JPH0416565A - Conductive sialon sintered body and production thereof - Google Patents

Conductive sialon sintered body and production thereof

Info

Publication number
JPH0416565A
JPH0416565A JP2120016A JP12001690A JPH0416565A JP H0416565 A JPH0416565 A JP H0416565A JP 2120016 A JP2120016 A JP 2120016A JP 12001690 A JP12001690 A JP 12001690A JP H0416565 A JPH0416565 A JP H0416565A
Authority
JP
Japan
Prior art keywords
oxide
volume
sintered body
nitride
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2120016A
Other languages
Japanese (ja)
Inventor
Hideo Ide
井出 秀夫
Hiroshi Kubo
紘 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2120016A priority Critical patent/JPH0416565A/en
Publication of JPH0416565A publication Critical patent/JPH0416565A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To improve thermal impact resistance by mixing respectively specific ratios of raw materials of beta type sialon, nitride of Ti, Y2O3 and/or CeO2, oxide of Ni and/or oxide of Co, molding the mixture, and sintering the molding after heat treating in an N2 atmosphere. CONSTITUTION:The powder mixture formed by compounding Si3N4, AlN and Al2O3 in such a manner that the Z in the beta type sialon sintered body expressed by formula attains a prescribed value, and the nitride powder of Ti, such as TiN, are mixed to attain 22 to 50vol.% (hereafter %) of the total volume, >=1 kinds of the Y2O3 powder and CeO2 powder as sintering assistants are so mixed as to attain 0.2 to 5.4% of the total volume, and >=1 kinds of the oxide powder of Ni, such as NiO, and oxide powder of Co, such as Co3O4, are so mixed as to attain 0.3 to 2.1% of the total volume. The mixture is then molded. This molding is held for >=1 hours at 1550 deg.C to 1650 deg.C in an atm. or pressurized gaseous N2 atmosphere and is then held and sintered for >=2 hours at 1700 to 1840 deg.C, by which the conductive sialon sintered body having the high thermal impact resistance is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はサイアロン焼結体およびその製造方法に関する
ものであり、特に一般式(Sib−zuzozNe−z
)で表されるβ型サイアロンを主体とする導電性焼結体
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a sialon sintered body and a method for manufacturing the same.
) This relates to a conductive sintered body mainly composed of β-type SiAlON.

従来の技術 β型サイアロン焼結体は、鉄などの金属が比較的凝着し
にくいこと、高温強度および耐酸化性に優れ、熱膨張係
数が小さく耐熱衝撃性が大きいこと等の利点があるため
、近年種々の分野で応用が試みられている。もしβ型サ
イアロン焼結体が導電性を有すれば、急速な加熱冷却を
行う通電体1応用分野は更に広がると考えられる。しか
しβ型サイアロン焼結体自身は絶縁体であり、このまま
では通電体として使用することはできない。
Conventional technology β-type sialon sintered bodies have the advantages of being relatively hard to adhere to metals such as iron, having excellent high-temperature strength and oxidation resistance, and having a small coefficient of thermal expansion and high thermal shock resistance. , in recent years, attempts have been made to apply it in various fields. If the β-type sialon sintered body has electrical conductivity, it is thought that the field of application of the current-carrying body 1 that performs rapid heating and cooling will further expand. However, the β-type sialon sintered body itself is an insulator and cannot be used as a current-carrying body as it is.

最近、β型サイアロンにIVa、Va、VI a M 
元素の酸化物、窒化物、炭化物を添加して導電性を付与
し、放電加工を可能としたサイアロン焼結体を得ること
が提案されている(特開昭82−285177) 。
Recently, IVa, Va, VI a M in β-type sialon
It has been proposed to add oxides, nitrides, and carbides of elements to impart conductivity to obtain a sialon sintered body that can be subjected to electrical discharge machining (Japanese Patent Laid-Open No. 82-285177).

これによりβ型サイアロンを通電体として使用すること
も可能となる。
This also makes it possible to use β-type sialon as a current-carrying body.

