JPH04165682A - Superconducting element and manufacture thereof - Google Patents

Superconducting element and manufacture thereof

Info

Publication number
JPH04165682A
JPH04165682A JP2292817A JP29281790A JPH04165682A JP H04165682 A JPH04165682 A JP H04165682A JP 2292817 A JP2292817 A JP 2292817A JP 29281790 A JP29281790 A JP 29281790A JP H04165682 A JPH04165682 A JP H04165682A
Authority
JP
Japan
Prior art keywords
superconducting
channel
oxide
oxide superconductor
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2292817A
Other languages
Japanese (ja)
Other versions
JP2641977B2 (en
Inventor
Takao Nakamura
孝夫 中村
Hiroshi Inada
博史 稲田
Michitomo Iiyama
飯山 道朝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2292817A priority Critical patent/JP2641977B2/en
Priority to CA002054470A priority patent/CA2054470C/en
Priority to DE69125456T priority patent/DE69125456T2/en
Priority to EP91402917A priority patent/EP0488837B1/en
Publication of JPH04165682A publication Critical patent/JPH04165682A/en
Priority to US08/551,366 priority patent/US5714767A/en
Application granted granted Critical
Publication of JP2641977B2 publication Critical patent/JP2641977B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To dispense with a fine processing and to obtain a high-performance element manufactured using an oxide superconductor film by a method wherein a superconducting channel has a constituent element identical with that of the oxide superconductor film arranged under the lower part of the channel and is defined by an oxide insulating region having the amount of oxygen less than that of the oxide superconductor film. CONSTITUTION:An element has a superconducting channel 10, which has a constituent element identical with that of an oxide superconductor film formed on a substrate 5 and is formed in a non-conductive oxide thin film 1 having the amount of oxygen less than that of the oxide superconductor film and showing an insulation property at a low temperature, and superconducting source and drain regions 12 and 13. There is an insulating region 50 on the lower side of the channel 10 and a gate electrode 4 is formed on the channel 10 via a gate insulating layer 6 consisting of MgO, SiN or the like. The regions 12 and 13 are formed in the parts on both sides of the channel 10. Thereby, as a superconducting proximity effect is not utilized, a fine processing technique is unnecessary and the high-performance element can be manufactured using the oxide superconductor film.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超電導素子およびその作製方法に関する。よ
り詳細には、新規な構成の超電導素子およびその作製方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a superconducting element and a method for manufacturing the same. More specifically, the present invention relates to a superconducting element with a novel configuration and a method for manufacturing the same.

従来の技術 超電導を利用した代表的な素子に、ジョセフソン素子が
ある。ジョセフソン素子は、一対の超電導体をトンネル
障壁を介して結合した構成であり、高速スイッチング動
作が可能である。しかしながら、ジョセフソン素子は2
端子の素子であり、論理回路を実現するた約には複雑な
回路構成になってしまう。
A Josephson device is a typical device using conventional technology superconductivity. A Josephson device has a configuration in which a pair of superconductors are coupled via a tunnel barrier, and is capable of high-speed switching operation. However, the Josephson element is 2
Since it is a terminal element, it requires a complicated circuit configuration to realize a logic circuit.

一方、超電導を利用した3端子素子としては、超電導ベ
ーストランジスタ、超電導FET等がある。第3図に、
超電導ベーストランジスタの概念図を示す。第3図の超
電導ベーストランジスタは、超電導体または常電導体で
構成されたエミッタ21、絶縁体で構成されたトンネル
障壁22、超電導体で構成されたベース23、半導体ア
イソレータ24および常電導体で構成されたコレクタ2
5を積層した構成になっている。この超電導ベーストラ
ンジスタは、トンネル障壁22を通過した高速電子を利
用した低電力消費で高速動作を行う素子である。
On the other hand, three-terminal elements using superconductivity include superconducting base transistors, superconducting FETs, and the like. In Figure 3,
A conceptual diagram of a superconducting base transistor is shown. The superconducting base transistor shown in FIG. 3 is composed of an emitter 21 made of a superconductor or a normal conductor, a tunnel barrier 22 made of an insulator, a base 23 made of a superconductor, a semiconductor isolator 24, and a normal conductor. collector 2
It has a structure in which 5 layers are stacked. This superconducting base transistor is an element that operates at high speed with low power consumption using high speed electrons that have passed through the tunnel barrier 22.

第4図に、超電導FETの概念図を示す。第4図の超電
導F E? ′丁は、超電導体で構成されている超電導
ソース電極41および超電導ドレイン電極42が、半導
体層43上に互いに近接して配置されている。超電導ソ
ース電極41および超電導ドレイン電極42の間の部分
の半導体層43は、下側が大きく削られ厚さが薄くなっ
ている。また、半導体層43の下側表面にはゲート絶縁
膜46が形成され、ゲート絶縁膜46上にゲート電極4
4が設けられている。
FIG. 4 shows a conceptual diagram of a superconducting FET. Superconducting FE in Figure 4? A superconducting source electrode 41 and a superconducting drain electrode 42 made of a superconductor are arranged close to each other on a semiconductor layer 43. The semiconductor layer 43 in the portion between the superconducting source electrode 41 and the superconducting drain electrode 42 has its lower side largely shaved and has a reduced thickness. Further, a gate insulating film 46 is formed on the lower surface of the semiconductor layer 43, and a gate electrode 4 is formed on the gate insulating film 46.
4 is provided.

