JPH04169062A - Hydrogen absorbing alloy electrode for alkaline storage battery - Google Patents

Hydrogen absorbing alloy electrode for alkaline storage battery

Info

Publication number
JPH04169062A
JPH04169062A JP2296739A JP29673990A JPH04169062A JP H04169062 A JPH04169062 A JP H04169062A JP 2296739 A JP2296739 A JP 2296739A JP 29673990 A JP29673990 A JP 29673990A JP H04169062 A JPH04169062 A JP H04169062A
Authority
JP
Japan
Prior art keywords
cobalt
electrode
absorbing alloy
hydrogen storage
hydrogen absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2296739A
Other languages
Japanese (ja)
Inventor
Hiroyuki Mori
宏之 森
Keiichi Hasegawa
圭一 長谷川
Masaharu Watada
正治 綿田
Masahiko Oshitani
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2296739A priority Critical patent/JPH04169062A/en
Publication of JPH04169062A publication Critical patent/JPH04169062A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To make high capacity and a long cycle life by coating the surface of hydrogen absorbing alloy powder with metallic cobalt where part of Ni and Al of MmNiXAlY is substituted with one or two more kinds of Fe, Cu, Co, and Mn, with metallic cobalt, and packing a coated body in a alkali-- resistant metal porous plate to make an electrode. CONSTITUTION:The surface of hydrogen absorbing alloy powders, in which the part of Ni and Al of MmNiXAlY is substituted with one or two or more kinds of Fe, Cu, Co, and Mn, is coated with metallic cobalt, and a coated body is packed in an alkali-resistant metal porous plate to make an electrode. Cobalt is a transition metal having a 3d-orbit and acts as a catalyst for a hydrogen electrode, and capacity is increased and a cycle life is prolonged in an electrode formed by coating the hydrogen absorbing alloy powder with cobalt due to the conductivity improving action of metallic cobalt. This permits high capacity and a long cycle life.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ニッケルー水素蓄電池の負極として用いられ
る水素吸蔵合金電極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a hydrogen storage alloy electrode used as a negative electrode of a nickel-hydrogen storage battery.

従来の技術 今日におけるポータプル機器はめざましく進歩している
。電池においても、よりエネルギー密度の高い電池へと
進歩しつつあり、ニッケルー水素蓄電池が望まれている
のが現状である。
BACKGROUND OF THE INVENTION Today's portable devices have advanced tremendously. Batteries are also progressing toward batteries with higher energy density, and nickel-metal hydride storage batteries are currently desired.

ところが、ニッケルー水素蓄電池は、合金の腐食が原因
でサイクル寿命が長くないという欠点がある。
However, nickel-metal hydride batteries have the disadvantage of not having a long cycle life due to corrosion of the alloy.

そこで、その欠点を克服するために、水素吸蔵合金の表
面を耐食性のニッケル、銅などの金属で被覆することが
提案されている(特開昭61−64069号、特開昭6
1−101957号)。
Therefore, in order to overcome this drawback, it has been proposed to coat the surface of the hydrogen storage alloy with corrosion-resistant metals such as nickel and copper (Japanese Patent Application Laid-Open No. 61-64069,
1-101957).

しかし、水素吸蔵合金以外のものを加えるということは
、電池のエネルギー密度を低下させることになるので、
水素吸蔵合金の表面を金属で被覆するには、少量でその
効果の高いものが望まれる。
However, adding anything other than a hydrogen storage alloy will reduce the energy density of the battery.
In order to coat the surface of a hydrogen storage alloy with metal, it is desirable to have a small amount of metal that is highly effective.

発明が解決しようとする課題 本発明は上記従来の問題点に鑑みなされたものであり、
金属コバルトを水素吸蔵合金の表面に被覆することによ
り高容量化、サイクルの長寿命化を図るものである。
Problems to be Solved by the Invention The present invention has been made in view of the above-mentioned conventional problems.
By coating the surface of the hydrogen storage alloy with metallic cobalt, it is possible to increase the capacity and extend the cycle life.

