JPH11160348A - Semiconductor accelerometer - Google Patents

Semiconductor accelerometer

Info

Publication number
JPH11160348A
JPH11160348A JP9329164A JP32916497A JPH11160348A JP H11160348 A JPH11160348 A JP H11160348A JP 9329164 A JP9329164 A JP 9329164A JP 32916497 A JP32916497 A JP 32916497A JP H11160348 A JPH11160348 A JP H11160348A
Authority
JP
Japan
Prior art keywords
piezoresistors
central portion
acceleration sensor
semiconductor acceleration
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9329164A
Other languages
Japanese (ja)
Other versions
JP3282570B2 (en
Inventor
Shigeaki Tomonari
恵昭 友成
Takuro Nakamura
卓郎 中邑
Takuo Ishida
拓郎 石田
Hitoshi Yoshida
仁 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP32916497A priority Critical patent/JP3282570B2/en
Publication of JPH11160348A publication Critical patent/JPH11160348A/en
Application granted granted Critical
Publication of JP3282570B2 publication Critical patent/JP3282570B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Landscapes

  • Pressure Sensors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor accelerometer whose sensitivity is high and whose temperature characteristic is excellent without making the width of a beam part large. SOLUTION: A semiconductor accelerometer is provided with a plumb hob 1 which is subjected to an acceleration so as to be displaced, with a flexure which comprises a central part 2a and a beam 2b which is extended to all directions from the outer edge of the central part 2a and in which the plumb hob 1 is coupled to the rear surface of the central part 2a, with a support member 3 which supports the flexure 2 and with piezoresistances RX1 to RX4, RY1 to RY4 by which a strain generated in the flexure 2 due to the displacement of the plumb hob 1 is detected in at least two directions, i.e. the X-axis direction and the Y-axis direction. The piezoresistances RX1 to RX4, RY1 to RY4 are arranged near the coupling part of the central parts 2a to the beam 2b. The piezoresistances RX1 to RX4, RY1 to RY4 in the respective axial directions are constituted of a bridge circuit. Then, interconnections 4 which connect the piezoresistances RX1 to RX4, RY1 o RY4 which are installed so as to sandwich the central part 2a in the respective axial directions are formed on the central part 2a. The interconnections 4 in the respective axial directions are crossed orthogonally. Middle points of the interconnections 4 in the respective axial directions are derived electrically onto the support member 3 via a part on the beam 2b in the different axial directions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体加速度セン
サに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor acceleration sensor.

【0002】[0002]

【従来の技術】図7,図8は、従来例に係る半導体加速
度センサを示す概略構成図であり、(a)は上面から見
た状態を示す該略平面図であり、(b)は概略断面図で
ある。図7に示す半導体加速度センサは、シリコンから
成る半導体基板の所望の箇所を半導体エッチング技術を
用いて加工することにより、重り部1と薄肉状の撓み部
2と枠状の支持部材3とが形成されて成る。ここで、重
り部1は、十字型の撓み部2の中央部2aの下面に接続
され、中央部2aの外縁からは4本のビーム状の梁部2
b(撓み部2の端末部)が延在して支持部材3の内側側
面(波線にて示す)に接続されている。
2. Description of the Related Art FIGS. 7 and 8 are schematic structural views showing a conventional semiconductor acceleration sensor. FIG. 7 (a) is a schematic plan view showing a state viewed from above, and FIG. It is sectional drawing. In the semiconductor acceleration sensor shown in FIG. 7, by processing a desired portion of a semiconductor substrate made of silicon using a semiconductor etching technique, a weight portion 1, a thin flexible portion 2, and a frame-shaped support member 3 are formed. Become composed. Here, the weight portion 1 is connected to the lower surface of the central portion 2a of the cross-shaped bending portion 2, and four beam-shaped beam portions 2 are formed from the outer edge of the central portion 2a.
b (a terminal portion of the bending portion 2) extends and is connected to the inner side surface (shown by a wavy line) of the support member 3.

【0003】梁部2bには、重り部1の変位により生じ
る梁部2bの歪みからX,Y,Zの各軸方向の加速度を
検出するためのピエゾ抵抗RX1〜RX4,RY1〜RY4,RZ1〜R
Z4が形成されている。
The beam 2b has piezoresistors RX1 to RX4, RY1 to RY4, and RZ1 to detect accelerations in the X, Y, and Z directions from the distortion of the beam 2b caused by the displacement of the weight 1. R
Z4 is formed.

【0004】また、支持部材3の下面側には、重り部1
に対応する箇所に凹部を有する、シリコンまたはガラス
から成る下部ストッパ(図示せず)が陽極接合等により
接合されている。
On the lower surface of the support member 3, a weight 1
A lower stopper (not shown) made of silicon or glass and having a concave portion at a position corresponding to the above is bonded by anodic bonding or the like.

【0005】図8に示す半導体加速度センサは、図7に
示す半導体加速度センサにおいて、重り部1の中央をネ
ック部1aを介して撓み部2の中央部2aに接続し、重
り部1と梁部2bとの間に切り込み溝5を設けた構成で
ある。この切り込み溝5を設けることにより、同じチッ
プサイズの場合に、図7に示す半導体加速度センサより
も長い梁部2bを得ることができ、小型,高感度な半導
体加速度センサを実現することができる。
The semiconductor acceleration sensor shown in FIG. 8 is different from the semiconductor acceleration sensor shown in FIG. 7 in that the center of the weight portion 1 is connected to the center portion 2a of the bending portion 2 via the neck portion 1a. 2b is provided with a notch groove 5. By providing the cutout grooves 5, a beam portion 2b longer than the semiconductor acceleration sensor shown in FIG. 7 can be obtained for the same chip size, and a small and highly sensitive semiconductor acceleration sensor can be realized.