超電導FETは、近接効果で超電導ソース電極41およ
び超電導ドレイン電極42間の半導体層43を流れる超
電導電流を、ゲート電圧で制御する低電力消費で高速動
作を行う素子である。
A superconducting FET is an element that operates at high speed with low power consumption and controls a superconducting current flowing through a semiconductor layer 43 between a superconducting source electrode 41 and a superconducting drain electrode 42 by a gate voltage due to the proximity effect.

さらに、ソース電極、ドレイン電極間に超電導体でチャ
ネルを形成し、この超電導チャネルを流れる電流をゲー
ト電極に印加する電圧で制御する3端子の超電導素子も
発表されている。
Furthermore, a three-terminal superconducting element has been announced in which a channel is formed between a source electrode and a drain electrode using a superconductor, and the current flowing through this superconducting channel is controlled by a voltage applied to a gate electrode.

発明が解決しようとする課題 上記の超電導ベーストランジスタおよび超電導FETは
、いずれも半導体層と超電導体層とが積層された部分を
有する。ところが、近年研究が進んでいる酸化物超電導
体を使用して、半導体層と超電導体層との積層構造を作
製することは困難である。また、この構造が作製できて
も半導体層と超電導体層の間の界面の制御が難しく、素
子として満足な動作をしなかった。
Problems to be Solved by the Invention The above-described superconducting base transistor and superconducting FET both have a portion in which a semiconductor layer and a superconductor layer are laminated. However, it is difficult to fabricate a stacked structure of a semiconductor layer and a superconductor layer using oxide superconductors, which have been studied in recent years. Moreover, even if this structure could be fabricated, it was difficult to control the interface between the semiconductor layer and the superconductor layer, and the device did not operate satisfactorily.

また、超電導FETは、近接効果を利用するため、超電
導ソース電極41および超電導ドレイン電極42を、そ
れぞれを構成する超電導体のコヒーレンス長の数倍程度
以内に近接させて作製しなければならない。特に酸化物
超電導体は、コヒーレンス長が短いので、酸化物超電導
体を使用した場合には、超電導ソース電極41および超
電導ドレイン電極42間の距離は、数IQnm以下にし
なければならない。このような微細加工は非常に困難で
あり、従来は酸化物超電導体を使用した超電導FETを
再現性よく作製できなかった。
Furthermore, in order to utilize the proximity effect, the superconducting FET must be manufactured so that the superconducting source electrode 41 and the superconducting drain electrode 42 are located close to each other within several times the coherence length of the superconductor that constitutes each. In particular, an oxide superconductor has a short coherence length, so when an oxide superconductor is used, the distance between the superconducting source electrode 41 and the superconducting drain electrode 42 must be several IQ nm or less. Such microfabrication is extremely difficult, and conventionally it has not been possible to fabricate superconducting FETs using oxide superconductors with good reproducibility.

さらに、従来の超電導チャネルを有する超電導素子は、
変調動作は確認されたが、キャリア密度が高いため、完
全なオン/オフ動作ができなかった。酸化物超電導体は
、キャリア密度が低いので、超電導チャネルに使用する
ことにより、完全なオン/オフ動作を行う上記の素子の
実現の可能性が期待されている。しかしながら、超電導
チャネルを5nm程度の犀さにしなければならず、その
ような構成を実現することは困難であった。
Furthermore, superconducting devices with conventional superconducting channels are
Although modulation operation was confirmed, complete on/off operation was not possible due to the high carrier density. Since oxide superconductors have a low carrier density, it is expected that by using them for superconducting channels, it will be possible to realize the above-mentioned devices that perform perfect on/off operation. However, the superconducting channel had to be approximately 5 nm thick, and it was difficult to realize such a configuration.

そこで本発明の目的は、上記従来技術の問題点を解決し
た、新規な構成の超電導素子およびその作製方法を提供
することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a superconducting element having a novel configuration and a method for manufacturing the same, which solves the problems of the prior art described above.

課題を解決するための手段 本発明に従うと、酸化物超電導体で形成された超電導チ
ャネルと、該超電導チャネルの両側に配置され、前記超
電導チャネルを構成する酸化物超電導体で構成された超
電導ソース領域および超電導ドレイン領域と、前記超電
導ソース領域および前記超電導ドレイン領域上に配置さ
れ、超電導チャネルに電流を流すソース電極およびドレ
イン電極と、前記超電導チャネル上にゲート絶縁層を介
して配置されて該超電導チャネルに流れる電流を制御す
るゲート電極を具備する超電導素子において、前記超電
導チャネルが、下方に配置された前記超電導チャネルを
構成する酸化物超電導体と同じ構成元素を有し、前記酸
化物超電導体よりも酸素量が少ない酸化物による絶縁領
域により画成されていることを特徴とする超電導素子が
提供される。
Means for Solving the Problems According to the present invention, there is provided a superconducting channel formed of an oxide superconductor, and a superconducting source region disposed on both sides of the superconducting channel and composed of the oxide superconductor constituting the superconducting channel. and a superconducting drain region, a source electrode and a drain electrode that are arranged on the superconducting source region and the superconducting drain region and allow current to flow through the superconducting channel, and a superconducting channel that is arranged on the superconducting channel with a gate insulating layer interposed therebetween. In a superconducting element comprising a gate electrode that controls a current flowing in the superconducting channel, the superconducting channel has the same constituent elements as the oxide superconductor constituting the superconducting channel disposed below, and has a higher content than the oxide superconductor. A superconducting element is provided that is defined by an insulating region made of an oxide with a low oxygen content.

