JPH0416754A - Analyzer - Google Patents

Analyzer

Info

Publication number
JPH0416754A
JPH0416754A JP2122192A JP12219290A JPH0416754A JP H0416754 A JPH0416754 A JP H0416754A JP 2122192 A JP2122192 A JP 2122192A JP 12219290 A JP12219290 A JP 12219290A JP H0416754 A JPH0416754 A JP H0416754A
Authority
JP
Japan
Prior art keywords
sample
scanning
scanning line
ray
component element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2122192A
Other languages
Japanese (ja)
Other versions
JPH081424B2 (en
Inventor
Hideto Komi
秀人 古味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2122192A priority Critical patent/JPH081424B2/en
Publication of JPH0416754A publication Critical patent/JPH0416754A/en
Publication of JPH081424B2 publication Critical patent/JPH081424B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To sequentially and successively display a composition ratio of sample components along a scanning line on a sample surface together with scanning by dispersing secondary radiation irradiated from a sample while the sample surface is being scanned by an excitation beam. CONSTITUTION:A sample moving device 3 is driven by a constant distance along a scanning line to be analyzed by an irradiation point of an electron beam on a sample S to be measured, and spectrometers 41,42 corresponding sample components are sequentially positioned on three points on a scanning range per each measurement point on the scanning line to measure X-ray intensity at a characteristic X-ray wavelength position of each element. Then net characteristic X-ray intensity of each component element of the sample S to be measured and first approximate concentration of each element are used to calculate respective component element concentrations C1 to Cn by corrective calculation, and then the spectrometers are moved to the next measurement point. The obtained C1 to Cn are sequentially output to a display device 9 to draw a graph showing a relative change in concentrations of respective component elements along the scanning line.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は試料面を励起線で照射し、試料から放射される
二次放射線を分光することにより試料成分の定量を行う
分析法で、試料面を走査しながら分析する場合に、試料
の定量的成分構成をリアルタイムで表示できる分析装置
に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is an analysis method for quantifying sample components by irradiating the sample surface with excitation radiation and spectroscopy of the secondary radiation emitted from the sample. The present invention relates to an analysis device that can display the quantitative component composition of a sample in real time when performing analysis while scanning a surface.

(従来の技術) 試料面に電子線を照射し、試料から放射されるX線を分
光することにより試料面の元素分析を行うことができる
。この方法で定量分析を行う場合、試料成分素各々の純
品或は濃度既知の標準試料を用いて各元素の特性X線強
度を測定してこれを分母とし、被測定試料の各元素特性
Xv1強度を分子として比例的に各成分元素の濃度を求
めこれを第1近似とする。各成分元素の特性X線強度は
他の共存元素による吸収、他元素からの特性X線による
励起等の影響を受けでいるので、上述したような単純比
例計算によって夫々の元素の濃度は決定できず、上述し
た第1近似の濃度に補正演算を施して夫々の元素の濃度
を決定するようにしなければならない。この場合の補正
演算自体は公知のものである。また標準試料についても
被測定試料についても各元素の特性X線強度は直接求ま
らず、各元素の特性X線のピークはX線スペクトルのベ
ースライン上に乗っているので、真の特性X線強度は直
接測定されるX線強度にこのベースラインの補正を行っ
て初めて求まるものである。
(Prior Art) Elemental analysis of the sample surface can be performed by irradiating the sample surface with an electron beam and spectrally analyzing the X-rays emitted from the sample. When performing quantitative analysis using this method, the characteristic X-ray intensity of each element is measured using a pure product or a standard sample of known concentration of each sample component element, and this is used as the denominator, and the characteristic Xv1 of each element of the sample to be measured is calculated. The concentration of each component element is determined proportionally with the intensity as the numerator, and this is taken as a first approximation. The characteristic X-ray intensity of each component element is affected by absorption by other coexisting elements, excitation by characteristic X-rays from other elements, etc., so the concentration of each element cannot be determined by simple proportional calculations as described above. First, the concentration of each element must be determined by performing a correction calculation on the concentration of the first approximation described above. The correction calculation itself in this case is well known. In addition, the characteristic X-ray intensity of each element cannot be directly determined for both the standard sample and the measured sample, and the peak of the characteristic X-ray of each element is on the baseline of the X-ray spectrum, so the true characteristic The ray intensity can only be determined by correcting this baseline to the directly measured X-ray intensity.