【0006】上述の半導体加速度センサにおいて、高感
度な出力を得るためのピエゾ抵抗の配置として特開平6ー
331646号公報に記載のものがある。この発明は、梁部に
形成するピエゾ抵抗の内、X,Y軸方向の歪みを検出す
るピエゾ抵抗を撓み部の中央部近傍の梁部に配置し、こ
の配置箇所以外にZ軸方向の歪みを検出するピエゾ抵抗
を配置している。これにより、X,Y軸方向の加速度が
印加された場合に、大きな応力が生じる撓み部の中央部
近傍の歪みをピエゾ抵抗で検出することができるため、
X,Y軸方向に対し高感度な加速度検出が可能となる。
In the above-described semiconductor acceleration sensor, the arrangement of piezoresistors for obtaining high-sensitivity output is disclosed in
There is one described in JP-A-331646. According to the present invention, of the piezoresistors formed in the beam portion, a piezoresistor for detecting distortion in the X and Y axes directions is disposed in the beam portion near the central portion of the bending portion, and a distortion in the Z axis direction other than the disposition portion is provided. A piezoresistor that detects the current is arranged. Accordingly, when acceleration in the X and Y axis directions is applied, distortion near the center of the bent portion where a large stress occurs can be detected by the piezo resistance.
Acceleration detection with high sensitivity in the X and Y axis directions becomes possible.

【0007】以下、ピエゾ抵抗RX1〜RX4,RY1〜RY4,RZ
1〜RZ4の具体的な配置について説明する。図7,図8に
示すように、梁部2bのY軸方向の中心線上の支持部材
3との連結部位にそれぞれZ軸方向の加速度検出用のピ
エゾ抵抗RZ1,RZ3が、ピエゾ抵抗RZ1,RZ3の長手方向が
Y軸方向と平行となるように配置され、梁部2bのX軸
方向の中心線上の支持部材3との連結部位にそれぞれZ
軸方向の加速度検出用のピエゾ抵抗RZ2,RZ4が、ピエゾ
抵抗RZ2,RZ4の長手方向がY軸方向と平行となるように
配置されている。
Hereinafter, piezo resistors RX1 to RX4, RY1 to RY4, RZ
The specific arrangement of 1 to RZ4 will be described. As shown in FIGS. 7 and 8, piezoresistors RZ1 and RZ3 for acceleration detection in the Z-axis direction and piezoresistors RZ1 and RZ3 are respectively provided at connection portions of the beam portion 2b with the support member 3 on the center line in the Y-axis direction. Are arranged so that their longitudinal directions are parallel to the Y-axis direction, and Z
Piezoresistors RZ2 and RZ4 for detecting acceleration in the axial direction are arranged such that the longitudinal directions of the piezoresistors RZ2 and RZ4 are parallel to the Y-axis direction.

【0008】また、Y軸方向の梁部2bの、中央部2a
との連結部位には、それぞれY軸方向の加速度検出用の
ピエゾ抵抗RY1〜RY4が配置され、X軸方向の梁部2b
の、中央部2aとの連結部位には、それぞれX軸方向の
加速度検出用のピエゾ抵抗RX1〜RX4が配置されている。
Also, a center portion 2a of the beam portion 2b in the Y-axis direction
Piezoresistors RY1 to RY4 for detecting the acceleration in the Y-axis direction are arranged at the connection portions with the X-axis direction beam portions 2b, respectively.
The piezoresistors RX1 to RX4 for detecting the acceleration in the X-axis direction are arranged at the connection portions with the central portion 2a.

【0009】上記X,Y軸方向の加速度検出用のピエゾ
抵抗RX1〜RX4,RY1〜RY4としては、梁部2bの長手方向
に対しピエゾ抵抗の長手方向が平行(例えば、ピエゾ抵
抗RY1〜RY4の長手方向がY軸方向と平行)となるように
配置されているピエゾ抵抗(以下、「縦ピエゾ抵抗」と
いう)と、梁部2bの長手方向に対しピエゾ抵抗の長手
方向が垂直(例えば、ピエゾ抵抗RY1〜RY4の長手方向が
Y軸方向と垂直)となるように配置されているピエゾ抵
抗(以下、「横ピエゾ抵抗」という)とがある。
As the piezoresistors RX1 to RX4 and RY1 to RY4 for detecting accelerations in the X and Y axes, the longitudinal direction of the piezoresistors is parallel to the longitudinal direction of the beam 2b (for example, the piezoresistors RY1 to RY4). A piezoresistor (hereinafter, referred to as a “vertical piezoresistor”) is disposed so that its longitudinal direction is parallel to the Y-axis direction, and the longitudinal direction of the piezoresistor is perpendicular to the longitudinal direction of the beam 2b (for example, piezoresistor). There is a piezo resistor (hereinafter referred to as “lateral piezo resistor”) arranged so that the longitudinal direction of the resistors RY1 to RY4 is perpendicular to the Y-axis direction.

【0010】ここで、縦ピエゾ抵抗を用いた場合には、
横ピエゾ抵抗を用いた場合に比べ梁部2bの幅を短くす
ることができる利点がある。加速度センサの感度Sは、
梁部2bの幅bと S∝1/b の関係があるため、縦ピエゾ抵抗を用いることにより更
なる高感度化が期待できるものである。
Here, when a vertical piezoresistor is used,
There is an advantage that the width of the beam portion 2b can be reduced as compared with the case where the lateral piezoresistance is used. The sensitivity S of the acceleration sensor is
Since there is a relationship of S∝1 / b with the width b of the beam portion 2b, further improvement in sensitivity can be expected by using a vertical piezoresistor.

【0011】[0011]

【発明が解決しようとする課題】ところが、上述のよう
に配置されたピエゾ抵抗から出力を取り出すためには、
図8に示すようなブリッジ回路を形成しなければならな
い。ここで問題となるのは、隣り合うピエゾ抵抗(例え
ばRX1とRX3)をブリッジ回路上では対向して接続しなけ
ればならない点である。特開平6-331646号公報において
は、ピエゾ抵抗の配置とブリッジ回路の接続方法までは
開示されているが、具体的にパターン上にてどのように
個々のピエゾ抵抗を接続配線していくかについては開示
されていない。
However, in order to extract the output from the piezoresistors arranged as described above,
A bridge circuit as shown in FIG. 8 must be formed. The problem here is that adjacent piezoresistors (eg, RX1 and RX3) must be connected facing each other on the bridge circuit. Japanese Patent Application Laid-Open No. Hei 6-331646 discloses the arrangement of piezoresistors and a method of connecting a bridge circuit, but specifically describes how to connect and wire individual piezoresistors on a pattern. Is not disclosed.