課題を解決するための手段 本発明は上記課題を解決するべく、MmNi、Alyの
Ni、Alの一部をFe、Cu、Co、Mnの1種もし
くは2種以上で置換した水素吸蔵合金粉末の表面を金属
コバルトで被覆し、このものを耐アルカリ性金属多孔板
内に充填して電極とするものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a hydrogen storage alloy powder in which part of Ni and Al in MmNi and Aly is replaced with one or more of Fe, Cu, Co, and Mn. The surface is coated with metallic cobalt, and this is filled into an alkali-resistant metal porous plate to form an electrode.

作用 コバルトは、3d−軌道を持っている遷移金属であり、
水素極としての触媒として働き、又金属コバルトの導電
性向上の働きにより、水素吸蔵合金粉末にコバルトを被
覆し形成した電極では容量が上がり、サイクル寿命が伸
びる。
Working cobalt is a transition metal with a 3d-orbital,
Cobalt metal acts as a catalyst for hydrogen electrodes, and because metal cobalt improves conductivity, electrodes formed by coating hydrogen storage alloy powder with cobalt have increased capacity and extended cycle life.

実施例 水素吸蔵合金粉末に、アークプラズマ蒸着によりコバル
ト被覆したもの、ニッケル被覆したもの、銅被覆したも
の、グラファイト粉末を添加したもの、何も添加しない
もの、と比較すると、容量の点や、サイクル寿命の点に
違いがでる。
Examples Comparing hydrogen storage alloy powder coated with cobalt by arc plasma deposition, coated with nickel, coated with copper, coated with graphite powder, and coated with no addition of graphite powder, the capacity and cycle speed are lower. There is a difference in lifespan.

以下、本発明の詳細について説明する。The details of the present invention will be explained below.

水素愛蔵合金とその電極は、以下の方法で作製した。The hydrogen-loving alloy and its electrode were fabricated by the following method.

希土類元素の混合物であるミツシュメタルMmと、Al
、Fe、Cuの各成分元素を高周波溶解炉で溶解し、M
mNi*、? A ll+、9 F e。、3Cu6.
+の組成比の水素吸蔵合金を作製した。この合金をアル
ゴン雰囲気下で熱処理した後、200メツシユ以下に粉
砕し、水素吸蔵合金粉末を得た。この水素吸蔵合金粉末
に対しアークプラズマ蒸着により金属コバルト箔を被覆
した(10wt%)後、ポリビニルアルコールの3@t
%の水溶液でペースト状とした。ついで、このペースト
を多孔度95%のニッケル多孔体に充填し、真空乾燥後
加圧して電極を作製した。
Mitsushmetal Mm, which is a mixture of rare earth elements, and Al
, Fe, and Cu are melted in a high-frequency melting furnace to form M
mNi*,? All +, 9 Fe. ,3Cu6.
A hydrogen storage alloy with a composition ratio of + was produced. This alloy was heat treated in an argon atmosphere and then ground to 200 mesh or less to obtain a hydrogen storage alloy powder. After coating this hydrogen storage alloy powder with metal cobalt foil (10 wt%) by arc plasma deposition, 3@t of polyvinyl alcohol was applied.
% aqueous solution to form a paste. Next, this paste was filled into a nickel porous body with a porosity of 95%, vacuum dried, and then pressurized to produce an electrode.

ニッケル被覆したもの、銅被覆したものについても同様
の方法で電極を作製した。グラファイト粉末を添加した
ものについては、ペーストにするときに10@t%添加
するだけで他は同様である。
Electrodes coated with nickel and coated with copper were also produced in the same manner. Regarding those to which graphite powder was added, only 10@t% was added when making a paste, and the rest was the same.

