗ゲージ群1〜4を形成する歪抵抗ゲージは、電
気的に接続してブリッジ回路をなしている。
Above the four thin supports 8 to 11, there are provided strain resistance gauge groups 1 to 4 consisting of four strain resistance gauges which are piezoresistive elements formed by diffusion etc., and these strain resistance gauges The strain resistance gauges forming groups 1-4 are electrically connected to form a bridge circuit.

次に、上記実施例の作用を説明する。Next, the operation of the above embodiment will be explained.

本実施例による半導体加速度センサに加速度等による力
が加わると、中央厚肉部5及び中間肉厚部6に慣性力が
はたらき、薄肉支持部8〜11が変位する。この変位状
態に応して、電気信号が検出される。
When a force due to acceleration or the like is applied to the semiconductor acceleration sensor according to this embodiment, an inertial force acts on the central thick portion 5 and the intermediate thick portion 6, and the thin support portions 8 to 11 are displaced. An electrical signal is detected depending on this displacement state.

すなわち、X方向について第2図を参照して説明する。That is, the X direction will be explained with reference to FIG.

本実施例による半導体加速度センサを、該センサの周辺
厚肉部7とのみ接して支持する台座12上に設置し、例
えば正のX方向に加速度か作用した場合、中央厚肉部5
および中間厚肉部6、すなわち中間厚肉部6の内側部分
に慣性力がはたらく。ここで、中央厚肉部5の重心Gと
薄肉支持部9,11との間にはz軸方向においてずれ愛
が生している。このずれのために、該慣性力がはたらく
と、薄肉支持部9においては、周辺厚肉部7に近接する
ほど圧縮応力が作用し、反対に中間厚肉部6に近接する
ほと引張り応力が作用する。これに対して、薄肉支持部
11においては、周辺厚肉部7に近接するほど引張り応
力が作用し、中間厚肉部6に近接するほど圧縮応力が作
用する。したがって、これらの薄肉支持部9.11の各
々に設けられた歪ゲージ群2.4が形成するブリッジ回
路の出力信号の差をとることによって、X方向に作用す
る加速度に応した電気信号が検出される。
The semiconductor acceleration sensor according to this embodiment is installed on a pedestal 12 that supports only the peripheral thick walled portion 7 of the sensor, and when acceleration acts in the positive X direction, for example, the central thick walled portion 5
Inertial force acts on the intermediate thick portion 6, that is, the inner portion of the intermediate thick portion 6. Here, there is a misalignment between the center of gravity G of the central thick portion 5 and the thin support portions 9 and 11 in the z-axis direction. Due to this deviation, when the inertial force acts, compressive stress acts on the thin support portion 9 closer to the peripheral thick wall portion 7, and conversely, tensile stress acts on the thin wall support portion 9 closer to the intermediate thick wall portion 6. act. On the other hand, in the thin support portion 11, the closer it is to the peripheral thick wall portion 7, the more tensile stress acts on it, and the closer it is to the middle thick wall portion 6, the more compressive stress acts on it. Therefore, by taking the difference in the output signals of the bridge circuit formed by the strain gauge groups 2.4 provided on each of these thin-walled supports 9.11, an electrical signal corresponding to the acceleration acting in the X direction can be detected. be done.

次に、X方向について説明する。X方向についてはX方
向と同様で、加速度が作用して中央厚肉部5に慣性力が
はたらき、この慣性力により薄肉支持部8.10に作用
する応力の差をとることによって、X方向に作用する加
速度に応した電気信号が検出される。
Next, the X direction will be explained. Regarding the X direction, it is the same as the X direction; acceleration acts and inertial force acts on the central thick part 5, and by taking the difference in stress acting on the thin support part 8.10 due to this inertial force, An electrical signal corresponding to the applied acceleration is detected.