【0012】本発明は、上記の点に鑑みて成されたもの
であり、その目的とするところは、梁部の幅を長くする
ことなく、高感度で温度特性に優れた半導体加速度セン
サを提供することにある。
The present invention has been made in view of the above points, and an object of the present invention is to provide a semiconductor acceleration sensor having high sensitivity and excellent temperature characteristics without increasing the width of a beam portion. Is to do.

【0013】[0013]

【課題を解決するための手段】請求項1記載の発明は、
加速度を受けて変位する重り部と、中央部と該中央部の
外縁から四方に延在する梁部とを有し、前記中央部の下
面に前記重り部が連結された撓み部と、前記撓み部を支
持する支持部材と、前記重り部の変位により前記撓み部
に生じる歪みを少なくともX,Y軸の2方向で検出する
ピエゾ抵抗とを有し、該ピエゾ抵抗が前記中央部と前記
梁部との連結部位近傍に配置され、各軸方向の前記ピエ
ゾ抵抗がブリッジ回路で構成された半導体加速度センサ
において、各軸方向の前記中央部を挟んで設けられた前
記ピエゾ抵抗間を接続する配線が前記中央部上に設けら
れ、各軸方向の該配線が直交交差され、各軸方向の前記
配線の中点が、異なる軸方向の梁部上を介して前記支持
部材上に電気的に引き出されて成ることを特徴とするも
のである。
According to the first aspect of the present invention,
A flexure portion having a weight portion displaced by acceleration, a central portion and a beam portion extending in four directions from an outer edge of the central portion, the flexure portion having the weight portion connected to a lower surface of the central portion, And a piezoresistor for detecting a strain generated in the bending portion by displacement of the weight portion in at least two directions of X and Y axes, wherein the piezoresistance is provided between the center portion and the beam portion. In the semiconductor acceleration sensor in which the piezoresistors in each axial direction are arranged in the form of a bridge circuit, the wiring connecting the piezoresistors provided across the central portion in each axial direction is disposed near the connection portion with Provided on the central portion, the wires in each axial direction are orthogonally crossed, and the midpoint of the wires in each axial direction is electrically drawn out onto the support member via a beam portion in a different axial direction. It is characterized by comprising.

【0014】請求項2記載の発明は、請求項1記載の半
導体加速度センサにおいて、前記直交交差する配線の一
方の配線を、少なくとも前記直交交差する部分で前記中
央部内に形成された不純物拡散層を介して直交交差させ
て、前記直交交差する各々の配線が導通しないようにし
たことを特徴とするものである。
According to a second aspect of the present invention, in the semiconductor acceleration sensor according to the first aspect of the present invention, one of the orthogonally crossing wirings is replaced with an impurity diffusion layer formed in the central portion at least at the orthogonally crossing portion. The wires intersect at right angles so that the wires intersecting at right angles do not conduct.

【0015】請求項3記載の発明は、請求項1または請
求項2記載の半導体加速度センサにおいて、前記重り部
は、前記中央部にネック部を介して連結され、前記重り
部と前記梁部との間に切り込み溝が設けられて成ること
を特徴とするものである。
According to a third aspect of the present invention, in the semiconductor acceleration sensor according to the first or second aspect, the weight portion is connected to the center portion via a neck portion, and the weight portion and the beam portion are connected to each other. Characterized in that a notch groove is provided between them.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施形態について
図面に基づき説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】=実施形態1= 図1は、本発明の一実施形態に係る半導体加速度線セン
サを示す概略構成図であり、(a)は概略平面図であ
り、(b)は概略断面図である。この半導体加速度セン
サは、少なくともX軸,Y軸の加速度を検出するため
に、互いに直交する4本の梁部2bにより構成される撓
み部2と、撓み部2の矩形状の中央部2aの下面に接続
されている重り部1と、撓み部2を支持する枠状の支持
部材3とを有する。ここで、X軸方向の梁部2bの、中
央部2aとの連結部位近傍の一方側にはピエゾ抵抗RX
1,RX3が配置され、他方側にはピエゾ抵抗RX2,RX4が配
置されている。また、Y軸方向の梁部2bの、中央部2
aとの連結部位近傍の一方側にはピエゾ抵抗RY1,RY3が
配置され、他方側にはピエゾ抵抗RY2,RY4が配置されて
いる。
Embodiment 1 FIG. 1 is a schematic configuration diagram showing a semiconductor acceleration line sensor according to an embodiment of the present invention, (a) is a schematic plan view, and (b) is a schematic cross-sectional view. is there. The semiconductor acceleration sensor has a bent portion 2 composed of four beam portions 2b orthogonal to each other and a lower surface of a rectangular central portion 2a of the bent portion 2 in order to detect at least accelerations in the X-axis and the Y-axis. And a frame-shaped support member 3 that supports the bending portion 2. Here, a piezo-resistor RX is provided on one side of the beam portion 2b in the X-axis direction near the connection portion with the central portion 2a.
1 and RX3 are arranged, and piezo resistors RX2 and RX4 are arranged on the other side. Also, the central portion 2 of the beam portion 2b in the Y-axis direction
Piezoresistors RY1 and RY3 are arranged on one side in the vicinity of the connection portion with a, and piezoresistors RY2 and RY4 are arranged on the other side.

【0018】次に、印加された加速度を検出するために
は、各軸毎にそれぞれ4つのピエゾ抵抗を使ってホイー
トストンブリッジ回路を構成しなければならない。この
場合、高い検出出力を得るためには1つの梁部2b上で
隣り合って配置されたピエゾ抵抗(例えばRX1とRX3)を
回路上で対向するように配線しなければならない。
Next, in order to detect the applied acceleration, a Wheatstone bridge circuit must be formed using four piezoresistors for each axis. In this case, in order to obtain a high detection output, piezoresistors (for example, RX1 and RX3) arranged adjacently on one beam 2b must be wired so as to face each other on the circuit.