発明が解決しようとする課題 本発明者は、上記公知技術による導電性サイア0ン焼結
体を通電体に適用すべく実験検討を行った結果、耐熱衝
撃性を向上させるには導電相であるTiの窒化物を減ら
す方が望ましいという結論を得た。
Problems to be Solved by the Invention The present inventor conducted an experimental study to apply the conductive sintered body according to the above-mentioned known technology to a current-carrying body, and found that in order to improve thermal shock resistance, a conductive phase is required. It was concluded that it is desirable to reduce the amount of Ti nitride.

すなわち、Tiの窒化物はサイアロンに比べて熱膨張係
数が大きい、従って、導電性サイアロン焼結体の耐熱衝
撃性はTiの窒化物の量に依存する。
That is, Ti nitride has a larger coefficient of thermal expansion than Sialon. Therefore, the thermal shock resistance of the conductive Sialon sintered body depends on the amount of Ti nitride.

一方、比抵抗もTiの窒化物の量に依存し、Tiの窒化
物が少ないほど比抵抗が増加し電流が流れにくくなる。
On the other hand, the specific resistance also depends on the amount of Ti nitride, and the smaller the amount of Ti nitride, the more the specific resistance increases and the more difficult it is for current to flow.

本発明は、上記事情に鑑み、所定の比抵抗を確保しつつ
且つ従来よりも高い耐熱衝撃性を提供することを目的と
するものである。
In view of the above circumstances, it is an object of the present invention to provide a thermal shock resistance higher than that of the prior art while ensuring a predetermined specific resistance.

課題を解決するための手段 り2目的を達成するために、水弟1の発明はβ型サイア
ロン(Si6−2 uzO2NB−2)と、T1の窒化
物が全容量に対して22〜50容量%、y、o3. C
eO2のうち一種以上が全容量に対して0.2〜5.4
容量%、N1の酸化物、Coの酸化物のうち一種以上と
β型サイアロンおよび/またはTiの窒化物との反応生
成物が全容量に対して0.3〜3.7容量%からなるこ
とを特徴とする導電性サイアロン焼結体である。
Means to Solve the Problem 2 In order to achieve the objective, Mizuo 1's invention uses β-type sialon (Si6-2 uzO2NB-2) and T1 nitride in an amount of 22 to 50% by volume based on the total capacity. ,y,o3. C
One or more types of eO2 are 0.2 to 5.4 to the total capacity
% by volume, reaction products of one or more of N1 oxide and Co oxide and β-type sialon and/or Ti nitride should be 0.3 to 3.7 vol% based on the total capacity. This is a conductive sialon sintered body characterized by:

Tiの窒化物を構成成分とするのは、これが導電性と高
融点をもつ化合物であり、サイアロンの焼結に悪影響を
与えることが少ないからである。この化合物の量を22
〜50容量%とするのは、22容量%未満では導電性化
合物粒子相互の接触点が少なく1通電加熱に必要な導電
性が得られないからであり、50容量%を越えると本来
β型サイアロンが有する金属との凝着しにくさや耐熱衝
撃性が損なわれるからである。窒化物の皺はより好まし
くは30〜40容量%である。
The reason why Ti nitride is used as a constituent is that it is a compound with electrical conductivity and a high melting point, and has little adverse effect on the sintering of Sialon. The amount of this compound is 22
The reason why it is set at ~50% by volume is that if it is less than 22% by volume, there are too few contact points between the conductive compound particles and the conductivity required for 1-current heating cannot be obtained, and if it exceeds 50% by volume, β-type SiAlON This is because the difficulty of adhesion with metal and the thermal shock resistance of the metal are impaired. The nitride wrinkles are more preferably 30 to 40% by volume.

Y2O3、CeO2はサイアロンの焼結助剤である。こ
れらの化合物の量を、2〜5.4容量%とするのは、0
.2容量%未満では焼結体が緻密化しない、また、5.
4容量%を越えるとガラス相が増加して高温強度が低下
する。これら焼結助剤の睦はより好ましくは1.1〜4
.1容量%である。
Y2O3 and CeO2 are sintering aids for Sialon. The amount of these compounds ranges from 2 to 5.4% by volume.
.. If it is less than 2% by volume, the sintered body will not be densified, and 5.
If it exceeds 4% by volume, the glass phase increases and high temperature strength decreases. The modulus of these sintering aids is more preferably 1.1 to 4.
.. It is 1% by volume.