このようにX線分光分析法によって試料の定量分析を行
う場合、被測定試料より得られる各元素の特性X線につ
いての測定値を直ちに各元素濃度と関係づけることがで
きないので、試料面を励起線で走査し、走査線に沿って
の元素の構成比率の変化をリアルタイムで表示する装置
はなかった。
When performing quantitative analysis of a sample using X-ray spectroscopy in this way, it is not possible to immediately relate the measured values of characteristic X-rays of each element obtained from the sample to be measured with the concentration of each element, so it is necessary to excite the sample surface. There was no device that could scan a line and display changes in the composition ratio of elements along the scanning line in real time.

同様のことはX線分光分析の場合に限られず、例えばX
線光電子分光分析法の場合でも云えることである。
The same thing is not limited to X-ray spectroscopy; for example,
The same can be said for line photoelectron spectroscopy.

(発明が解決しようとする課り 本発明は試料面を励起線で走査しながら、試料から放射
される二次放射線を分光することにより、試料面の走査
線に沿う試料成分の構成比を走査と同時に順次継続的に
表示できる分析装置を提供しようとするものである。
(Issues to be solved by the invention) The present invention scans the sample surface with an excitation line and spectrally spectra the secondary radiation emitted from the sample, thereby scanning the composition ratio of sample components along the scanning line of the sample surface. The present invention aims to provide an analysis device that can simultaneously display data sequentially and continuously.

(課題を解決するための手段) 試料面を励起線で走査する手段と、試料から放射される
二次放射線を分光する手段と、分光された二次放射線ス
ペクトル上で試料成分元素のピーク中心およびその両側
のバックグラウンド位置のスペクトル強度から各元素の
ピーク強度を求める手段と、各成分元素の標準試料につ
いて上記各手段を通して得られる標準試料についての各
元素のピーク強度を記憶させておく手段と、上記各元素
の標準試料についてのピーク強度と比測定試料について
上記各装置を通して得られる各元素のピーク強度とから
比例的に各成分元素の第1近似濃度を算出し、第1近似
濃度から各成分元素の濃度を決定する補正演算を行うデ
ータ処理装置とにより分析装置を構成した。
(Means for solving the problem) A means for scanning the sample surface with an excitation line, a means for spectrally dispersing the secondary radiation emitted from the sample, and a means for determining the peak center and the peak center of the sample component element on the spectroscopic secondary radiation spectrum. means for determining the peak intensity of each element from the spectral intensities at background positions on both sides thereof; and means for storing the peak intensities of each element for standard samples obtained through the above-mentioned means for standard samples of each component element; The first approximate concentration of each component element is calculated proportionally from the peak intensity of the standard sample of each of the above elements and the peak intensity of each element obtained through each of the above devices for the ratio measurement sample, and the first approximate concentration of each component is calculated from the first approximate concentration. The analyzer was composed of a data processing device that performs correction calculations to determine the concentration of elements.

(作用) 上述構成によると、予め試料を構成している各成分元素
の標準試料について、バックグラウンドを補正した正味
の各元素の二次放射線スペクトルのピーク強度古来めて
おくと、その結果が記憶されているので、被測定試料に
ついて試料面を励起線で走査して行くと、走査線上の各
測定点毎にリアルタイムで各成分元素の濃度が算出され
る。リアルタイムに各成分濃度が求まるので、試料面走
査と同時的に試料面の走査線に沿う成分比を順次表示し
て行くことが可能となる。
(Function) According to the above configuration, if the peak intensity of the net secondary radiation spectrum of each element with background correction is determined in advance for the standard sample of each component element constituting the sample, the result will be memorized. Therefore, when the sample surface of the sample to be measured is scanned with the excitation line, the concentration of each component element is calculated in real time for each measurement point on the scanning line. Since the concentration of each component is determined in real time, it is possible to sequentially display the component ratios along the scanning line of the sample surface simultaneously with the sample surface scanning.