【0019】図2は、本実施形態に係る半導体加速度セ
ンサのピエゾ抵抗の概略配線図であり、(a)はX軸方
向の加速度を検出するためのピエゾ抵抗RX1〜RX4の概略
配線図であり、(b)はY軸方向の加速度を検出するた
めのピエゾ抵抗RY1〜RY4の概略配線図である。先ず、ピ
エゾ抵抗RX1とピエゾ抵抗RX2とは、中央部2a上に形成
された配線4により接続され、ピエゾ抵抗RX1,RX2の他
端は、梁部2b上に形成された配線4により支持部材3
上まで引き出され、支持部材3上に設けられた端子X3,
X4に各々接続されている。また、ピエゾ抵抗RX3とピエ
ゾ抵抗RX4とは、中央部2a上に形成された配線4によ
り接続され、ピエゾ抵抗RX3,RX4の他端は、梁部2b上
に形成された配線4により支持部材3上まで引き出さ
れ、支持部材3上に設けられた端子X5,X6に各々接続さ
れている。
FIG. 2 is a schematic wiring diagram of the piezoresistor of the semiconductor acceleration sensor according to the present embodiment. FIG. 2A is a schematic wiring diagram of the piezoresistors RX1 to RX4 for detecting the acceleration in the X-axis direction. (B) is a schematic wiring diagram of piezo resistors RY1 to RY4 for detecting acceleration in the Y-axis direction. First, the piezoresistors RX1 and RX2 are connected by a wire 4 formed on the central portion 2a, and the other ends of the piezoresistors RX1 and RX2 are supported by wires 4 formed on the beam portion 2b.
The terminals X3,
Each is connected to X4. The piezoresistors RX3 and RX4 are connected by a wire 4 formed on the central portion 2a, and the other ends of the piezoresistors RX3 and RX4 are supported by wires 4 formed on the beam portion 2b. It is drawn up and connected to terminals X5 and X6 provided on the support member 3, respectively.

【0020】次に、加速度の検出出力を取り出すための
各ピエゾ抵抗間の配線4の中間点の端子への配線は以下
のようにして行われる。ピエゾ抵抗RX1とピエゾ抵抗RX2
とを結ぶ配線4を中央部2a上で分岐し、その配線4
は、Y軸方向の加速度を検出するために形成されたピエ
ゾ抵抗RY1,RY3間を通すようにして梁部2b上に形成さ
れ、支持部材3上まで引き出されて、支持部材3上に設
けられた端子X1に接続されている。同様にして、ピエゾ
抵抗RX3とピエゾ抵抗RX4とを結ぶ配線4を中央部2a上
で分岐し、その配線4は、Y軸方向の加速度を検出する
ために形成されたピエゾ抵抗RY2,RY4間を通すようにし
て梁部2b上に形成され、支持部材3上まで引き出され
て、支持部材3上に設けられた端子X2に接続されてい
る。
Next, the wiring to the terminal at the intermediate point of the wiring 4 between the piezoresistors for extracting the detection output of the acceleration is performed as follows. Piezo resistor RX1 and piezo resistor RX2
Is branched on the central portion 2a, and the wiring 4
Is formed on the beam portion 2b so as to pass between the piezoresistors RY1 and RY3 formed for detecting the acceleration in the Y-axis direction, is pulled out onto the support member 3, and is provided on the support member 3. Connected to terminal X1. Similarly, a wiring 4 connecting the piezoresistors RX3 and RX4 is branched on the central portion 2a, and the wiring 4 connects between the piezoresistors RY2 and RY4 formed for detecting the acceleration in the Y-axis direction. It is formed on the beam portion 2 b so as to pass through, is pulled out onto the support member 3, and is connected to a terminal X <b> 2 provided on the support member 3.

【0021】Y軸方向のピエゾ抵抗RY1〜RY4についても
同様な配線が行われる。先ず、ピエゾ抵抗RY1とピエゾ
抵抗RY2とは、中央部2a上に形成された配線4により
接続され、ピエゾ抵抗RY1,RY2の他端は、梁部2b上に
形成された配線4により支持部材3上まで引き出され、
支持部材3上に設けられた端子Y3,Y4に各々接続されて
いる。また、ピエゾ抵抗RY3とピエゾ抵抗RY4とは、中央
部2a上に形成された配線4により接続され、ピエゾ抵
抗RY3,RY4の他端は、梁部2b上に形成された配線4に
より支持部材3上まで引き出され、支持部材3上に設け
られた端子Y5,Y6に各々接続されている。
Similar wiring is performed for the piezo resistors RY1 to RY4 in the Y-axis direction. First, the piezoresistors RY1 and RY2 are connected by a wire 4 formed on the central portion 2a, and the other ends of the piezoresistors RY1 and RY2 are supported by the wires 4 formed on the beam portion 2b. Pulled out to the top,
The terminals are connected to terminals Y3 and Y4 provided on the support member 3, respectively. Further, the piezoresistors RY3 and RY4 are connected by a wire 4 formed on the central portion 2a, and the other ends of the piezoresistors RY3 and RY4 are supported by the wires 4 formed on the beam portion 2b. It is pulled up and connected to terminals Y5 and Y6 provided on the support member 3, respectively.

【0022】次に、ピエゾ抵抗RY1とピエゾ抵抗RY2とを
結ぶ配線4を中央部2a上で分岐し、その配線4は、X
軸方向の加速度を検出するために形成されたピエゾ抵抗
RX1,RX3間を通すようにして梁部2b上に形成され、支
持部材3上まで引き出されて、支持部材3上に設けられ
た端子Y1に接続されている。同様にして、ピエゾ抵抗RY
3とピエゾ抵抗RY4とを結ぶ配線4を中央部2a上で分岐
し、その配線4は、X軸方向の加速度を検出するために
形成されたピエゾ抵抗RX2,RX4間を通すようにして梁部
2b上に形成され、支持部材3上まで引き出されて、支
持部材3上に設けられた端子Y2に接続されている。
Next, a wiring 4 connecting the piezoresistors RY1 and RY2 is branched on the central portion 2a.
Piezoresistance formed to detect axial acceleration
It is formed on the beam portion 2b so as to pass between RX1 and RX3, is drawn out onto the support member 3, and is connected to a terminal Y1 provided on the support member 3. Similarly, the piezo resistance RY
A wire 4 connecting the piezoresistor 3 and the piezoresistor RY4 is branched on the central portion 2a, and the wire 4 passes between the piezoresistors RX2 and RX4 formed for detecting the acceleration in the X-axis direction. 2b, is pulled out onto the support member 3 and is connected to a terminal Y2 provided on the support member 3.