N1の酸化物とCoの酸化物は、サイアロンの焼結を比
較的阻害せずにTiの窒化物粒子間の焼結を促進する効
果がある。Tiの窒化物粒子間の焼結が促進されれば比
抵抗は低下する。従って、焼結体の機械的特性をあまり
低下させることなく、Tiの窒化物がより少ない奎で同
等の比抵抗を得ることができる。Niの酸化物とCoの
酸化物は、加熱中にβ型サイアロンおよび/またはTi
の窒化物と反応し、冷却後反応生成物が形成される。
The N1 oxide and the Co oxide have the effect of promoting sintering between Ti nitride particles without relatively inhibiting the sintering of Sialon. If sintering between Ti nitride particles is promoted, the specific resistance will decrease. Therefore, the same specific resistance can be obtained with less Ti nitride without significantly deteriorating the mechanical properties of the sintered body. The Ni oxide and Co oxide form β-sialon and/or Ti during heating.
reacts with the nitride of, and after cooling a reaction product is formed.

焼結体中の該反応生成物の量を0.3〜3.7容量%と
するのは2O.3容量%未満ではTiの窒化物粒子と接
触する割合が少なく、比抵抗低減効果が現れない、また
、3.7容量%を越えると該反応生成物が破壊の起点と
なる効果の方が顕著になる。該反応生成物の量はより好
ましくは0.6〜2.5容量%である。なお、該反応生
成物の詳細な化学構造は不明であるが、にiの酸化物を
添加した場合、Ni、 Si、Ti2O等からなる化合
物および/または固溶体と考えられる。
The amount of the reaction product in the sintered body is set to 0.3 to 3.7% by volume by 2O. If it is less than 3% by volume, the proportion of Ti in contact with nitride particles is small and the resistivity reduction effect does not appear, and if it exceeds 3.7% by volume, the effect of the reaction product becoming the starting point of destruction is more pronounced. become. The amount of the reaction product is more preferably 0.6-2.5% by volume. Although the detailed chemical structure of the reaction product is unknown, it is thought to be a compound and/or solid solution consisting of Ni, Si, Ti2O, etc. when an oxide of i is added.

さらに1本第2の発明である導電性サイアロン焼結体の
製造方法は次の通りである。
Furthermore, a method for manufacturing a conductive sialon sintered body, which is the second invention, is as follows.

すなわち、β型サイアロンの原料として、室温または昇
温中に5iJ4. MN 、 Idl、Osの混合物ま
たは化合物となり、且つβ型サイアロンとしてZが所定
の値になるものと、Tiの窒化物が全容量に対して22
〜50容量%、Y2O3、Ce02(7)うち一種以上
が全容量に対して0.2〜5,4容量%、N!の酸化物
、 Coの酸化物のうち一種以上が全容シに対して0.
3〜2.1容量%からなる混合物を成形し、この成形体
を常圧または加圧窒素ガス雰囲気中で1550〜!65
0℃で1時間以上保持したのち、1700〜1840℃
で2時間以上保持して焼結することにより1本発明導電
性サイアロン焼結体が得られる。
That is, as a raw material for β-sialon, 5iJ4. One is a mixture or compound of MN, Idl, and Os, and has a predetermined value of Z as a β-sialon, and the other is a Ti nitride with a concentration of 22% of the total capacity.
~50% by volume, one or more of Y2O3, Ce02 (7) is 0.2~5.4% by volume based on the total capacity, N! oxide of Co, and one or more of the oxides of Co are 0.
A mixture consisting of 3 to 2.1% by volume is molded, and the molded body is heated to 1550~! under normal pressure or a pressurized nitrogen gas atmosphere. 65
After holding at 0℃ for more than 1 hour, 1700-1840℃
The conductive sialon sintered body of the present invention can be obtained by holding the sintered body for 2 hours or more and sintering it.