(実施例) 第1図に本発明の一実施例を示す。■は電子銃、2は対
物レンズで電子ビームを試料面に収束させる。3は試料
移動装置で、試料を電子ビームと直角の方向に移動させ
ることにより、試料面上で電子ビーム照射点が移動する
。電子銃1.対物レンズ2.試料移動装置3によって試
料面を励起線で走査する手段が構成されている。41.
42は試料Sの周囲に配置された複数のX線分光器で、
図では二つだけ示しであるが、分析しようとする元素数
だけ配置されている。51.52は各X線分光器のX線
検出器である。各X線分光器は検出しようとする元素の
特性X線波長を検出する状態を中心に小さな波長範囲を
走査可能であり、61.62は夫々のX線分光器で波長
走査を行うための走査駆動装置である。7はデータ処理
制御装置で、試料移動袋y13.各X線分光器の波長走
査駆動装置の制御および各X線検出器51 、.52等
の出力信号に対してデータ処理を行う。8はデータ処理
に必要なデータを記憶させておくメモリ、9はデータ処
理の結果を表示する表示装置でCRTとかプロッタを用
いることができる。
(Example) FIG. 1 shows an example of the present invention. (2) is an electron gun, and (2) is an objective lens that focuses the electron beam onto the sample surface. Reference numeral 3 denotes a sample moving device which moves the electron beam irradiation point on the sample surface by moving the sample in a direction perpendicular to the electron beam. Electron gun 1. Objective lens 2. The sample moving device 3 constitutes means for scanning the sample surface with an excitation line. 41.
42 is a plurality of X-ray spectrometers arranged around the sample S,
Although only two are shown in the figure, they are arranged as many times as there are elements to be analyzed. 51 and 52 are X-ray detectors of each X-ray spectrometer. Each X-ray spectrometer is capable of scanning a small wavelength range centered around the state in which it detects the characteristic X-ray wavelength of the element it is trying to detect, and 61.62 is the scanning range for wavelength scanning with each X-ray spectrometer. It is a driving device. 7 is a data processing control device, and a sample transfer bag y13. Control of the wavelength scanning drive device of each X-ray spectrometer and each X-ray detector 51, . Data processing is performed on the output signal such as 52. 8 is a memory for storing data necessary for data processing, and 9 is a display device for displaying the results of data processing, which can be a CRT or a plotter.

上述した装置を用いて被測定試料の一つの走査線に沿っ
ての元素定量分析を行う手順を説明する。試料の成分元
素は予め判明しているものとする。成分元素が不明の場
合は上述装置において、一つのX線分光器を用いて波長
走査を行い、X線スペクトル全体的を測定して定性的に
成分元素を決定する。試料成分元素が判明しているので
、複数のX線分光器を一つずつ試料の成分元素に対応さ
せて、夫々のX線分光器の波長走査の中心および走査幅
を設定する。次に各成分元素の標準試料を用意する。標
準試料は濃度100%の純品試料がよいが、任意既知濃
度のものであればよい。各標準試料毎に電子ビームを照
射し、その元素の特性X線波長位置および、そのピーク
の両割のバックグラウンド位置(予め設定した波長走査
幅の両端波長位置)の3点でX線強度を測定し、これを
Jsi、Bs11.Bs12とする。データ処理制御装
置はこれらのデータから Ts i=J s i −(Bs i 1+Bs i2
)/2’ ! ” 1 + 2 p・・・n)を算出し
、これをi番目の元素の標準試料の正味の特性X線強度
としてメモリ8に記憶させておく。この演算の意味は第
2図で明らかなように、ピーク高さからベースラインレ
ベルの平均を引算しているのである。
A procedure for performing quantitative elemental analysis along one scanning line of a sample to be measured using the above-described apparatus will be described. It is assumed that the component elements of the sample are known in advance. If the component elements are unknown, wavelength scanning is performed using one X-ray spectrometer in the above-mentioned apparatus, and the entire X-ray spectrum is measured to qualitatively determine the component elements. Since the component elements of the sample are known, a plurality of X-ray spectrometers are made to correspond to the component elements of the sample one by one, and the center and scanning width of the wavelength scan of each X-ray spectrometer is set. Next, prepare standard samples for each component element. The standard sample is preferably a pure sample with a concentration of 100%, but it may be of any known concentration. Each standard sample is irradiated with an electron beam, and the X-ray intensity is measured at three points: the characteristic X-ray wavelength position of the element, and the background position at both ends of the peak (both end wavelength positions of the preset wavelength scanning width). Jsi, Bs11. Bs12. From these data, the data processing control device calculates Ts i=J s i −(Bs i 1+Bs i2
)/2'! 1 + 2 p...n) and store this in the memory 8 as the net characteristic X-ray intensity of the standard sample of the i-th element.The meaning of this calculation is clear in Figure 2. Thus, the average baseline level is subtracted from the peak height.