【0023】ここで、各配線4の交差部分では、各配線
4が電気的に接続されないように、交差部分にシリコン
酸化膜,シリコン窒化膜等の絶縁膜を介した多層配線
や、中央部2aに形成された不純物拡散層を利用した多
層配線が用いられる。
Here, at the intersection of the wirings 4, a multilayer wiring via an insulating film such as a silicon oxide film or a silicon nitride film or the central portion 2 a is formed at the intersection so that the wirings 4 are not electrically connected. A multi-layer wiring using an impurity diffusion layer formed on the substrate is used.

【0024】=実施形態2= 図3は、本発明の他の実施形態に係る半導体加速度セン
サを示す概略構成図であり、(a)は上面から見た状態
を示す概略平面図であり、(b)は配線4の交差部分の
一部を示す概略断面図である。本実施形態に係る半導体
加速度センサは、実施形態1として図1に示す半導体加
速度センサにおいて、各配線4の交差部分を不純物拡散
層5を用いて多層配線にした構成である。
Embodiment 2 = FIG. 3 is a schematic configuration diagram showing a semiconductor acceleration sensor according to another embodiment of the present invention, and FIG. 3 (a) is a schematic plan view showing a state viewed from above. (b) is a schematic cross-sectional view showing a part of the intersection of the wiring 4. The semiconductor acceleration sensor according to the present embodiment has a configuration in which a crossing portion of each wiring 4 is formed as a multilayer wiring using an impurity diffusion layer 5 in the semiconductor acceleration sensor shown in FIG.

【0025】具体的には、図3(b)に示すように、重
り部1,撓み部2及び支持部材3を構成する半導体基板
6の配線4が交差する部分及びその近傍に、半導体基板
6と逆の導電型の不純物拡散層5が形成され、半導体基
板6の不純物拡散層5が形成された面側にはシリコン酸
化膜,シリコン窒化膜等の絶縁膜7が形成されている。
そして、交差する配線4の両側の、不純物拡散層5上の
絶縁膜7の一部が除去されてコンタクトホールが形成さ
れ、コンタクトホールを埋込形成して、不純物拡散層5
と電気的に接続されるようにアルミニウム(Al)等の
配線4が形成されて、多層配線にされている。
More specifically, as shown in FIG. 3B, the semiconductor substrate 6 is formed at a portion where the weight 4, the bending portion 2 and the wiring 4 of the semiconductor substrate 6 constituting the support member 3 intersect and in the vicinity thereof. An impurity diffusion layer 5 of the opposite conductivity type is formed, and an insulating film 7 such as a silicon oxide film or a silicon nitride film is formed on the surface of the semiconductor substrate 6 where the impurity diffusion layer 5 is formed.
Then, a part of the insulating film 7 on the impurity diffusion layer 5 on both sides of the intersecting wiring 4 is removed to form a contact hole, and the contact hole is buried to form the impurity diffusion layer 5.
A wiring 4 made of aluminum (Al) or the like is formed so as to be electrically connected to the semiconductor device, thereby forming a multilayer wiring.

【0026】なお、不純物拡散層5の不純物濃度として
は、配線間の抵抗を低抵抗にでき、かつ、温度変化の小
さいものを得るために1×1020cm-3以上であることが望
ましい。
The impurity concentration of the impurity diffusion layer 5 is desirably 1 × 10 20 cm −3 or more so that the resistance between the wirings can be reduced and a change in temperature is small.

【0027】=実施形態3= 図4は、本発明の他の実施形態に係る半導体加速度セン
サを示す概略構成図であり、(a)は上面から見た状態
を示す概略平面図であり、(b)は配線4の交差部分の
一部を示す概略断面図である。本実施形態に係る半導体
加速度センサは、実施形態2として図3に示す半導体加
速度センサにおいて、ピエゾ抵抗間の配線4の中間点と
の配線4を不純物拡散層5を介して接続した構成であ
る。
Embodiment 3 = FIG. 4 is a schematic configuration diagram showing a semiconductor acceleration sensor according to another embodiment of the present invention, and FIG. 4 (a) is a schematic plan view showing a state viewed from above. (b) is a schematic cross-sectional view showing a part of the intersection of the wiring 4. The semiconductor acceleration sensor according to the present embodiment has a configuration in which the wiring 4 with the middle point of the wiring 4 between the piezoresistors is connected via the impurity diffusion layer 5 in the semiconductor acceleration sensor shown in FIG.

【0028】具体的には、図4(b)に示すように、重
り部1,撓み部2及び支持部材3を構成する半導体基板
6の配線4が交差する部分及びその近傍に、半導体基板
6と逆の導電型の不純物拡散層5が形成され、半導体基
板6の不純物拡散層5が形成された面側にはシリコン酸
化膜,シリコン窒化膜等の絶縁膜7が形成されている。
そして、不純物拡散層5上の絶縁膜7の所定の箇所がエ
ッチング除去されてコンタクトホールが形成され、コン
タクトホールを埋込形成して、不純物拡散層5と電気的
に接続されるようにアルミニウム(Al)等の配線4が
形成される。これにより、配線4が交差する部分におい
ては半導体基板6に形成された不純物拡散層5を介して
電気的に接続されて多層配線が行われている。この時、
ピエゾ抵抗間の配線の中間点との接続のための配線4も
不純物拡散層5と電気的に接続されている。
More specifically, as shown in FIG. 4B, the semiconductor substrate 6 constituting the weight portion 1, the bending portion 2 and the supporting member 3 intersects with the wiring 4 of the semiconductor substrate 6 and the vicinity thereof. An impurity diffusion layer 5 of the opposite conductivity type is formed, and an insulating film 7 such as a silicon oxide film or a silicon nitride film is formed on the surface of the semiconductor substrate 6 where the impurity diffusion layer 5 is formed.
Then, a predetermined portion of the insulating film 7 on the impurity diffusion layer 5 is removed by etching to form a contact hole, and the contact hole is buried and formed so as to be electrically connected to the impurity diffusion layer 5. A wiring 4 such as Al) is formed. As a result, in the portion where the wirings 4 intersect, the wirings are electrically connected via the impurity diffusion layers 5 formed in the semiconductor substrate 6 to perform multilayer wiring. At this time,
The wiring 4 for connection with the middle point of the wiring between the piezoresistors is also electrically connected to the impurity diffusion layer 5.