また、本発明では、上記の超電導素子を作製する方法と
して、前記酸化物超電導体と同じ構成元素を有し、前記
酸化物超電導体よりも酸素量が少ない酸化物の薄膜を成
膜し、該酸化物薄膜上に前記ゲート電極を形成した後、
酸素イオンを注入して前記超電導ソース領域および前記
超電導ドレイン領域を形成する工程および酸素雰囲気中
で前記デー1−電極に通電して発熱させ、前記酸化物薄
膜中に酸素を拡散させて前記ゲート電極の下方に超電導
チャネルを形成する工程を含むことを特徴とする超電導
素子の作製方法が提供される。
Further, in the present invention, as a method for producing the above-mentioned superconducting element, a thin film of an oxide having the same constituent elements as the oxide superconductor and a lower amount of oxygen than the oxide superconductor is formed; After forming the gate electrode on the oxide thin film,
A step of implanting oxygen ions to form the superconducting source region and the superconducting drain region, and supplying electricity to the first electrode in an oxygen atmosphere to generate heat to diffuse oxygen into the oxide thin film to form the gate electrode. A method for manufacturing a superconducting element is provided, the method comprising the step of forming a superconducting channel under a superconducting channel.

作用 本発明の超電導素子は、酸化物超電導体による超電導チ
ャネルと、超電導チャネル両端に配置された酸化物超電
導体による超電導ソース領域および超電導ドレイン領域
と、超電導チャネルに電流を流すソース電極およびドレ
イン電極と、超電導チャネルを流れる電流を制御するゲ
ート電極とを具備する。本発明の超電導素子では、超電
導チャネルが下方に配置されていて超電導チャネルを構
成する酸化物超電導体と同じ構成元素を有し、前記酸化
物超電導体よりも酸素量が少ない酸化物による絶縁領域
により画成されている。
Function The superconducting element of the present invention includes a superconducting channel made of an oxide superconductor, a superconducting source region and a superconducting drain region made of the oxide superconductor arranged at both ends of the superconducting channel, and a source electrode and a drain electrode that allow current to flow through the superconducting channel. , and a gate electrode for controlling the current flowing through the superconducting channel. In the superconducting element of the present invention, the superconducting channel is arranged below and has the same constituent elements as the oxide superconductor constituting the superconducting channel, and is formed by an insulating region made of an oxide having a lower amount of oxygen than the oxide superconductor. It is defined.

超電導チャネルは、ゲート電極に印加された電圧で開閉
させるために、ゲート電極により発生される電界の方向
で、草さが5nm程度でなければならない。
In order for the superconducting channel to be opened and closed by the voltage applied to the gate electrode, the grass must be approximately 5 nm thick in the direction of the electric field generated by the gate electrode.

上記の極薄の超電導チャネルを形成するため、酸化物超
電導体と同じ構成元素を有し、酸化物超電導体よりも酸
素量が少ない酸化物の薄膜を成膜し、その薄膜を酸素雰
囲気中で熱処理し、表面から酸素を拡散させて、この酸
化物薄膜の表面に近い部分を超電導体に変える方法があ
る。酸化物超電導体は、結晶中の酸素原子の数が不安定
であり、熱処理等により変化させることが可能である。
In order to form the ultra-thin superconducting channel mentioned above, a thin film of oxide that has the same constituent elements as the oxide superconductor and a lower amount of oxygen than the oxide superconductor is deposited, and the thin film is placed in an oxygen atmosphere. There is a method of heat-treating and diffusing oxygen from the surface to transform the portion of this thin oxide film near the surface into a superconductor. The number of oxygen atoms in the crystal of an oxide superconductor is unstable and can be changed by heat treatment or the like.

また、酸化物超電導体は、結晶中の酸素数によりその特
性が変化しやすく、特に酸素数が適正な値より小さい場
合には、臨界温度が大幅に低下したり、超電導性を失う
In addition, the properties of oxide superconductors tend to change depending on the number of oxygen in the crystal, and especially when the number of oxygen is smaller than an appropriate value, the critical temperature decreases significantly or the superconductivity is lost.