次に被測定試料について、電子ビームの照射点が分析し
ようとする走査線に沿うように一定距離ずつ、試料移動
装置3を駆動させ、走査線上の各測定点毎に、試料成分
対応X線分光器を上述した走査範囲上の三点に順次位置
させ、各元素の特性X線波長位置のX線強度Jui、B
uil、Bui2を測定し、 Iu i=J u i −(・Bu i I+Bu i
2)/2を算出し、これを被測定試料の各成分元素の正
味の特性X線強度とし、各元素の第1近似濃度K iを によって算出し、このに1〜Knを用い、ZAF補正演
算によって各成分元素の濃度C1〜Cnを算出して、次
の測定点に移動して行く。上述のようにして求められた
C1〜Cnは順次表示装置1i9に出力して第3図に示
すような走査線に沿う各成分元素の濃度の相対的変化の
表示グラフを画いて行く。
Next, for the sample to be measured, the sample moving device 3 is driven a certain distance at a time so that the irradiation point of the electron beam is along the scanning line to be analyzed. The X-ray intensity Jui, B at the characteristic X-ray wavelength position of each element is
uil, Bui2 are measured, Iu i=J u i −(・Bu i I+Bu i
2) /2 is calculated, and this is taken as the net characteristic X-ray intensity of each component element of the sample to be measured, and the first approximate concentration K i of each element is calculated by, and using 1 to Kn, ZAF correction is performed. The concentrations C1 to Cn of each component element are calculated by calculation, and the measurement point is moved to the next measurement point. C1 to Cn obtained as described above are sequentially outputted to the display device 1i9 to draw a display graph of the relative change in concentration of each component element along the scanning line as shown in FIG.

(発明の効果) 本発明によれば、試料面の走査線に沿う成分元素の構成
比率の変化がリアルタイムで求められるので、偏析とか
組成むらの生じ易い材料の品質の試験とか、異常部分の
検出等が迅速に行える。
(Effects of the Invention) According to the present invention, changes in the composition ratio of component elements along the scanning line of the sample surface can be determined in real time, so it can be used to test the quality of materials that are prone to segregation or compositional unevenness, and to detect abnormal parts. etc. can be done quickly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例装置の構成を示すブロック図
、第2図はバックグラウンド補正の説明図、第3図は上
記実施例装置で得られる測定記録のグラフである。 1・・・電子銃、2・・・対物レンズ、3・・・試料移
動装置、S・・・試料、41.42・・・X線分光器、
51゜52・・・X線検出器、61.62・・・走査駆
動装置、7・・・データ処理、制御装置、8・・・メモ
リ、9・・・表示装置。 代理人  弁理士 縣  浩 介 手続補正書(方式) 1.事件の表示  平成2年特許願第122192号2
、発明の名称 分析装置 3、補正する者 事件との関係  特許出願人 住 所 京都市中京区西ノ京桑原町1番地名称(199
)株式会社島津製作所 代表者西八條 實 4、代 理 人 住 所  大阪市東区横堀5丁目16番地中甚ビル内氏
 名  (7045)弁理士  縣  浩 介5 補正
命令の日付 平成 2年 8月28日     −一′−6、補正の
対象 第3図
FIG. 1 is a block diagram showing the configuration of an apparatus according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of background correction, and FIG. 3 is a graph of measurement records obtained with the apparatus according to the embodiment. 1... Electron gun, 2... Objective lens, 3... Sample moving device, S... Sample, 41.42... X-ray spectrometer,
51°52...X-ray detector, 61.62...Scanning drive device, 7...Data processing, control device, 8...Memory, 9...Display device. Agent Patent Attorney Hiroshi Agata Procedural Amendment (Format) 1. Display of case 1990 Patent Application No. 122192 2
, Invention title analysis device 3, Relationship with the amended person case Patent applicant address Name: 1 Kuwabara-cho, Nishinokyo, Nakagyo-ku, Kyoto City (199
) Shimadzu Corporation Representative Minoru Nishihachijo 4, Agent Address Nakajin Building, 5-16 Yokobori, Higashi-ku, Osaka Name (7045) Patent attorney Kosuke Agata 5 Date of amendment order August 1990 28th -1'-6, Figure 3 subject to correction

Claims (1)