【0029】なお、不純物拡散層5の不純物濃度として
は、配線間の抵抗を低抵抗にでき、かつ、温度変化の小
さいものを得るために1×1020cm-3以上であることが望
ましい。
The impurity concentration of the impurity diffusion layer 5 is desirably 1 × 10 20 cm −3 or more so that the resistance between the wirings can be reduced and the temperature change is small.

【0030】従って、実施形態1〜3においては、配線
4の交差する部分で各配線4が電気的に接続されないよ
うに、交差部分にシリコン酸化膜,シリコン窒化膜等の
絶縁膜を介した多層配線や、中央部2aに形成された不
純物拡散層5を利用した多層配線が用いられているの
で、梁部の幅を長くすることなく、高感度で温度特性に
優れた半導体加速度センサを構成することができる。
Therefore, in the first to third embodiments, a multilayer structure in which an insulating film such as a silicon oxide film or a silicon nitride film is interposed at the intersection so that the wirings 4 are not electrically connected at the intersections of the wirings 4. Since the wiring and the multilayer wiring using the impurity diffusion layer 5 formed in the central portion 2a are used, a semiconductor acceleration sensor having high sensitivity and excellent temperature characteristics is formed without increasing the width of the beam. be able to.

【0031】なお、上述の全ての実施形態において、半
導体加速度センサとして図5に示すように、重り部1を
ネック部1aを介して中央部2aの下面に接続し、ネッ
ク部1aを外囲する箇所の重り部1と撓み部2との間に
切り込み溝8を形成するようにしても良い。これによ
り、上述の全ての実施形態とチップサイズが同一の場合
には、半導体加速度センサの感度を向上させることがで
き、上述の全ての実施形態と感度が同じ場合にはチップ
サイズを小型化することができる。ただし、切り込み溝
8は、ネック1aを外囲する箇所に必ずしも形成する必
要はなく、少なくとも梁部2bの下部及びその近傍に形
成されていれば良い。
In all of the above-described embodiments, as shown in FIG. 5, the weight portion 1 is connected to the lower surface of the central portion 2a via the neck portion 1a to surround the neck portion 1a as a semiconductor acceleration sensor. The cut groove 8 may be formed between the weight part 1 and the bending part 2 at the location. Accordingly, when the chip size is the same as in all the above embodiments, the sensitivity of the semiconductor acceleration sensor can be improved, and when the sensitivity is the same as in all the above embodiments, the chip size is reduced. be able to. However, the cut groove 8 does not necessarily need to be formed at a position surrounding the neck 1a, and may be formed at least in the lower part of the beam part 2b and in the vicinity thereof.

【0032】[0032]

【発明の効果】請求項1記載の発明は、加速度を受けて
変位する重り部と、中央部と中央部の外縁から四方に延
在する梁部とを有し、中央部の下面に重り部が連結され
た撓み部と、撓み部を支持する支持部材と、重り部の変
位により撓み部に生じる歪みを少なくともX,Y軸の2
方向で検出するピエゾ抵抗とを有し、ピエゾ抵抗が中央
部と梁部との連結部位近傍に配置され、各軸方向のピエ
ゾ抵抗がブリッジ回路で構成された半導体加速度センサ
において、各軸方向の中央部を挟んで設けられたピエゾ
抵抗間を接続する配線が中央部上に設けられ、各軸方向
の配線が直交交差され、各軸方向の配線の中点が、異な
る軸方向の梁部上を介して支持部材上に電気的に引き出
されて成るので、梁部の幅を長くすることなく、高感度
で温度特性に優れた半導体加速度センサを提供すること
ができた。
According to the first aspect of the present invention, there is provided a weight portion which is displaced by receiving acceleration, a center portion and a beam portion which extends in four directions from the outer edge of the center portion, and the weight portion is provided on the lower surface of the center portion. Are connected to each other, a supporting member that supports the bending portion, and a strain generated in the bending portion due to displacement of the weight portion is at least two of X and Y axes.
A piezoresistor that detects in each direction, the piezoresistor is disposed in the vicinity of a connection portion between the center portion and the beam portion, and the piezoresistors in each axial direction are formed in a bridge circuit. Wiring connecting the piezoresistors provided across the central portion is provided on the central portion, wires in each axial direction are orthogonally crossed, and the midpoint of each axial wire is on a beam portion in a different axial direction. Therefore, a semiconductor acceleration sensor having high sensitivity and excellent temperature characteristics can be provided without increasing the width of the beam portion.

【0033】請求項2記載の発明は、請求項1記載の半
導体加速度センサにおいて、直交交差する配線の一方の
配線を、少なくとも直交交差する部分で中央部内に形成
された不純物拡散層を介して直交交差させて、直交交差
する各々の配線が導通しないようにしたので、ピエゾ抵
抗を形成する際に不純物拡散層を形成することができ、
工程数を増やすことなく各配線が導通しないようにする
ことができる。
According to a second aspect of the present invention, in the semiconductor acceleration sensor according to the first aspect, one of the orthogonally intersecting wires is orthogonally interposed via an impurity diffusion layer formed in a central portion at least at a portion where the intersecting orthogonally intersects. Since the wires cross each other so that each of the wires crossing each other does not conduct, the impurity diffusion layer can be formed when forming the piezoresistor.
Each wiring can be prevented from conducting without increasing the number of steps.