上記の方法では、結晶中の酸素数が小さい酸化物超電導
体、実際には、酸化物超電導体と同じ構成元素を有し、
前記酸化物超電導体よりも酸素量が少ない酸化物の薄膜
を形成し、酸素雰囲気中で熱処理して酸素を拡散させて
超電導体とする。また、より深い部分まで超電導体に変
えるには、酸素イオンを注入する。この場合、酸素分圧
、処理温度、処理時間、酸素イオンの加速電圧等を加減
することにより、形成する酸化物超電導体を任意の厚さ
にすることが可能である。
In the above method, an oxide superconductor with a small number of oxygen in the crystal, which actually has the same constituent elements as the oxide superconductor,
A thin film of an oxide containing less oxygen than the oxide superconductor is formed, and heat treated in an oxygen atmosphere to diffuse oxygen to form a superconductor. Additionally, oxygen ions are implanted to convert deeper parts into superconductors. In this case, by adjusting the oxygen partial pressure, treatment temperature, treatment time, oxygen ion acceleration voltage, etc., it is possible to form the oxide superconductor to have an arbitrary thickness.

本発明の方法では、さらにその方法を改良し、上記の熱
処理の際の加熱を、ゲート電極を発熱させることにより
行う。即ち、上記の酸化物薄膜上の適当な位置にゲート
絶縁層およびゲート電極を作製し、このゲート電極に通
電して発熱させることにより、酸化物薄膜のゲート電極
直下の部分を局所的に加熱する。本発明の方法によれば
、酸化物薄膜の、ゲート電極直下の部分のみが局所的に
加熱され、その部分のみに酸素が拡散されて、酸化物超
電導体となる。従って、超電導チャネルの位置は、自動
的にゲート電極直下に決定する。
In the method of the present invention, the method is further improved, and the heating during the above heat treatment is performed by generating heat in the gate electrode. That is, a gate insulating layer and a gate electrode are formed at appropriate positions on the oxide thin film, and the gate electrode is energized to generate heat, thereby locally heating the portion of the oxide thin film directly below the gate electrode. . According to the method of the present invention, only the portion of the oxide thin film immediately below the gate electrode is locally heated, and oxygen is diffused only into that portion, thereby forming an oxide superconductor. Therefore, the position of the superconducting channel is automatically determined directly below the gate electrode.

本発明の方法では、最初に約200nm程度の厚さの酸
化物超電導体と同じ構成元素を有し、酸化物超電導体よ
りも酸素量が少ない酸化物の薄膜を成膜する。この酸化
物薄膜は基板上に形成することが好ましく、厚さは、超
電導ソース領域および超電導ドレイン領域に十分な厚さ
とする。
In the method of the present invention, first, a thin film of an oxide having a thickness of about 200 nm and having the same constituent elements as the oxide superconductor and a lower amount of oxygen than the oxide superconductor is formed. This thin oxide film is preferably formed on the substrate and has a thickness sufficient to cover the superconducting source and drain regions.

この酸化物薄膜に酸素イオンを注入して、超電導ソース
領域および超電導ドレイン領域を形成する。超電導ソー
ス領域および超電導ドレイン領域を形成したら、上記の
熱処理を行い、超電導チャネルを形成する。また、酸化
物超電導体は結晶のC軸と垂直な方向の酸素の拡散係数
が大きく、その方向に酸素が動きやすいので、超電導チ
ャネルとなる部分の結晶のC軸に平行な側面が露出する
よう加工して熱処理することも好ましい。
Oxygen ions are implanted into this oxide thin film to form a superconducting source region and a superconducting drain region. After forming the superconducting source region and superconducting drain region, the above heat treatment is performed to form a superconducting channel. In addition, in oxide superconductors, the diffusion coefficient of oxygen in the direction perpendicular to the C-axis of the crystal is large, and oxygen moves easily in that direction. It is also preferable to process and heat treat.

本発明の超電導素子はN1g○(100)基板、SrT
iO2(100)基板、CdNdA10. (OO1)
基板等の酸化物単結晶基板上に作製されていることが好
ましい。これらの基板上には、配向性の高い結晶からな
る上記の酸化物薄膜を成長させることが可能であるので
好ましい。また、表面にλIgAlso<およびBaT
iO3が被覆されているSi基板を使用することも好ま
しい。
The superconducting element of the present invention is a N1g○(100) substrate, SrT
iO2 (100) substrate, CdNdA10. (OO1)
It is preferable to fabricate on an oxide single crystal substrate such as a substrate. These substrates are preferable because it is possible to grow the above-mentioned oxide thin film made of highly oriented crystals. Also, on the surface λIgAlso< and BaT
It is also preferred to use a Si substrate coated with iO3.

本発明の超電導素子には、Y −Ba、−Cu −0系
酸化物超電導体、T3】−3r−Ca−CU−0系酸化
物超電導体、T1−Ba−Ca−Cu−○系酸化物超電
導体等任意の酸化物超電導体を使用することができる。
The superconducting element of the present invention includes a Y-Ba, -Cu-0 based oxide superconductor, a T3]-3r-Ca-CU-0 based oxide superconductor, and a T1-Ba-Ca-Cu-○ based oxide superconductor. Any oxide superconductor can be used, such as a superconductor.

以下、本発すを実施例により、さらに詳しく説明するが
、以下の開示は本発明の単なる実施例に過ぎず、本発明
の技術的範囲をなんら制限するものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples, but the following disclosure is merely an example of the present invention and does not limit the technical scope of the present invention in any way.

実施例 第1図に、本発明の超電導素子の断面図を示す。Example FIG. 1 shows a cross-sectional view of the superconducting element of the present invention.