なお、1550〜1850℃で保持するのは、−融液を
粒界に均一に分散させるためである。 1550℃未満
では融液の分散が不十分である。また、Si、N、は−
旦融液に溶解してから再析出し柱状結晶に成長するが、
この柱状結1が十分に成長し互いに絡み合って緻電化す
ることによりβ型サイアロンの高強度が発現する。
Note that the reason why the temperature is maintained at 1550 to 1850°C is to uniformly disperse the melt in the grain boundaries. If the temperature is lower than 1550°C, the melt will not be sufficiently dispersed. Also, Si, N, -
Once dissolved in the melt, it re-precipitates and grows into columnar crystals,
When the columnar knots 1 grow sufficiently and intertwine with each other to become densely charged, the β-sialon exhibits high strength.

1650〜1700℃では融液が十分に分散しきらない
うちに513M4の溶解再析出が始まり、しかもこの温
度域では柱状結晶の成長が不十分なためwk密化しない
、従って、融液を粒界に十分に分散させる間は、S i
 3N 4の溶解再析出は抑制しなければならない。ゆ
えに、このときの温度は1650℃以下にする必要があ
る。
At 1,650 to 1,700°C, 513M4 begins to dissolve and reprecipitate before the melt is fully dispersed.Moreover, in this temperature range, the growth of columnar crystals is insufficient and WK density cannot be achieved. S i
The dissolution and reprecipitation of 3N4 must be suppressed. Therefore, the temperature at this time needs to be 1650°C or lower.

次に1700〜1840℃で保持する理由であるが17
00℃未満の焼結温度では上記の理由で緻密化が十分に
進まず、1840℃を越える場合には100気圧以上の
窒素ガスでなければ5iJ4の分解を抑制することはで
きないが、このような高圧では予め成形体の開気孔をな
くすことが必要となり製造工程を増やすことになる。な
お加圧窒素ガス雰囲気中で焼結する場合には、窒素ガス
圧力は1.1〜30気圧が好ましい。
Next, the reason for holding it at 1700-1840℃ is 17
If the sintering temperature is less than 1,840 degrees Celsius, densification will not proceed sufficiently for the reasons mentioned above, and if the temperature exceeds 1,840 degrees Celsius, decomposition of 5iJ4 cannot be suppressed unless nitrogen gas is at least 100 atm. At high pressures, it is necessary to eliminate open pores in the molded body in advance, which increases the number of manufacturing steps. In addition, when sintering in a pressurized nitrogen gas atmosphere, the nitrogen gas pressure is preferably 1.1 to 30 atm.

Niの酸化物とCoの酸化物は、加熱中にβ型サイアロ
ンおよび/またはTiの窒化物と反応し、冷却後反応生
成物の相が形成される。Niの酸化物、G。
The Ni oxide and the Co oxide react with the β-sialon and/or the Ti nitride during heating, and a reaction product phase is formed after cooling. Ni oxide, G.

の酸化物のうち一種以上を0.3〜2.1容量%とする
のは2O.3容量%未満ではT1の窒化物粒子と接触す
る割合が少なく、焼結促進効果が現れない。
2O. If the amount is less than 3% by volume, the proportion of T1 in contact with the nitride particles will be small, and the sintering promotion effect will not appear.

また、2.1容量%を越えると該反応生成物が破壊の起
点となる効果の方が顕著になる。Niの酸化物、Goの
酸化物のうち一種以上の量はより好ましくは0.6〜1
.4容量%である。
Moreover, when the amount exceeds 2.1% by volume, the effect that the reaction product becomes the starting point of destruction becomes more pronounced. The amount of one or more of Ni oxide and Go oxide is more preferably 0.6 to 1.
.. 4% by volume.