最後に、2方向について第3図及び第4図を参照して説
明する。例えば負の2方向に加速度が作用した場合、中
央厚肉部5及び中間厚肉部6に慣性力がはたらく。この
慣性力によって、四ケ所の薄肉支持部8〜11の外側す
なわち、薄肉支持部8.10においては中間厚肉部6に
近接するほど、また薄肉支持部9,11においては周辺
厚肉部7に近接するほど引張り応力が作用し、内側すな
わち、薄肉支持部8,10においては中央厚肉部5に近
接するほど、また薄肉支持部9.11においては中間厚
肉部6に近接するほど圧縮応力が作用する。ここで、薄
肉支持部8,10と薄肉支持部9.11では、はたらく
慣性力が必ずしも同じではないので、作用する応力の大
きさも同じではない。したがって、歪ゲージ群1,3の
ブリッジ回路の出力信号の平均または和、及び歪ゲージ
群2゜4のブリッジ回路の出力信号の平均または和をと
ることによって、2方向に作用する加速度に応した電気
信号が検出される。
Finally, two directions will be explained with reference to FIGS. 3 and 4. For example, when acceleration acts in two negative directions, inertial force acts on the central thick portion 5 and the intermediate thick portion 6. Due to this inertial force, the outer side of the four thin-walled supports 8 to 11, that is, the closer the thin-walled supports 8 and 10 are to the intermediate thick-walled portion 6, and the peripheral thick-walled portions Tensile stress acts on the inner side, that is, the closer the thin support parts 8 and 10 are to the central thick part 5, and the closer to the middle thick part 6 of the thin support parts 9 and 11, the more compressive stress is applied. Stress acts. Here, since the inertial force that acts on the thin support parts 8, 10 and the thin support parts 9, 11 is not necessarily the same, the magnitude of the stress that acts on them is also not the same. Therefore, by taking the average or sum of the output signals of the bridge circuits of strain gauge groups 1 and 3, and the average or sum of the output signals of the bridge circuits of strain gauge groups 2 and 4, the An electrical signal is detected.

このように本実施例による半導体加速度センサによれば
、加速度のX方向成分はy軸まゎりのねじれとして、X
方向成分はX軸まわりのねじれとして、2方向酸分は2
方向にはたらくカとして、三次元での加速度の検出を効
果的に行うことができる。
In this way, according to the semiconductor acceleration sensor according to this embodiment, the X-direction component of acceleration is expressed as a twist around the y-axis.
The direction component is the twist around the X axis, and the two-way acid content is 2
As a force acting in a direction, three-dimensional acceleration can be effectively detected.

さらに、例えば、加速度のX方向成分の検出において、
慣性力のはたらく部分を支持する薄肉支持部を、従来で
は少くとも四ケ所(第5図の薄肉支持部23〜26)必
要としていたのであるが、特に本実施例による半導体加
速度センサの場合、これをX軸上の二ケ所(第1図の薄
肉支持部9゜11)のみとし、この二ケ所の薄肉支持部
9.11以外では、周辺厚肉部7と分離することにょっ
て、X方向の電気信号の検出に係る薄肉支持部が、従来
に比べて変位し昌くなっている。したがって、慣性力の
はたらく部分すなわち中央厚肉部5と中間厚肉部6を、
従来の中央厚肉部20に比べかなり小さくしても、従来
よりも良好な感度で検出できる。
Furthermore, for example, in detecting the X-direction component of acceleration,
Conventionally, at least four thin-walled support parts (thin-walled support parts 23 to 26 in FIG. 5) were required to support the part on which inertial force acts, but especially in the case of the semiconductor acceleration sensor according to this embodiment, this is necessary. are located at only two locations on the X-axis (the thin-walled support portions 9 and 11 in FIG. 1), and by separating the thin-walled support portions 9 and 11 from these two locations from the peripheral thick-walled portion 7, the The thin support part involved in detecting the electric signal is displaced and widened compared to the conventional one. Therefore, the parts on which inertial force acts, that is, the central thick part 5 and the middle thick part 6,
Even if it is considerably smaller than the conventional central thick part 20, it can be detected with better sensitivity than the conventional one.

