JPH04245165A - Hydrogen absorbing alloy electrode - Google Patents

Hydrogen absorbing alloy electrode

Info

Publication number
JPH04245165A
JPH04245165A JP3032222A JP3222291A JPH04245165A JP H04245165 A JPH04245165 A JP H04245165A JP 3032222 A JP3032222 A JP 3032222A JP 3222291 A JP3222291 A JP 3222291A JP H04245165 A JPH04245165 A JP H04245165A
Authority
JP
Japan
Prior art keywords
hydrogen storage
iron
storage alloy
electrode
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3032222A
Other languages
Japanese (ja)
Inventor
Hiroyuki Mori
宏之 森
Keiichi Hasegawa
圭一 長谷川
Masaharu Watada
正治 綿田
Masahiko Oshitani
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP3032222A priority Critical patent/JPH04245165A/en
Publication of JPH04245165A publication Critical patent/JPH04245165A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve a cyclic life performance by preventing corrosion of a hydrogen storage alloy electrode. CONSTITUTION:The usage of a hydrogen storage alloy electrode, in which at least one selected from iron, a ferroalloy, or a ferrous compound is mixed with the hydrogen storage alloy by 0.01-20wt.%, can improve a capacity and a cycle life characteristic in such a way that an iron, a ferroalloy, or a ferrous compound disperses into the hydrogen storage electrode to prevent a corrosion of the hydrogen storage alloy and serves for keeping conductivity between alloy particles.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ニッケル−水素蓄電池
の負極として用いられる水素吸蔵合金電極の改良に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvements in hydrogen storage alloy electrodes used as negative electrodes for nickel-hydrogen storage batteries.

【0002】0002

【従来の技術】近年、エレクトロニクス機器の軽量化に
対する要望は著しく、機器の一部をなす電池も例外でな
く、よりエネルギー密度の高い小型軽量の電池へ移りつ
つある。その一つとしてニッケル−カドミウム電池より
もエネルギー密度の高いニッケル−水素蓄電池が望まれ
ている。
BACKGROUND OF THE INVENTION In recent years, there has been a significant demand for lighter electronic equipment, and batteries that form part of these equipment are no exception, with a shift toward smaller, lighter batteries with higher energy density. As one of these, nickel-hydrogen storage batteries, which have a higher energy density than nickel-cadmium batteries, are desired.

【0003】ところで、ニッケル−水素蓄電池の実用化
において最も重要な因子は、水素吸蔵合金の腐食を防止
し、サイクル寿命を長くさせることである。そういう観
点より今までに、水素吸蔵合金の表面を耐食性のニッケ
ル、銅などの金属で被覆することが提案されている(特
開昭61−64069号、特開昭61−101957号
)。合金粉末へのこれらの金属の被覆方法は、自己触媒
型の湿式無電解めっき法などによって行なわれる。
By the way, the most important factor in the practical application of nickel-hydrogen storage batteries is to prevent corrosion of the hydrogen storage alloy and to extend the cycle life. From this point of view, it has been proposed to coat the surface of hydrogen storage alloys with corrosion-resistant metals such as nickel and copper (Japanese Patent Laid-Open Nos. 61-64069 and 61-101957). The alloy powder is coated with these metals by autocatalytic wet electroless plating or the like.

【0004】然るに合金粉末に金属箔を被覆するという
ことは、作業の工程の面で繁雑化するという欠点を有す
る。無電解めっき法を例にとれば、めっき液に含浸、攪
拌、ろ過、水洗乾燥などの工程が必要であり、めっき後
の廃液の処理などを考えると、製造のコストアップにつ
ながるという問題がある。
However, coating the alloy powder with metal foil has the disadvantage of complicating the work process. Taking electroless plating as an example, processes such as impregnation, stirring, filtration, washing and drying are required in the plating solution, and when considering the treatment of waste solution after plating, there is a problem in that it leads to increased manufacturing costs. .

【0005】又、めっき後の重量でエネルギー密度を考
えると、めっき層自体は容量に寄与しないので、エネル
ギー密度の低下を招くという問題もある。
[0005] Furthermore, when considering the energy density in terms of the weight after plating, there is also the problem that the plating layer itself does not contribute to the capacity, leading to a decrease in the energy density.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記従来の問
題点に鑑みなされたものであり、製造の工程を簡略化し
、高容量化、サイクルの長寿命化を図ることができる水
素吸蔵合金電極を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above conventional problems, and provides a hydrogen storage alloy electrode that can simplify the manufacturing process, increase capacity, and extend cycle life. It provides:

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を達成
すべく、電気化学的に水素の吸蔵・放出を繰り返すこと
が可能な水素吸蔵合金粉末に、鉄、鉄の合金又は鉄の化
合物の粉末のうち少なくとも1種以上を0.01〜20
wt%混合した水素吸蔵合金電極であり、鉄の化合物が
、鉄の酸化物、水酸化物、塩である水素吸蔵合金電極で
ある。
[Means for Solving the Problems] In order to achieve the above-mentioned problems, the present invention provides hydrogen storage alloy powder capable of electrochemically absorbing and desorbing hydrogen repeatedly, using iron, an iron alloy, or an iron compound. At least one kind of powder from 0.01 to 20
This is a hydrogen storage alloy electrode in which the iron compound is an iron oxide, hydroxide, or salt.