第1図の超電導素子は、基板5上に成膜された酸化物超
電導体と同じ構成元素を有し、酸化物超電導体よりも酸
素量が少ない低温で絶縁性を示す非超電導性の酸化物の
薄膜1中に形成された超電導チャネル10、超電導ソー
ス領域12および超電導ドレイン領域13を有する。超
電導チャネル10の下側には絶縁領域50があり、超電
導チャネル10cD摩さは約5nmである。
The superconducting element shown in FIG. 1 is a non-superconducting oxide that has the same constituent elements as the oxide superconductor deposited on the substrate 5 and exhibits insulating properties at low temperatures with less oxygen content than the oxide superconductor. A superconducting channel 10, a superconducting source region 12 and a superconducting drain region 13 are formed in a thin film 1 of the present invention. There is an insulating region 50 on the underside of the superconducting channel 10, and the superconducting channel 10cD has a fineness of about 5 nm.

超電導チャネル10の上にはMgO1SiN等のゲート
絶縁層6を介してゲート電極4が形成されている。超電
導チャネル10の両側の部分には、摩さ約200nmの
超電導ソース領域12および超電導ドレイン領域13が
形成されている。超電導ソース領域12および超電導ド
レイン領域13の上には、それぞれソース電極2および
ドレイン電極3が設けられている。ソース電極2、ドレ
イン電極3およびゲート電極4は、いずれも八Uまたは
T1、W等の高融点金属、またはこれらのシIJ ”I
Iイドで形成されている。
A gate electrode 4 is formed on the superconducting channel 10 via a gate insulating layer 6 made of MgO1SiN or the like. On both sides of the superconducting channel 10, a superconducting source region 12 and a superconducting drain region 13 with a thickness of about 200 nm are formed. A source electrode 2 and a drain electrode 3 are provided on the superconducting source region 12 and the superconducting drain region 13, respectively. The source electrode 2, drain electrode 3, and gate electrode 4 are all made of high melting point metals such as 8U, T1, W, or these metals.
It is formed by Iid.

第2図を参照して、本発明の超電導素子を本発明の方法
で作製する手順を説明する。まず、第2図(a)に示す
ような基板5の表面に第2図(b)に示すよう約200
nm程度のY、Ba2(:u+07−Y酸化物薄膜1を
オファクシススバッタリング法で形成する。
Referring to FIG. 2, the procedure for manufacturing the superconducting element of the present invention using the method of the present invention will be described. First, on the surface of the substrate 5 as shown in FIG. 2(a), about 20
A Y, Ba2(:u+07-Y) oxide thin film 1 of approximately nm thickness is formed by an oxidation sputtering method.

¥1.Ba2CTo0,1酸化物は、Y 、Ba、2C
u+ Ch−x酸化物超電導体と比較すると、y>xで
絶縁性を示し、結晶構造等は等しい。オファクシススバ
ッタリング法で酸化物薄膜1を形成する場合の成膜条件
を以下に示す。
¥1. Ba2CTo0,1 oxide is Y, Ba, 2C
Compared to the u+ Ch-x oxide superconductor, it exhibits insulating properties when y>x and has the same crystal structure. The film-forming conditions for forming the oxide thin film 1 by the off-axis sputtering method are shown below.

スパッタリングガス   Ar  :90%02:10
% 圧    力          10  Pa基板温
度  700℃ 基板5としては、Mg0(100)基板、5rTi03
(100)基板、CdNdAl0.  (001)等の
絶縁体基板、または表面に絶縁膜を有するSi等の半導
体基板が好まし7い。この81基板の表面にはCVD法
で&1gA1□0.膜が形成され、その上にBaT i
 O3膜がスパッタリング法で積層されていることが好
ましい。
Sputtering gas Ar:90%02:10
% Pressure 10 Pa Substrate temperature 700°C As the substrate 5, Mg0 (100) substrate, 5rTi03
(100) substrate, CdNdAl0. An insulating substrate such as (001) or a semiconductor substrate such as Si having an insulating film on the surface is preferable. The surface of this 81 substrate was coated with &1gA1□0. A film is formed on which BaT i
Preferably, the O3 film is laminated by sputtering.

酸化物超電導体としては、Y−Ba−Cu−0系酸化物
超電導体の他Bi −3r −Ca−Cu−0系酸化物
超電導体、TI −Ba−Ca−Cu−〇系酸化物超電
導体が好ましく、C軸配向の薄膜とすることが好ましい
Examples of oxide superconductors include Y-Ba-Cu-0-based oxide superconductors, Bi-3r-Ca-Cu-0-based oxide superconductors, and TI-Ba-Ca-Cu-〇-based oxide superconductors. is preferable, and a thin film with C-axis orientation is preferable.

これは、C軸配向の酸化物超電導薄膜は、基板と平行な
方向の臨界電流密度が大きいからである。
This is because the C-axis oriented oxide superconducting thin film has a large critical current density in the direction parallel to the substrate.