【特許請求の範囲】[Claims] 試料面を励起線で走査する手段と、試料から放射される
二次放射線を分光する手段と、分光された二次放射線ス
ペクトル上で試料成分元素のピーク中心およびその両側
のバックグラウンド位置のスペクトル強度を測定する手
段と、各成分元素の上記ピーク中心位置およびその両側
のバックグラウンド位置のスペクトル強度から各元素の
ピーク強度を求める手段と、各成分元素の標準試料につ
いて上記手段を通して得られる標準試料についての各元
素のピーク強度を記憶させておく手段と、上記各元素の
標準試料についてのピーク強度と被測定試料について上
記各装置を通して得られる各元素のピーク強度とから比
例的に各成分元素の第1近似濃度を算出し、第1近似濃
度から各成分元素の濃度を決定する補正演算を行うデー
タ処理装置とよりなることを特徴とする分析装置。
means for scanning the sample surface with an excitation line; means for dispersing secondary radiation emitted from the sample; and spectral intensities at the peak center of the sample component element and background positions on both sides of the peak center on the separated secondary radiation spectrum. a means for determining the peak intensity of each element from the spectral intensity of the peak center position of each component element and the background positions on both sides thereof, and a standard sample of each component element obtained through the above means. A means for storing the peak intensity of each element in the above, and a means for storing the peak intensity of each component element in proportion to the peak intensity of the standard sample of each of the above elements and the peak intensity of each element obtained through each of the above devices for the sample to be measured. An analysis device comprising: a data processing device that calculates a first approximate concentration and performs a correction calculation to determine the concentration of each component element from the first approximate concentration.
JP2122192A 1990-05-11 1990-05-11 Analysis equipment Expired - Lifetime JPH081424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2122192A JPH081424B2 (en) 1990-05-11 1990-05-11 Analysis equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2122192A JPH081424B2 (en) 1990-05-11 1990-05-11 Analysis equipment

Publications (2)

Publication Number Publication Date
JPH0416754A true JPH0416754A (en) 1992-01-21
JPH081424B2 JPH081424B2 (en) 1996-01-10

Family

ID=14829851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2122192A Expired - Lifetime JPH081424B2 (en) 1990-05-11 1990-05-11 Analysis equipment

Country Status (1)

Country Link
JP (1) JPH081424B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058146A (en) * 2010-09-10 2012-03-22 Jeol Ltd X-ray detection system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313043A (en) * 1987-06-15 1988-12-21 Jeol Ltd Background estimating method using mean atomic number
JPS6457157A (en) * 1987-08-27 1989-03-03 Jeol Ltd Simple quantitative analysis method with wavelength dispersion type x-ray spectroscope

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313043A (en) * 1987-06-15 1988-12-21 Jeol Ltd Background estimating method using mean atomic number
JPS6457157A (en) * 1987-08-27 1989-03-03 Jeol Ltd Simple quantitative analysis method with wavelength dispersion type x-ray spectroscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058146A (en) * 2010-09-10 2012-03-22 Jeol Ltd X-ray detection system

Also Published As

Publication number Publication date
JPH081424B2 (en) 1996-01-10

Similar Documents

Publication Publication Date Title
US4397556A (en) Material-testing method and apparatus
US10768125B2 (en) Wavelength dispersive x-ray fluorescence spectrometer and x-ray fluorescence analyzing method using the same
US20120230468A1 (en) X-ray analyzer
Koirtyohann et al. Effect of modulation wave form on the utility of emission background corrections obtained with an oscillating refractor plate
JPH0416754A (en) Analyzer
IL126620A (en) Analysis of chemical elements
JP2928688B2 (en) Pollution element analysis method and device
JP4710366B2 (en) Infrared microscope
JP3291251B2 (en) X-ray fluorescence analyzer
US11391682B2 (en) Auger electron microscope and analysis method
JPH0247542A (en) Quantitative analysis using x-ray spectroscope
JPS61284642A (en) Sample cooler for spectroscopic measurement
JP3950642B2 (en) X-ray analyzer with electronic excitation
CN114641687A (en) Fluorescent X-ray analyzer
JPH0431054B2 (en)
JP2522224B2 (en) X-ray fluorescence analysis method
KR0172623B1 (en) Method and apparatus for analyzing contaminative element concentrations
JP3266896B2 (en) X-ray fluorescence analyzer
JPS58196446A (en) Analysis employing x-rays microanalyzer
JP3236838B2 (en) X-ray fluorescence analysis method and apparatus
JPS63165742A (en) Formation of calibration curve
JP2003042978A (en) X-ray fluorescent analytical equipment
JP2003229084A (en) Surface analyzer
JPH0247543A (en) Displaying system in wavelength dispersion type x-ray spectrscope
JPS6353456A (en) Monochromic x ray image measuring apparatus