【0034】請求項3記載の発明は、請求項1または請
求項2記載の半導体加速度センサにおいて、中央部にネ
ック部を介して連結され、重り部と梁部との間に切り込
み溝が設けられて成るので、更なる小型化,高感度化を
図ることができる。
According to a third aspect of the present invention, in the semiconductor acceleration sensor according to the first or second aspect, the central portion is connected via a neck portion, and a cut groove is provided between the weight portion and the beam portion. Therefore, further miniaturization and higher sensitivity can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る半導体加速度線セン
サを示す概略構成図であり、(a)は概略平面図であ
り、(b)は概略断面図である。
FIG. 1 is a schematic configuration diagram showing a semiconductor acceleration line sensor according to an embodiment of the present invention, where (a) is a schematic plan view and (b) is a schematic sectional view.

【図2】本実施形態に係る半導体加速度センサのピエゾ
抵抗の概略配線図であり、(a)はX軸方向の加速度を
検出するためのピエゾ抵抗の概略配線図であり、(b)
はY軸方向の加速度を検出するためのピエゾ抵抗の概略
配線図である。
FIGS. 2A and 2B are schematic wiring diagrams of piezoresistors of the semiconductor acceleration sensor according to the embodiment; FIG. 2A is a schematic wiring diagram of piezoresistors for detecting acceleration in an X-axis direction;
FIG. 5 is a schematic wiring diagram of a piezo resistor for detecting acceleration in the Y-axis direction.

【図3】本発明の他の実施形態に係る半導体加速度セン
サを示す概略構成図であり、(a)は上面から見た状態
を示す概略平面図であり、(b)は配線の交差部分の一
部を示す概略断面図である。
3A and 3B are schematic configuration diagrams illustrating a semiconductor acceleration sensor according to another embodiment of the present invention, in which FIG. 3A is a schematic plan view illustrating a state viewed from above, and FIG. It is a schematic sectional drawing which shows a part.

【図4】本発明の他の実施形態に係る半導体加速度セン
サを示す概略構成図であり、(a)は上面から見た状態
を示す概略平面図であり、(b)は配線の交差部分の一
部を示す概略断面図である。
4A and 4B are schematic configuration diagrams illustrating a semiconductor acceleration sensor according to another embodiment of the present invention, in which FIG. 4A is a schematic plan view illustrating a state viewed from above, and FIG. It is a schematic sectional drawing which shows a part.

【図5】本発明の他の実施形態に係る半導体加速度セン
サを示す概略断面図である。
FIG. 5 is a schematic sectional view showing a semiconductor acceleration sensor according to another embodiment of the present invention.

【図6】従来例に係る半導体加速度センサを示す概略構
成図であり、(a)は上面から見た状態を示す該略平面
図であり、(b)は概略断面図である。
6A and 6B are schematic configuration diagrams showing a semiconductor acceleration sensor according to a conventional example, in which FIG. 6A is a schematic plan view showing a state viewed from above, and FIG. 6B is a schematic sectional view.

【図7】従来例に係る半導体加速度センサを示す概略構
成図であり、(a)は上面から見た状態を示す該略平面
図であり、(b)は概略断面図である。
7A and 7B are schematic configuration diagrams showing a semiconductor acceleration sensor according to a conventional example, where FIG. 7A is a schematic plan view showing a state viewed from above, and FIG. 7B is a schematic sectional view.

【図8】X軸,Y軸,Z軸方向のピエゾ抵抗の接続を示
す回路図である。
FIG. 8 is a circuit diagram showing connection of piezoresistors in X-axis, Y-axis, and Z-axis directions.

【符号の説明】[Explanation of symbols]

RX1〜RX4,RY1〜RY4,RZ1〜RZ4 ピエゾ抵抗 X1〜X6,Y1〜Y6 端子 1 重り部 1a ネック部 2 撓み部 2a 中央部 2b 梁部 3 支持部材 4 配線 5 不純物拡散層 6 半導体基板 7 絶縁膜 8 切り込み溝 9 電源 RX1 to RX4, RY1 to RY4, RZ1 to RZ4 Piezoresistors X1 to X6, Y1 to Y6 Terminal 1 Weight 1a Neck 2 Flexure 2a Central 2b Beam 3 Support member 4 Wiring 5 Impurity diffusion layer 6 Semiconductor substrate 7 Insulation Membrane 8 Notch 9 Power supply

フロントページの続き (72)発明者 吉田 仁 大阪府門真市大字門真1048番地松下電工株 式会社内Continued on the front page (72) Inventor Hitoshi Yoshida 1048 Odomo Kadoma, Kadoma City, Osaka Inside Matsushita Electric Works, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 加速度を受けて変位する重り部と、中央
部と該中央部の外縁から四方に延在する梁部とを有し、
前記中央部の下面に前記重り部が連結された撓み部と、
前記撓み部を支持する支持部材と、前記重り部の変位に
より前記撓み部に生じる歪みを少なくともX,Y軸の2
方向で検出するピエゾ抵抗とを有し、該ピエゾ抵抗が前
記中央部と前記梁部との連結部位近傍に配置され、各軸
方向の前記ピエゾ抵抗がブリッジ回路で構成された半導
体加速度センサにおいて、各軸方向の前記中央部を挟ん
で設けられた前記ピエゾ抵抗間を接続する配線が前記中
央部上に設けられ、各軸方向の該配線が直交交差され、
各軸方向の前記配線の中点が、異なる軸方向の梁部上を
介して前記支持部材上に電気的に引き出されて成ること
を特徴とする半導体加速度センサ。
A weight portion that is displaced by receiving acceleration, a central portion, and a beam portion extending from an outer edge of the central portion in all directions;
A bending portion in which the weight portion is connected to a lower surface of the central portion,
A support member for supporting the bending portion, and a strain generated in the bending portion due to displacement of the weight portion being at least two of X and Y axes.
A piezoresistor that detects in a direction, the piezoresistor is disposed near a connection portion between the central portion and the beam portion, and the piezoresistors in each axial direction are configured as a bridge circuit in a semiconductor acceleration sensor. A wire connecting the piezoresistors provided across the central portion in each axial direction is provided on the central portion, and the wires in each axial direction are orthogonally crossed,
A semiconductor acceleration sensor, wherein a midpoint of the wiring in each axial direction is electrically drawn out onto the support member via a beam portion in a different axial direction.
【請求項2】 前記直交交差する配線の一方の配線を、
少なくとも前記直交交差する部分で前記中央部内に形成
された不純物拡散層を介して直交交差させて、前記直交
交差する各々の配線が導通しないようにしたことを特徴
とする請求項1記載の半導体加速度センサ。
2. The method according to claim 1, wherein one of the orthogonally crossing wires is
2. The semiconductor acceleration according to claim 1, wherein at least the orthogonally intersecting portions intersect at right angles via an impurity diffusion layer formed in the central portion so that each of the intersecting wires does not conduct. Sensor.
【請求項3】 前記重り部は、前記中央部にネック部を
介して連結され、前記重り部と前記梁部との間に切り込
み溝が設けられて成ることを特徴とする請求項1または
請求項2記載の半導体加速度センサ。
3. The weight portion is connected to the center portion via a neck portion, and a cut groove is provided between the weight portion and the beam portion. Item 3. A semiconductor acceleration sensor according to item 2.
JP32916497A 1997-11-28 1997-11-28 Semiconductor acceleration sensor Expired - Lifetime JP3282570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32916497A JP3282570B2 (en) 1997-11-28 1997-11-28 Semiconductor acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32916497A JP3282570B2 (en) 1997-11-28 1997-11-28 Semiconductor acceleration sensor