【0008】[0008]

【作  用】混合した鉄、鉄の合金又は鉄の化合物の粉
末のうち少なくとも1種以上の物質が、水素吸蔵合金電
極内に分散し、水素吸蔵合金の腐食を防止し、かつ粒子
間の導電性を保つ働きをすることにより、高容量でサイ
クル寿命特性が向上した水素吸蔵合金電極を実現できる
[Function] At least one of the mixed powders of iron, iron alloys, or iron compounds is dispersed within the hydrogen storage alloy electrode to prevent corrosion of the hydrogen storage alloy and conductivity between particles. By acting to maintain the properties, hydrogen storage alloy electrodes with high capacity and improved cycle life characteristics can be realized.

【0009】[0009]

【実施例】以下、本発明の詳細について説明する。水素
吸蔵合金とその電極は、以下の方法で作製した。Laと
、Ni,Alの各成分元素を高周波溶解炉で溶解し、L
aNi4.3 Al0.7 の組成比の水素吸蔵合金を
作製した。この合金をアルゴン雰囲気下で熱処理した後
、200メッシュ以下に粉砕し、水素吸蔵合金粉末を得
た。この水素吸蔵合金に対しFe粉末を10wt%混合
した後、ポリビニルアルコールの3wt%の水溶液でペ
ースト状とした。ついで、このペーストを多孔度95%
のニッケル多孔体に充填し、真空乾燥後加圧して電極(
1)を作製した。FeO粉末を混合したものについても
同様の方法で電極を(2)を作製した。
EXAMPLES The details of the present invention will be explained below. The hydrogen storage alloy and its electrode were produced by the following method. Each component element of La, Ni, and Al is melted in a high frequency melting furnace, and L
A hydrogen storage alloy having a composition ratio of aNi4.3 Al0.7 was produced. This alloy was heat treated in an argon atmosphere and then ground to 200 mesh or less to obtain a hydrogen storage alloy powder. This hydrogen storage alloy was mixed with 10 wt % Fe powder and then made into a paste with a 3 wt % aqueous solution of polyvinyl alcohol. Next, this paste was made to have a porosity of 95%.
Filled with nickel porous material, vacuum dried and then pressurized to form an electrode (
1) was produced. An electrode (2) was also produced using a mixture of FeO powder in the same manner.

【0010】この様に作製した水素吸蔵合金電極を負極
として、対極には、負極容量より大なるニッケル電極を
用いて、比重1.24のKOH電解液中で充放電し、水
素吸蔵合金電極の電気化学的容量を測定した。
The hydrogen storage alloy electrode prepared in this manner was used as a negative electrode, and a nickel electrode having a larger capacity than the negative electrode was used as the counter electrode, and the hydrogen storage alloy electrode was charged and discharged in a KOH electrolyte having a specific gravity of 1.24. The electrochemical capacity was measured.

【0011】充電は0.1Cで150%、放電は0.2
Cで電池電圧が1Vまで行なった。図1に上記に示した
電気化学的容量のサイクル変化を示す。水素吸蔵合金だ
けの電極(3)は、短いサイクルで容量の低下をきたす
。水素吸蔵合金電極の劣化は、合金表面に析出した腐食
生成物、たとえば、La(OH)3 の様な導電性の無
い物質によって、合金粒子間の電子移動が不可能になる
ためではないかと考えられる。
[0011] Charging is 150% at 0.1C, discharging is 0.2
C until the battery voltage reached 1V. FIG. 1 shows the cycle change in the electrochemical capacity shown above. The electrode (3) made of only a hydrogen storage alloy suffers from a decrease in capacity in short cycles. The deterioration of hydrogen storage alloy electrodes is thought to be due to corrosion products deposited on the alloy surface, such as non-conductive substances such as La(OH)3, which make electron transfer between alloy particles impossible. It will be done.

【0012】次に導電性を確保するために導電助剤とし
てNi粉末を水素吸蔵合金に対し10wt%混合して電
極(4)を作製した。その結果、図1に示すようにサイ
クルに対する容量の変化は1サイクル目の容量を保つと
いう経過を示した。
Next, in order to ensure conductivity, an electrode (4) was prepared by mixing 10 wt % of Ni powder as a conductive aid with the hydrogen storage alloy. As a result, as shown in FIG. 1, the change in capacity with respect to cycles showed a progression in which the capacity at the first cycle was maintained.