次に、第2図(C)に示すよう酸化物薄膜1上にMgO
3iN等の絶縁膜16を形成する。絶縁膜16の厚さは
約IQnm以上のトンネル電流が無視できる厚さにする
。また、絶縁膜16は、酸化物超電導薄膜との界面で大
きな準位を作らない絶縁体を用いることが好ましく、機
械的応力の減少の点から、酸化物超電導体と組成の近い
絶縁膜を連続形成することも好ましい。
Next, as shown in FIG. 2(C), MgO
An insulating film 16 of 3iN or the like is formed. The thickness of the insulating film 16 is set so that a tunnel current of about IQ nm or more can be ignored. In addition, it is preferable to use an insulator that does not create a large level at the interface with the oxide superconducting thin film for the insulating film 16, and from the viewpoint of reducing mechanical stress, an insulating film having a composition similar to that of the oxide superconductor is used continuously. It is also preferable to form.

絶縁膜16上に第2図(d)に示すようゲート電極用の
金属膜14を積層する。上述のようにこの金属膜14は
、AuまたはT1、W等の高融点金属、またはこれらの
シリサイドで形成する。金属膜14および絶縁膜16を
反応性イオンエツチング、Arイオンミリング等でエツ
チングし、第2図(e)に示すようゲート電極4および
絶縁層6を形成する。絶縁膜16をエツチングする場合
には、必要に応じてサイドエッチを促進し、絶縁層6の
長さを減少させる。
A metal film 14 for a gate electrode is laminated on the insulating film 16 as shown in FIG. 2(d). As described above, this metal film 14 is formed of Au, a high melting point metal such as T1, W, etc., or a silicide thereof. The metal film 14 and the insulating film 16 are etched by reactive ion etching, Ar ion milling, etc. to form the gate electrode 4 and the insulating layer 6 as shown in FIG. 2(e). When etching the insulating film 16, side etching is promoted as necessary to reduce the length of the insulating layer 6.

ゲート電極4および絶縁層6を形成したら、第2図(f
)に示すよう酸化物薄膜1に酸素イオンを注入し、超電
導ソース領域12および超電導ドレイン領域13を形成
する。酸素イオンの注入条件を以下に示す。
After forming the gate electrode 4 and the insulating layer 6, as shown in FIG.
), oxygen ions are implanted into the oxide thin film 1 to form a superconducting source region 12 and a superconducting drain region 13. The oxygen ion implantation conditions are shown below.

加速電圧    40kV ドーズ量  1×10′5〜1×10′6個/crl超
電導ソース領域12および超電導ドレイン領域13を形
成したら、第2図(g)に示すようArイオンミリング
等で異方性エツチングを行い、酸化物超電導体の超電導
ソース領域12および超電導ドレイン領域13上をエツ
チングして、酸化物薄膜1のゲート絶縁層6の下の部分
11の側面を露出させる。次いで、酸素雰囲気中で、ゲ
ート電極4に通電して発熱させ、酸化物薄膜1のゲート
絶縁層6の下の部分11に酸素を拡散させて第2図(社
)に示すよう超電導チャネル10を形成する。この場合
、必要に応じて酸化物薄膜1全体も加熱する。熱処理条
件を以下に示す。
Accelerating voltage: 40 kV Dose: 1 x 10'5 to 1 x 10'6/crl After forming the superconducting source region 12 and superconducting drain region 13, anisotropic etching is performed using Ar ion milling, etc., as shown in Fig. 2(g). Then, the superconducting source region 12 and superconducting drain region 13 of the oxide superconductor are etched to expose the side surface of the portion 11 of the oxide thin film 1 below the gate insulating layer 6. Next, in an oxygen atmosphere, electricity is applied to the gate electrode 4 to generate heat, and oxygen is diffused into the portion 11 of the oxide thin film 1 below the gate insulating layer 6, thereby forming a superconducting channel 10 as shown in FIG. Form. In this case, the entire oxide thin film 1 is also heated if necessary. The heat treatment conditions are shown below.

加熱温度   350℃ 酸素分圧 lX10’Pa 保持時間   1 時間 最後に第2図(i)に示すようゲート電極4と同様の材
料を用いて、超電導ソース領域12および超電導ドレイ
ン領域13それぞれの上にソース電極2およびドレイン
電極3を形成して、本発明の超電導素子が完成する。
Heating temperature: 350°C Oxygen partial pressure: 1×10'Pa Holding time: 1 hour Finally, as shown in FIG. After forming the electrode 2 and the drain electrode 3, the superconducting element of the present invention is completed.

本発明の超電導素子を本発明の方法で作製すると、超電
導FETを作製する場合に要求される微細加工技術の制
限が緩和される。また、従って、作製が容易であり、素
子の性能も安定しており、再現性もよい。
When the superconducting element of the present invention is manufactured by the method of the present invention, restrictions on microfabrication techniques required when manufacturing a superconducting FET are relaxed. Moreover, it is therefore easy to manufacture, the performance of the device is stable, and the reproducibility is good.