Publications (2)

Publication Number Publication Date
JPH11160348A true JPH11160348A (en) 1999-06-18
JP3282570B2 JP3282570B2 (en) 2002-05-13

Family

ID=18218368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32916497A Expired - Lifetime JP3282570B2 (en) 1997-11-28 1997-11-28 Semiconductor acceleration sensor

Country Status (1)

Country Link
JP (1) JP3282570B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077072A1 (en) * 2003-02-28 2004-09-10 Hokuriku Electric Industry Co., Ltd. Semiconductor acceleration sensor
US6810738B2 (en) * 2002-07-10 2004-11-02 Hitachi Metals, Ltd. Acceleration measuring apparatus with calibration function
EP1517151A1 (en) * 2003-09-16 2005-03-23 Hitachi Metals, Ltd. Acceleration sensor
EP1560029A1 (en) * 2002-10-04 2005-08-03 Hokuriku Electric Industry Co., Ltd. Semiconductor acceleration sensor and process for manufacturing the same
WO2008029654A1 (en) 2006-09-06 2008-03-13 Hitachi Metals, Ltd. Semiconductor sensor device and method for manufacturing same
JP2010185781A (en) * 2009-02-12 2010-08-26 Torex Semiconductor Ltd Acceleration sensor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6810738B2 (en) * 2002-07-10 2004-11-02 Hitachi Metals, Ltd. Acceleration measuring apparatus with calibration function
EP1560029A1 (en) * 2002-10-04 2005-08-03 Hokuriku Electric Industry Co., Ltd. Semiconductor acceleration sensor and process for manufacturing the same
EP1560029A4 (en) * 2002-10-04 2008-05-07 Hokuriku Elect Ind Semiconductor acceleration sensor and process for manufacturing the same
WO2004077072A1 (en) * 2003-02-28 2004-09-10 Hokuriku Electric Industry Co., Ltd. Semiconductor acceleration sensor
JPWO2004077072A1 (en) * 2003-02-28 2006-06-08 北陸電気工業株式会社 Semiconductor acceleration sensor
JP4617255B2 (en) * 2003-02-28 2011-01-19 北陸電気工業株式会社 Semiconductor acceleration sensor
EP1517151A1 (en) * 2003-09-16 2005-03-23 Hitachi Metals, Ltd. Acceleration sensor
US7111514B2 (en) 2003-09-16 2006-09-26 Hitachi Metals, Ltd. Acceleration sensor
KR100817736B1 (en) 2003-09-16 2008-03-31 히다찌긴조꾸가부시끼가이사 Acceleration sensor
WO2008029654A1 (en) 2006-09-06 2008-03-13 Hitachi Metals, Ltd. Semiconductor sensor device and method for manufacturing same
US8022433B2 (en) 2006-09-06 2011-09-20 Hitachi Metals, Ltd. Semiconductor sensor device and method for manufacturing same
JP2010185781A (en) * 2009-02-12 2010-08-26 Torex Semiconductor Ltd Acceleration sensor

Also Published As

Publication number Publication date
JP3282570B2 (en) 2002-05-13

Similar Documents

Publication Publication Date Title
JP2003232803A (en) Semiconductor type acceleration sensor
JP4335545B2 (en) Sensor for detecting both pressure and acceleration and manufacturing method thereof
US6763719B2 (en) Acceleration sensor
KR20030026872A (en) Acceleration sensor
JP3282570B2 (en) Semiconductor acceleration sensor
JP2003092413A (en) Semiconductor acceleration sensor
JP3330074B2 (en) 3-axis acceleration sensor
JP2001004658A (en) Dual-shaft semiconductor acceleration sensor and manufacture thereof
JPH07209327A (en) Acceleration sensor
JP4003335B2 (en) Semiconductor dynamic quantity sensor and manufacturing method thereof
JP2006208272A (en) Semiconductor multiaxial acceleration sensor
JP3265641B2 (en) Semiconductor acceleration sensor
JPH08211091A (en) Semiconductor acceleration detecting device
JP3019549B2 (en) Semiconductor acceleration sensor
JP2003136494A (en) Microstructure body, physical quantity detector and manufacturing method for the same
JPH05340956A (en) Acceleration sensor
JP4665733B2 (en) Sensor element
JP2010122144A (en) Acceleration sensor and semiconductor device using the same
JP3308368B2 (en) 3-axis piezoelectric acceleration sensor
JP2006300904A (en) Physical quantity sensor
JP5067295B2 (en) Sensor and manufacturing method thereof
JP3019444B2 (en) Semiconductor acceleration sensor
JP5401820B2 (en) Sensor
JP5069410B2 (en) Sensor element
JP2001066319A (en) Semiconductor accelerometer

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080301

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120301

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130301

Year of fee payment: 11