この様に作製した水素吸蔵合金電極を負極として、対極
には、負極容量より大なるニッケル電極を用いて、比重
1.24のKOHii解凍中で充放電し、水素吸蔵合金
電極の電気化学的容量を測定した。
The hydrogen storage alloy electrode prepared in this way was used as a negative electrode, and a nickel electrode with a larger capacity than the negative electrode was used as the counter electrode, and the electrochemical capacity of the hydrogen storage alloy electrode was was measured.

充電は0.ICで150%、放電は0.20で電池電圧
がlVになるまで行なった。
Charge is 0. The IC was 150% and the discharge was 0.20 until the battery voltage reached 1V.

第1図に上記に示した電気化学的容量のサイクル変化を
示す(サイクル数に対して容量をコバルト被覆の電極の
1サイクル目の容量を100%として表わしたものであ
る)。
FIG. 1 shows the cycle change in the electrochemical capacity shown above (the capacity is expressed relative to the number of cycles, with the capacity of the cobalt-coated electrode at the first cycle being 100%).

水素吸蔵合金だけの電極は、短いサイクルで容量の低下
を来す。水素吸蔵合金!極の劣化は、合金表面に析出し
た腐食生成物、たとえば、La(OH)sの様な導電性
の無い物質によって、合金粒子間の電子移動が不可能に
なるためではないかと考えられる。グラファイト粉末を
添加した電極は、初期容量は、合金のみと同じであるが
、サイクルによる容量の低下−を防止している。その働
きは、劣化後の粒子間の導電性を確保しているものと考
えられる。
Electrodes made only of hydrogen storage alloys suffer from a decrease in capacity in short cycles. Hydrogen storage alloy! It is thought that the deterioration of the electrode is due to corrosion products deposited on the alloy surface, such as non-conductive substances such as La(OH)s, which make electron transfer between alloy particles impossible. The electrode to which graphite powder is added has the same initial capacity as the alloy alone, but the capacity is prevented from decreasing due to cycling. Its function is thought to be to ensure conductivity between particles after deterioration.

ニッケル被覆したものと、銅被覆したものは、粒子の表
面がニッケル、もしくは銅の金属層で覆われているので
、劣化後はもとより、劣化以前より導電性による効果が
現われ合金利用率が上がり、1サイクル目からやや高い
容量を示す。
For nickel-coated and copper-coated particles, the surface of the particles is covered with a nickel or copper metal layer, so the effect of conductivity appears not only after deterioration but also before deterioration, increasing the alloy utilization rate. It shows a slightly high capacity from the first cycle.

注目すべきは、水素吸蔵合金粉末をコバルト被覆した電
極の挙動であり、他のものより高い容量を示し、サイク
ル寿命も長い。
Of note is the behavior of the cobalt-coated hydrogen-absorbing alloy powder electrode, which exhibits higher capacity and longer cycle life than others.

ニッケルや銅は電解液中における、電池作動電位におい
て、耐食性のある金属であるが、コバルトは、第2図に
示すようにサイクリックポルタムグラムから考えて、以
下の反応が極板内で起こっているものと考えられ、コバ
ルトがサイクル中に溶解析出を繰り返し、水素吸蔵合金
粉末や、腐食生成物を覆い巻き込みながら、金属コバル
トの導電性ネットワークを形成するものと考えられる。
Nickel and copper are corrosion-resistant metals in the electrolyte at the battery operating potential, but with cobalt, the following reaction occurs within the electrode plate, considering the cyclic portum gram as shown in Figure 2. It is thought that cobalt repeats molten precipitation during the cycle, covering and enveloping hydrogen storage alloy powder and corrosion products, forming a conductive network of metallic cobalt.

放電         放電 Co 4 Co (II )錯イオン : Co (O
H) z充電         充電 サイクル寿命がより長くなるのは、サイクルの繰り返し
によりそのネットワークの補強がなされているものと考
えられる。
Discharge Discharge Co 4 Co (II) complex ion: Co (O
H) z Charging The longer charging cycle life is thought to be due to the reinforcement of the network through repeated cycles.