【0013】これに対し、Feを混合した電極(1)は
、サイクルを繰り返す毎に容量が増大し10サイクル以
降になって一定の容量を示すようになる。
On the other hand, the capacity of the electrode (1) containing Fe increases each time the cycle is repeated, and it shows a constant capacity after the 10th cycle.

【0014】FeOを混合した電極(2)は、3サイク
ルまで容量が増大し以降一定となる。それらの原因を次
のように考えている。ニッケルは、電解液中における電
池作動電位において、耐食性のある金属である。
[0014] The capacity of the electrode (2) containing FeO increases until the third cycle and then becomes constant. I think the reasons for these are as follows. Nickel is a corrosion-resistant metal at the cell operating potential in the electrolyte.

【0015】しかし鉄は、サイクル中に溶解析出を繰り
返す金属であるところが大きな特徴である。よって混合
した鉄は、水素吸蔵合金粉末がサイクル中に微粉化して
新しい反応面を形成したとしても、そこでまた金属とし
て析出し、微粉化した水素吸蔵合金粉末の集電をするの
で利用率を高めることができると考えられる。つまり、
FeやFeOの混合物は、電極内にサイクルが進むにつ
れて分散していくため集電能力が増大し、初期の容量が
増大していくものだと考えられる。Fe,FeOの初期
サイクルにおける容量増加のスピードの差は、電解液中
への溶解度の差であると考えられる。サイクルを繰り返
しても容量が低下しないのは、析出した鉄が腐食生成物
を覆い巻き込みながら、導電性ネットワークを形成する
ものと考えられるからである。また、析出した鉄によっ
て合金の腐食が抑制されているとも考えられる。実際サ
イクル後の電極のSEMで観察すると腐食が抑制されて
いることが観察できる。
However, a major feature of iron is that it is a metal that undergoes repeated melting and precipitation during cycles. Therefore, even if the hydrogen storage alloy powder is pulverized during the cycle and forms a new reaction surface, the mixed iron will precipitate there again as a metal and collect the current of the pulverized hydrogen storage alloy powder, increasing the utilization rate. It is thought that it can be done. In other words,
It is thought that the mixture of Fe and FeO is dispersed within the electrode as the cycle progresses, increasing the current collecting ability and increasing the initial capacity. The difference in the speed of capacity increase in the initial cycle between Fe and FeO is thought to be due to the difference in solubility in the electrolyte. The reason why the capacity does not decrease even after repeated cycles is thought to be that the precipitated iron forms a conductive network while covering and enveloping the corrosion products. It is also believed that the precipitated iron suppresses corrosion of the alloy. In fact, when the electrodes are observed by SEM after cycling, it can be seen that corrosion is suppressed.

【0016】したがって充放電中に鉄の錯イオンを生成
し、鉄として電極中に析出できるものであれば、鉄の化
合物が鉄の酸化物、水酸化物、塩であっても以上述べた
効果を期待できる。鉄、鉄の合金又は鉄の化合物の粉末
のうち少なくとも1種以上の混合量は、水素吸蔵合金に
対して0.01wt%の混合量からその効果が現れ、2
0wt%付近より効果が飽和することから0.01〜2
0wt%の範囲で混合される必要がある。
Therefore, as long as iron complex ions are generated during charging and discharging and can be deposited as iron in the electrode, the above-mentioned effects can be achieved even if the iron compound is an iron oxide, hydroxide, or salt. You can expect. The mixing amount of at least one kind of iron, iron alloy, or iron compound powder becomes effective from a mixing amount of 0.01 wt% with respect to the hydrogen storage alloy.
Since the effect is saturated around 0wt%, it is 0.01 to 2.
It is necessary to mix within the range of 0wt%.

【0017】なお、本実験においての混合方法は、物理
混合であったが、しかしマイクロカプセルなど他の混合
方法でも同様の効果を期待できる。ただ製造工程を簡略
化できる点で物理混合は都合が良い。
Although the mixing method used in this experiment was physical mixing, similar effects can be expected with other mixing methods such as microcapsules. However, physical mixing is advantageous in that it can simplify the manufacturing process.

【0018】また、本実験では、ニッケル多孔体基板を
用いたが、本発明はこれに限らず、エキスパンドメタル
、メタルメッシュ、ニッケルめっきパンチングメタル等
を基板として用いることもできる。
Further, in this experiment, a nickel porous substrate was used, but the present invention is not limited to this, and expanded metal, metal mesh, nickel-plated punching metal, etc. can also be used as the substrate.