作用 以上のような本発明により、同一の比抵抗で従来の導電
性サイアロン焼結体よりも高い耐熱衝撃性を有する焼結
体を容易に得ることが可能となった。これは、Niの酸
化物、Coの酸化物の添加によりTiの窒化物粒子間の
焼結が促進され電流の通路が増加するからである。
Effects According to the present invention as described above, it has become possible to easily obtain a sintered body having the same resistivity and higher thermal shock resistance than the conventional conductive sialon sintered body. This is because the addition of Ni oxide and Co oxide promotes sintering between Ti nitride particles and increases the current path.

実施例 以下、本発明を実施例に基づいて、更に詳細に説明する
EXAMPLES Hereinafter, the present invention will be explained in more detail based on examples.

Si3N4粉末(平均粒径0.5 gm、α化率97%
以上)、M2O3粉末(平均粒径0.2 pm) 、 
AINポリタイプ粉末(結晶型21R,v均粒径3膳m
)を用いて焼結体中のβ型サイアロンのZ = 0.4
5となるように配合した。更に焼結助剤としてY2O3
(+均粒径0.6 、Btm) 、 Ce07 (平均
粒径1gm)を表1に示す割合となるように配合した。
Si3N4 powder (average particle size 0.5 gm, gelatinization rate 97%)
above), M2O3 powder (average particle size 0.2 pm),
AIN polytype powder (crystal type 21R, v average particle size 3 m
) of β-type sialon in the sintered body = 0.4
5. Additionally, Y2O3 is used as a sintering aid.
(+average particle size 0.6, Btm) and Ce07 (average particle size 1 gm) were blended in the proportions shown in Table 1.

これに対し、TiN(平均粒径1.5gm)およびN1
(7)酸化物(平均粒径7給m)、Goの酸化物(平均
粒径10゜m)を表1に示す割合となるように添加した
In contrast, TiN (average particle size 1.5 gm) and N1
(7) Oxide (average particle size: 7 m) and Go oxide (average particle size: 10 mm) were added in the proportions shown in Table 1.

これらを混合、成形後、常圧窒素ガス雰囲気中で160
0℃で2時間保持した後、1750℃で5時間保持して
焼結し、室温まで徐冷した。これにより得られた焼結体
の常温抗折強度、比抵抗、耐熱衝撃性を表1に示す、な
お、耐熱衝撃性は水中急冷法により強度劣化が起こらな
い最大急冷温度差ΔT(’C)で評価した。
After mixing and molding these, 160°C in a normal pressure nitrogen gas atmosphere
After holding at 0°C for 2 hours, it was held at 1750°C for 5 hours for sintering, and then slowly cooled to room temperature. The room temperature bending strength, specific resistance, and thermal shock resistance of the sintered body thus obtained are shown in Table 1.Thermal shock resistance is the maximum quenching temperature difference ΔT ('C) at which no strength deterioration occurs by the underwater quenching method. It was evaluated by

(以下余白) 発明の効果 本発明により、同一の比抵抗で従来の導電性サイアロン
焼結体よりも高い耐熱衝撃性を有する焼結体の製造が可
能になった0本発明のサイアロンは急速な加熱冷却を行
う通電体への適用力(可能である。
(Left below) Effects of the Invention The present invention has made it possible to produce a sintered body with the same resistivity and higher thermal shock resistance than the conventional conductive sialon sintered body. Applicable force to the current carrying body that performs heating and cooling (possible).

Claims (2)