コバルトが、特異的に容量が高いのは、導電性の点板外
に次のように考えられる。3d−軌道を持つコバルトは
、水素電極における水素のイオン化触媒として知られて
いる。本発明におけるコバルトによる粉末の被覆は、放
電の律速度であるイオン化過程を、コバルトが触媒的に
働いているものと考えられる。
The reason why cobalt has a uniquely high capacitance is thought to be due to the following reasons other than the conductive point plate. Cobalt with a 3d-orbital is known as a hydrogen ionization catalyst in hydrogen electrodes. It is thought that the coating of the powder with cobalt in the present invention is because cobalt acts as a catalyst for the ionization process that determines the rate of discharge.

つまりコバルトで水素吸蔵合金粉末を被覆することが、
ニッケルや、銅で被覆するよりも、高容量化、長寿命化
に関して好ましいことがわかる。
In other words, coating the hydrogen storage alloy powder with cobalt
It can be seen that this is preferable to coating with nickel or copper in terms of higher capacity and longer life.

また、水素吸蔵合金を金属コバルトで被覆する方法とし
ては、他にCVD法、PVD法、無電解めっき法等があ
り、それぞれ有効である。
Further, as methods for coating the hydrogen storage alloy with metallic cobalt, there are other methods such as CVD method, PVD method, and electroless plating method, each of which is effective.

本実験で行なったアークプラズマ蒸着による方法の利点
は、無電解めっき法に比べ、被覆する金属コバルトの表
面積が大きくなり、コバルトの充放電中における溶解析
出反応に都合がよいことや、金属層の厚みをコントロー
ルしやすいことなどの利点がある。
The advantages of the arc plasma deposition method used in this experiment are that the surface area of the coated metal cobalt is larger than that of the electroless plating method, which is convenient for the melt deposition reaction during cobalt charging and discharging, and that the metal layer It has the advantage of being easy to control the thickness.

また、無電解めっき法にみられるような、重金属を含む
廃液の処理など、面倒な工程が省けて都合が良い。
It is also convenient because it eliminates the troublesome steps involved in electroless plating, such as the treatment of waste liquid containing heavy metals.

またM m N I X A l vの一部をFe、 
 Cu。
Also, a part of M m N I X A l v is Fe,
Cu.

Co、Mnの1種もしくは2種以上で置換した水素唆藏
合金に限定されず、一般式A B x CV(A:Mm
、Y、Ti、Hf、Zr、Ca。
It is not limited to hydrogen stimulant alloys substituted with one or more of Co, Mn, and the general formula A B x CV (A: Mm
, Y, Ti, Hf, Zr, Ca.

Th、La、  B:Ni、Co、Cu、Fe。Th, La, B: Ni, Co, Cu, Fe.

Mn、2種以上、C:Al、Cr、Si)およびZr−
Mn系、Zr−Ni系、Ti−Ni系。
Mn, two or more types, C: Al, Cr, Si) and Zr-
Mn series, Zr-Ni series, Ti-Ni series.

Mg−Ni系等の水素吸蔵合金に対しても効果を有する
ものである。
It is also effective for hydrogen storage alloys such as Mg-Ni.

なお、上記実施例では、ニッケル多孔体基板を用いた例
を示したが、これに限らず、エキスバンドメタル、メタ
ルメツシュ、ニッケルめっきパンチングメタル等を基板
として用いてもよい。
In the above embodiments, a nickel porous substrate is used, but the substrate is not limited to this, and expanded metal, metal mesh, nickel-plated punching metal, or the like may be used as the substrate.

発明の効果 上述したごと(、本発明は、エネルギー密度が高く、長
寿命の水素@成金金電極を、水素吸蔵合金粉末の表面に
、アークプラズマ蒸着によりコバルト被覆を施すだけで
提供することができるので、その工業的価値は極めて大
である。
Effects of the Invention As described above, the present invention can provide a hydrogen @ formed gold electrode with high energy density and long life by simply coating the surface of hydrogen storage alloy powder with cobalt by arc plasma deposition. Therefore, its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はサイクル数と容量の関係の図、第2憫はCoの
サイクリックポルタムグラムの図である。
FIG. 1 is a diagram showing the relationship between the number of cycles and capacity, and the second diagram is a diagram of a cyclic portum gram of Co.