発明の詳細 な説明したように、本発明の超電導素r・は、超電導チ
ャネル中を流れる超電導電流をゲート電圧で制御する構
成となっている。従って、従来の超電導FETのように
、超電導近接効果を利用していないので、微細加工技術
が不要である。すなわぢ、本発明の超電導素子では、超
電導近接効果が生じる距離(酸化物超電導体の場合は数
IQnm以下)に近接させて配置した一対の超電導体電
極を作製する微細加工技術が不要である。また、ジョセ
フンン素子を作製するときに必要な、極薄のトンネル障
壁層を超電導体層間に配置する工程も不要である。さら
に、超電導体と半導体を積層する必要もないので、酸化
物超電導体を使用して高性能な素子が作製できる。
As described in detail, the superconducting element r of the present invention has a structure in which the superconducting current flowing in the superconducting channel is controlled by the gate voltage. Therefore, unlike conventional superconducting FETs, since the superconducting proximity effect is not utilized, microfabrication technology is not required. In other words, the superconducting element of the present invention does not require microfabrication technology to fabricate a pair of superconductor electrodes placed close to each other at a distance where the superconducting proximity effect occurs (several IQ nm or less in the case of oxide superconductors). . Furthermore, there is no need for the step of arranging an extremely thin tunnel barrier layer between the superconductor layers, which is necessary when manufacturing a Josephson device. Furthermore, since there is no need to laminate a superconductor and a semiconductor, high-performance devices can be manufactured using oxide superconductors.

本発明の超電導素子で、最も制度が要求される加工は、
超電導チャネル、ゲート絶縁層の作製、配置であるが、
本発明の方法によれば、ゲート電極の下にゲート絶縁層
および超電導チャネルが自動的に配置されるセルファラ
イン効果が利用できるので、微細加工は必要ない。また
、ゲート絶縁層は、酸素拡散で酸素を抜いて形成するた
め、制御性よく作製することが可能である。
The processing that requires the most precision in the superconducting element of the present invention is as follows:
Regarding the preparation and arrangement of the superconducting channel and gate insulating layer,
According to the method of the present invention, the self-line effect in which the gate insulating layer and the superconducting channel are automatically placed under the gate electrode can be utilized, so no microfabrication is required. Further, since the gate insulating layer is formed by removing oxygen by oxygen diffusion, it can be manufactured with good controllability.

本発明により、超電導技術の電子デバイスへの応用がさ
らに促進される。
The present invention further promotes the application of superconducting technology to electronic devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の超電導素子の概略図であり、第2図
は、本発明の方法により本発明の超電導素子を作製する
場合の工程を示す概略図であり、第3図は、超電導ベー
ストランジスタの概略図であり、 第4図は、超電導FETの概略図である。 〔主な参照番号〕 1・・・酸化物薄膜、 2・・・ソース電極、 3・・・ドレイン電極、 4・・・ゲート電極、  5・・・基板特許出願人 、
住友電気工業株式会社
FIG. 1 is a schematic diagram of the superconducting device of the present invention, FIG. 2 is a schematic diagram showing the steps for producing the superconducting device of the present invention by the method of the present invention, and FIG. 3 is a schematic diagram of the superconducting device of the present invention. FIG. 4 is a schematic diagram of a base transistor; FIG. 4 is a schematic diagram of a superconducting FET. [Main reference numbers] 1... Oxide thin film, 2... Source electrode, 3... Drain electrode, 4... Gate electrode, 5... Substrate patent applicant,
Sumitomo Electric Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)酸化物超電導体で形成された超電導チャネルと、
該超電導チャネルの両側に配置され、前記超電導チャネ
ルを構成する酸化物超電導体で構成された超電導ソース
領域および超電導ドレイン領域と、前記超電導ソース領
域および前記超電導ドレイン領域上に配置され、超電導
チャネルに電流を流すソース電極およびドレイン電極と
、前記超電導チャネル上にゲート絶縁層を介して配置さ
れて該超電導チャネルに流れる電流を制御するゲート電
極を具備する超電導素子において、前記超電導チャネル
が、下方に配置された前記超電導チャネルを構成する酸
化物超電導体と同じ構成元素を有し、前記酸化物超電導
体よりも酸素量が少ない酸化物による絶縁領域により画
成されていることを特徴とする超電導素子。(2)請求
項1に記載の超電導素子を作製する方法において、前記
酸化物超電導体と同じ構成元素を有し、前記酸化物超電
導体よりも酸素量が少ない酸化物の薄膜を成膜し、該酸
化物薄膜上に前記ゲート電極を形成した後、酸素イオン
を注入して前記超電導ソース領域および前記超電導ドレ
イン領域を形成する工程および酸素雰囲気中で前記ゲー
ト電極に通電して発熱させ、前記酸化物薄膜中に酸素を
拡散させて前記ゲート電極の下方に超電導チャネルを形
成する工程を含むことを特徴とする超電導素子の作製方
法。
(1) A superconducting channel formed of an oxide superconductor,
A superconducting source region and a superconducting drain region, which are arranged on both sides of the superconducting channel and are made of an oxide superconductor constituting the superconducting channel, and which are arranged on the superconducting source region and the superconducting drain region, and which supply current to the superconducting channel. A superconducting element comprising a source electrode and a drain electrode through which current flows, and a gate electrode disposed above the superconducting channel via a gate insulating layer to control the current flowing through the superconducting channel, wherein the superconducting channel is disposed below. A superconducting element defined by an insulating region made of an oxide having the same constituent elements as the oxide superconductor constituting the superconducting channel and having a lower oxygen content than the oxide superconductor. (2) In the method for producing a superconducting element according to claim 1, a thin film of an oxide having the same constituent elements as the oxide superconductor and a lower amount of oxygen than the oxide superconductor is formed, After forming the gate electrode on the oxide thin film, a step of implanting oxygen ions to form the superconducting source region and the superconducting drain region, and applying electricity to the gate electrode in an oxygen atmosphere to generate heat to remove the oxidation 1. A method for manufacturing a superconducting device, comprising the step of diffusing oxygen into a thin film to form a superconducting channel below the gate electrode.
JP2292817A 1990-10-30 1990-10-30 Superconducting element fabrication method Expired - Lifetime JP2641977B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2292817A JP2641977B2 (en) 1990-10-30 1990-10-30 Superconducting element fabrication method
CA002054470A CA2054470C (en) 1990-10-30 1991-10-29 Method for manufacturing superconducting device having a reduced thickness of oxide superconducting layer and superconducting device manufactured thereby
DE69125456T DE69125456T2 (en) 1990-10-30 1991-10-30 Method for producing a superconducting device with a reduced thickness of the superconducting layer and superconducting device produced thereby
EP91402917A EP0488837B1 (en) 1990-10-30 1991-10-30 Method for manufacturing superconducting device having a reduced thickness of oxide superconducting layer and superconducting device manufactured thereby
US08/551,366 US5714767A (en) 1990-10-30 1995-11-01 Method for manufacturing superconducting device having a reduced thickness of oxide superconducting layer and superconducting device manufactured thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2292817A JP2641977B2 (en) 1990-10-30 1990-10-30 Superconducting element fabrication method