【特許請求の範囲】[Claims] (1)β型サイアロン(Si_6_−_ZAl_ZO_
ZN_8_−_Z)と、Tiの窒化物が全容量に対して
22〜50容量%、Y_2O_3、CeO_2のうち一
種以上が全容量に対して0.2〜5.4容量%、Niの
酸化物、Coの酸化物のうち一種以上とβ型サイアロン
および/またはTiの窒化物との反応生成物が全容量に
対して0.3〜3.7容量%からなることを特徴とする
導電性サイアロン焼結体。
(1) β-type sialon (Si_6_-_ZAl_ZO_
ZN_8_-_Z), Ti nitride is 22 to 50% by volume of the total capacity, one or more of Y_2O_3 and CeO_2 is 0.2 to 5.4% by volume of the total capacity, Ni oxide, A conductive sialon sintered product characterized in that a reaction product of one or more Co oxides and β-type sialon and/or Ti nitride is comprised of 0.3 to 3.7% by volume based on the total capacity. Concretion.
(2)β型サイアロンの原料と、Tiの窒化物が全容量
に対して22〜50容量%、Y_2O_3、CeO_2
のうち一種以上が全容量に対して0.2〜5.4容量%
、Niの酸化物、Coの酸化物のうち一種以上が全容量
に対して0.3〜2.1容量%からなる混合物を成形し
、この成形体を常圧または加圧窒素ガス雰囲気中で15
50〜1650℃で1時間以上保持した後、1700〜
1840℃で2時間以上保持して焼結することを特徴と
する導電性サイアロン焼結体の製造方法。
(2) β-type sialon raw material and Ti nitride are 22 to 50% by volume of the total volume, Y_2O_3, CeO_2
One or more of these is 0.2 to 5.4% by volume of the total capacity
A mixture of 0.3 to 2.1% by volume of at least one of , Ni oxide, and Co oxide based on the total volume is molded, and this molded body is heated at normal pressure or in a pressurized nitrogen gas atmosphere. 15
After holding at 50~1650℃ for more than 1 hour, 1700~
A method for producing a conductive sialon sintered body, which comprises sintering at 1840°C for 2 hours or more.
JP2120016A 1990-05-11 1990-05-11 Conductive sialon sintered body and production thereof Pending JPH0416565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2120016A JPH0416565A (en) 1990-05-11 1990-05-11 Conductive sialon sintered body and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2120016A JPH0416565A (en) 1990-05-11 1990-05-11 Conductive sialon sintered body and production thereof

Publications (1)

Publication Number Publication Date
JPH0416565A true JPH0416565A (en) 1992-01-21

Family

ID=14775820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2120016A Pending JPH0416565A (en) 1990-05-11 1990-05-11 Conductive sialon sintered body and production thereof

Country Status (1)

Country Link
JP (1) JPH0416565A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187942A (en) * 2007-02-02 2008-08-21 Shimano Inc Grip structure of fishing rod

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187942A (en) * 2007-02-02 2008-08-21 Shimano Inc Grip structure of fishing rod

Similar Documents

Publication Publication Date Title
JPH0446062A (en) Sialon sintered body and production thereof and gas turbin-blade using the same
JPH0416565A (en) Conductive sialon sintered body and production thereof
JP3273099B2 (en) Rare earth composite oxide-based sintered body and method for producing the same
JPS5891072A (en) Manufacture of silicon nitride sintered body
JP2742619B2 (en) Silicon nitride sintered body
JP2687632B2 (en) Method for producing silicon nitride sintered body
JPH03290372A (en) Electrically conductive sintered sialon and production thereof
JP2742596B2 (en) Silicon nitride sintered body and method for producing the same
JPH04238868A (en) Production of silicon nitride-silicon carbide compounded sintered material
JP2811493B2 (en) Silicon nitride sintered body
JPH06100376A (en) Sintered beta-sialon and its production
JPS6317264A (en) Electroconductive sialon sintered body
JPH04187568A (en) Electrically conductive sintered sialon added with boron nitride and its production
JPS5930771A (en) Manufacture of silicon nitride sintered body
JPH02229765A (en) Sintered body of conductive ceramics and heater
JPH04231370A (en) Aluminum oxide-based sintered body
JPH0558740A (en) Silicon nitride crystallized glass ceramics and its production
JPH0585823A (en) Sintered silicon carbide-silicon nitride-mixed oxide and its production
JPS61201667A (en) Manufacture of silicon nitride base ceramics
JPH01172276A (en) Production of compound ceramic comprising beta-sialon
JPS6270267A (en) Producton of silicon nitride sintered body
JPH06100369A (en) Method for producing composite product of silicon nitride with boron nitride
JPH01197357A (en) Alumina-sialon compound sintered body
JPH0669905B2 (en) Silicon nitride sintered body and method for manufacturing the same
JPH04219374A (en) Silicon nitride-based sintered compact and its production