【0019】[0019]

【発明の効果】上述したごとく、本発明はエネルギー密
度が高く、長寿命の水素吸蔵電極を、鉄、鉄の合金又は
鉄の化合物の粉末をただ混合するだけで提供することが
できるので、その工業的価値は極めて大である。
[Effects of the Invention] As described above, the present invention can provide a hydrogen storage electrode with high energy density and long life by simply mixing powders of iron, iron alloys, or iron compounds. The industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】サイクル数と負極容量との関係を示す図である
FIG. 1 is a diagram showing the relationship between the number of cycles and negative electrode capacity.

【符号の説明】[Explanation of symbols]

1  Feを10wt%添加した電池 2  FeOを10wt%添加した電池3  無添加の
電池 4  Niを10wt%添加した電池
1 Battery with 10 wt% of Fe added 2 Battery with 10 wt% of FeO added 3 Battery with no additives 4 Battery with 10 wt% of Ni added

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  水素吸蔵合金に、鉄、鉄の合金又は鉄
の化合物のうち少なくとも1種以上を0.01〜20w
t%混合した水素吸蔵合金電極。
[Claim 1] Adding 0.01 to 20 w of at least one of iron, iron alloys, or iron compounds to the hydrogen storage alloy.
Hydrogen storage alloy electrode mixed with t%.
【請求項2】  鉄の化合物が、鉄の酸化物、水酸化物
、塩である請求項1記載の水素吸蔵合金電極。
2. The hydrogen storage alloy electrode according to claim 1, wherein the iron compound is an oxide, hydroxide, or salt of iron.
JP3032222A 1991-01-31 1991-01-31 Hydrogen absorbing alloy electrode Pending JPH04245165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3032222A JPH04245165A (en) 1991-01-31 1991-01-31 Hydrogen absorbing alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3032222A JPH04245165A (en) 1991-01-31 1991-01-31 Hydrogen absorbing alloy electrode

Publications (1)

Publication Number Publication Date
JPH04245165A true JPH04245165A (en) 1992-09-01

Family

ID=12352925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3032222A Pending JPH04245165A (en) 1991-01-31 1991-01-31 Hydrogen absorbing alloy electrode

Country Status (1)

Country Link
JP (1) JPH04245165A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444361B1 (en) 1999-06-14 2002-09-03 Matsushita Electric Industrial Co., Ltd. Active material for hydrogen storage alloy electrode and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6444361B1 (en) 1999-06-14 2002-09-03 Matsushita Electric Industrial Co., Ltd. Active material for hydrogen storage alloy electrode and method for producing the same

Similar Documents

Publication Publication Date Title
CA2095036C (en) Metal hydride electrode, nickel electrode and nickel-hydrogen battery
US6632568B1 (en) Non-sintered nickel electrode with excellent over-discharge characteristics, an alkaline storage cell having the non-sintered nickel electrode, and a manufacturing method of the non-sintered nickel electrode
JP2004247288A (en) Sealed type nickel-hydrogen storage battery and manufacturing method therefor
JPH07326353A (en) Manufacture of hydrogen storage alloy electrode
JP3010950B2 (en) Alkaline storage battery and method for manufacturing the same
US5837402A (en) Zinc powders for use in batteries and a secondary alkaline zinc battery using said zinc powders
US5690799A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
JP5142428B2 (en) Method for producing hydrogen storage alloy electrode for nickel metal hydride storage battery
JPH04245165A (en) Hydrogen absorbing alloy electrode
JP3433008B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3616941B2 (en) Zinc powder for batteries and alkaline zinc secondary battery using the same
JPH04169059A (en) Hydrogen absorbing alloy electrode for alkaline storage battery
JP3547920B2 (en) Method for producing hydrogen storage alloy electrode
JP3387314B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3516312B2 (en) Method for producing hydrogen storage alloy electrode
JPH0793138B2 (en) Positive electrode plate for battery and manufacturing method thereof
JP4357133B2 (en) Hydrogen storage alloy for electrode, hydrogen storage alloy electrode and alkaline storage battery
JPH10149824A (en) Manufacture of hydrogen storage alloy electrode
JP3317099B2 (en) Hydrogen storage alloy powder for alkaline storage battery, method for producing the same, and method for producing hydrogen storage electrode
JPH04167360A (en) Hydrogen storage alloy electrode for alkaline storage battery
JP3530327B2 (en) Method for producing hydrogen storage alloy electrode
JPH04169061A (en) Hydrogen absorbing alloy electrode for alkaline storage battery
JPH04169060A (en) Hydrogen absorbing alloy electrode for alkaline storage battery
JPH0574447A (en) Hydrogen occluding electrode
JP2022134586A (en) Nickel metal hydride storage battery