Publications (2)

Publication Number Publication Date
JPH04165682A true JPH04165682A (en) 1992-06-11
JP2641977B2 JP2641977B2 (en) 1997-08-20

Family

ID=17786735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2292817A Expired - Lifetime JP2641977B2 (en) 1990-10-30 1990-10-30 Superconducting element fabrication method

Country Status (1)

Country Link
JP (1) JP2641977B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281481A (en) * 1987-05-13 1988-11-17 Hitachi Ltd Superconducting switching element
JPS6428876A (en) * 1987-07-23 1989-01-31 Matsushita Electric Ind Co Ltd Manufacture of superconducting 3-terminal element
JPS6465886A (en) * 1987-09-07 1989-03-13 Sumitomo Electric Industries Manufacture of high-tenperature superconducting device
JPH01170080A (en) * 1987-12-25 1989-07-05 Furukawa Electric Co Ltd:The Superconducting fet element
JPH0272685A (en) * 1988-09-07 1990-03-12 Fujitsu Ltd Method for forming weakly coupled superconductor part
JPH02234479A (en) * 1989-03-07 1990-09-17 Nec Corp Superconducting device and manufacture thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281481A (en) * 1987-05-13 1988-11-17 Hitachi Ltd Superconducting switching element
JPS6428876A (en) * 1987-07-23 1989-01-31 Matsushita Electric Ind Co Ltd Manufacture of superconducting 3-terminal element
JPS6465886A (en) * 1987-09-07 1989-03-13 Sumitomo Electric Industries Manufacture of high-tenperature superconducting device
JPH01170080A (en) * 1987-12-25 1989-07-05 Furukawa Electric Co Ltd:The Superconducting fet element
JPH0272685A (en) * 1988-09-07 1990-03-12 Fujitsu Ltd Method for forming weakly coupled superconductor part
JPH02234479A (en) * 1989-03-07 1990-09-17 Nec Corp Superconducting device and manufacture thereof

Also Published As

Publication number Publication date
JP2641977B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
JPS61206279A (en) Superconductive element
US5717222A (en) Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material and method for manufacturing the same
JPH04165682A (en) Superconducting element and manufacture thereof
JP2641973B2 (en) Superconducting element and manufacturing method thereof
JP2641978B2 (en) Superconducting element and fabrication method
JP2641971B2 (en) Superconducting element and fabrication method
JP2641974B2 (en) Superconducting element and fabrication method
JP2641970B2 (en) Superconducting element and fabrication method
JP2667289B2 (en) Superconducting element and fabrication method
JP2641969B2 (en) Superconducting element and fabrication method
JP2599500B2 (en) Superconducting element and fabrication method
JP2597747B2 (en) Superconducting element and fabrication method
JP2691065B2 (en) Superconducting element and fabrication method
JP2641966B2 (en) Superconducting element and fabrication method
JP2597745B2 (en) Superconducting element and fabrication method
JP2738144B2 (en) Superconducting element and fabrication method
JP2656853B2 (en) Superconducting element and fabrication method
JP2599498B2 (en) Superconducting element and fabrication method
JP2641975B2 (en) Superconducting element and fabrication method
JPH04127587A (en) Manufacture of superconductive element
JP2641976B2 (en) Superconducting element and fabrication method
JP2647251B2 (en) Superconducting element and fabrication method
JP2614941B2 (en) Superconducting element and fabrication method
JPH04167572A (en) Superconductive element and manufacture thereof
JPH04192381A (en) Josephson junction element