また、X方向についてもX方向と同様に、中央厚肉部を
従来に比べかなり小さくしても、従来よりも良好な感度
て検出てきる。
Also, in the X direction, even if the central thick portion is considerably smaller than the conventional one, it can be detected with better sensitivity than the conventional one.

このように、本実施例による半導体加速度センサは、従
来に比べて、小型でかつ良好な感度とすることができる
。さらに、2つの間隔12.13は、従来と同様に電界
エツチング等の異方性エツチングによって形成できるの
で、従来の製造工程と同し工程で生産することができ、
量産性に富む。
In this way, the semiconductor acceleration sensor according to this embodiment can be made smaller and have better sensitivity than the conventional one. Furthermore, since the two gaps 12 and 13 can be formed by anisotropic etching such as electric field etching as in the conventional method, it can be produced in the same process as the conventional manufacturing process.
Highly mass-producible.

[発明の効果] 以上説明してきたように本発明による半導体加速度セン
サによれば、三次元の加速度の検出を行う半導体加速度
センサの小型化及び高感度化が可能である。
[Effects of the Invention] As described above, according to the semiconductor acceleration sensor according to the present invention, it is possible to reduce the size and increase the sensitivity of the semiconductor acceleration sensor that detects three-dimensional acceleration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図偲)は本発明による一実施例の半導体加速度セン
サの上面図、第1図(θは第1図の)のA−A断面図、
第2図はX方向成分について説明するためのx−z断面
図、第3図は2方向底分について説明するためのx−z
断面図、第4図は2方向底分について説明するためのy
−z断面図、第5図は従来例を示す図である。 1〜4・・・歪ゲージ群 5・・・中央厚肉部 6・・・中間厚肉部 7・・・周辺厚肉部 8.10・・・薄肉支持部(第1) 9.11・・・薄肉支持部(第2) 代理人 弁理士  三 好 秀 和 第5図
FIG. 1) is a top view of a semiconductor acceleration sensor according to an embodiment of the present invention, a sectional view taken along line A-A in FIG. 1 (θ is in FIG. 1),
Fig. 2 is an x-z cross-sectional view for explaining the X direction component, and Fig. 3 is an x-z cross-sectional view for explaining the base component in the two directions.
The cross-sectional view and Figure 4 are y for explaining the base in two directions.
-z sectional view, FIG. 5 is a diagram showing a conventional example. 1 to 4...Strain gauge group 5...Central thick part 6...Intermediate thick part 7...Peripheral thick part 8.10...Thin support part (first) 9.11. ...Thin support part (2nd) Agent: Hidekazu Miyoshi, patent attorney Figure 5

Claims (1)

【特許請求の範囲】[Claims]  厚肉状の中央厚肉部と、前記中央厚肉部から所定の間
隔をおいて該中央厚肉部を囲むように形成した厚肉状の
中間厚肉部と、前記中間厚肉部から所定の間隔をおいて
該中間厚肉部を囲むように形成した厚肉状の周辺厚肉部
と、少くとも同一線上の二ケ所で前記中央厚肉部を前記
中間厚肉部に連結して該中央厚肉部を支持する薄肉状の
第1の薄肉支持部と、少くとも前記同一線上の二ケ所の
第1の薄肉支持部を結ぶ直線に垂直な同一線上の二ケ所
で前記中間厚肉部を前記周辺厚肉部に連結して該中間厚
肉部を支持する薄肉状の第2の薄肉支持部と、前記第1
及び第2の薄肉支持部の上側に形成された歪ゲージを有
することを特徴とする半導体加速度センサ。
a thick-walled central thick-walled portion; a thick-walled intermediate thick-walled portion formed to surround the central thick-walled portion at a predetermined interval from the central thick-walled portion; A thick peripheral thick wall part is formed to surround the middle thick wall part with an interval of . A thin first thin support part that supports the central thick part, and at least two places on the same line that is perpendicular to a straight line connecting the two first thin support parts on the same line. a second thin-walled support portion that connects to the peripheral thick-walled portion and supports the intermediate thick-walled portion;
and a strain gauge formed above the second thin support part.
JP2293618A 1990-11-01 1990-11-01 Semiconductor acceleration sensor Expired - Lifetime JP3010725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2293618A JP3010725B2 (en) 1990-11-01 1990-11-01 Semiconductor acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2293618A JP3010725B2 (en) 1990-11-01 1990-11-01 Semiconductor acceleration sensor