Claims (1)

【特許請求の範囲】[Claims] MmNi_XAl_YのNi、Alの一部をFe、Cu
、Co、Mnの1種もしくは2種以上で置換した水素吸
蔵合金粉末の表面をアークプラズマ蒸着により金属コバ
ルトで被覆し、このものを耐アルカリ性金属多孔板内に
充填して電極とすることを特徴とするアルカリ蓄電池用
水素吸蔵合金電極。
Part of Ni and Al in MmNi_XAl_Y is replaced with Fe and Cu.
The surface of a hydrogen storage alloy powder substituted with one or more of Co, Mn, Co, and Mn is coated with metal cobalt by arc plasma deposition, and this is filled into an alkali-resistant metal porous plate to form an electrode. Hydrogen storage alloy electrode for alkaline storage batteries.
JP2296739A 1990-10-31 1990-10-31 Hydrogen absorbing alloy electrode for alkaline storage battery Pending JPH04169062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2296739A JPH04169062A (en) 1990-10-31 1990-10-31 Hydrogen absorbing alloy electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2296739A JPH04169062A (en) 1990-10-31 1990-10-31 Hydrogen absorbing alloy electrode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH04169062A true JPH04169062A (en) 1992-06-17

Family

ID=17837479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2296739A Pending JPH04169062A (en) 1990-10-31 1990-10-31 Hydrogen absorbing alloy electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH04169062A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017387A1 (en) * 1997-09-30 1999-04-08 Sanyo Electric Co., Ltd. Hydrogen absorbing allow electrode and method of producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017387A1 (en) * 1997-09-30 1999-04-08 Sanyo Electric Co., Ltd. Hydrogen absorbing allow electrode and method of producing the same
US6270547B1 (en) 1997-09-30 2001-08-07 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy electrode and process for fabricating same

Similar Documents

Publication Publication Date Title
CA2095036C (en) Metal hydride electrode, nickel electrode and nickel-hydrogen battery
US5690799A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
EP0607806A2 (en) Alkaline storage battery and method for producing the same
JPH04169062A (en) Hydrogen absorbing alloy electrode for alkaline storage battery
JPH04169059A (en) Hydrogen absorbing alloy electrode for alkaline storage battery
JPH09312157A (en) Hydrogen storage alloy electrode and manufacture thereof
JP3454615B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH04169061A (en) Hydrogen absorbing alloy electrode for alkaline storage battery
JPH04167360A (en) Hydrogen storage alloy electrode for alkaline storage battery
JPH05101821A (en) Manufacture of hydrogen storage alloy electrode
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH04169060A (en) Hydrogen absorbing alloy electrode for alkaline storage battery
JP3528333B2 (en) Nickel hydride battery and method of manufacturing the same
KR100284901B1 (en) Method for manufacturing negative electrode for NI / MH secondary battery using CU
JPH0729569A (en) Manufacture of hydrogen storage alloy electrode
JPH04245165A (en) Hydrogen absorbing alloy electrode
JPH0799690B2 (en) Method for manufacturing hydrogen storage electrode
JP2586752B2 (en) Hydrogen storage alloy electrode
JPH10340720A (en) Hydrogen storage alloy electrode and manufacture of hydrogen storage alloy electrode
KR100255291B1 (en) Zirconium and titanium alloy for hydrogen accumulation with minimum silver
JP3092262B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2929716B2 (en) Hydrogen storage alloy electrode
JP3530327B2 (en) Method for producing hydrogen storage alloy electrode
JP2553780B2 (en) Hydrogen storage alloy electrode
JP3370111B2 (en) Hydrogen storage alloy electrode