Publications (2)

Publication Number Publication Date
JPH04169856A true JPH04169856A (en) 1992-06-17
JP3010725B2 JP3010725B2 (en) 2000-02-21

Family

ID=17797046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2293618A Expired - Lifetime JP3010725B2 (en) 1990-11-01 1990-11-01 Semiconductor acceleration sensor

Country Status (1)

Country Link
JP (1) JP3010725B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04356971A (en) * 1991-06-03 1992-12-10 Nippondenso Co Ltd Semiconductor strain sensor
US5408112A (en) * 1991-06-03 1995-04-18 Nippondenso Co., Ltd. Semiconductor strain sensor having improved resistance to bonding strain effects
US5431050A (en) * 1992-12-25 1995-07-11 Nec Corporation Semiconductor sensor with nested weight portions for converting physical quantity into twisting strains
EP1172657A1 (en) * 2000-07-10 2002-01-16 SensoNor asa Accelerometer
JP2007199081A (en) * 2005-04-06 2007-08-09 Murata Mfg Co Ltd Acceleration sensor
USRE42359E1 (en) 1992-10-13 2011-05-17 Denso Corporation Dynamical quantity sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04356971A (en) * 1991-06-03 1992-12-10 Nippondenso Co Ltd Semiconductor strain sensor
US5408112A (en) * 1991-06-03 1995-04-18 Nippondenso Co., Ltd. Semiconductor strain sensor having improved resistance to bonding strain effects
USRE42359E1 (en) 1992-10-13 2011-05-17 Denso Corporation Dynamical quantity sensor
US5431050A (en) * 1992-12-25 1995-07-11 Nec Corporation Semiconductor sensor with nested weight portions for converting physical quantity into twisting strains
EP1172657A1 (en) * 2000-07-10 2002-01-16 SensoNor asa Accelerometer
JP2007199081A (en) * 2005-04-06 2007-08-09 Murata Mfg Co Ltd Acceleration sensor
JP4631864B2 (en) * 2005-04-06 2011-02-16 株式会社村田製作所 Acceleration sensor

Also Published As

Publication number Publication date
JP3010725B2 (en) 2000-02-21

Similar Documents

Publication Publication Date Title
JPH05203667A (en) Capacitive three-axis acceleration sensor
JPS63169078A (en) Semiconductor vibration and acceleration sensor
JP2006275896A (en) Semiconductor acceleration sensor
JPH04169856A (en) Semiconductor acceleration sensor
JPH02163628A (en) Measuring instrument
JP3043477B2 (en) Sensor using change in capacitance
JPH06109755A (en) Semiconductor acceleration sensor
JPH0821721B2 (en) Force detection device
JPH04279867A (en) Three-dimensional acceleration sensor
JPH04256864A (en) Semiconductor vibration/acceleration sensor
JP3308043B2 (en) Multi-axis acceleration detector
JPH08211091A (en) Semiconductor acceleration detecting device
JP2004028913A (en) Sensor and method for producing the same
JPH04204226A (en) Semiconductor pressure sensor
JPH11160348A (en) Semiconductor accelerometer
JP3034620B2 (en) 3D acceleration sensor
JPH03214064A (en) Acceleration sensor
JPH08160070A (en) Acceleration sensor
JP2004354074A (en) Semiconductor acceleration sensor
JPH0830716B2 (en) Semiconductor acceleration detector
JP2586399B2 (en) Acceleration sensor
JP2602300B2 (en) Semiconductor sensor
JP2538068Y2 (en) Acceleration detector
JPH04127537U (en) force detection device
KR0135553B1 (en) Semiconductor type acceleration detecting device