JPH02229765A - Sintered body of conductive ceramics and heater - Google Patents

Sintered body of conductive ceramics and heater

Info

Publication number
JPH02229765A
JPH02229765A JP1051459A JP5145989A JPH02229765A JP H02229765 A JPH02229765 A JP H02229765A JP 1051459 A JP1051459 A JP 1051459A JP 5145989 A JP5145989 A JP 5145989A JP H02229765 A JPH02229765 A JP H02229765A
Authority
JP
Japan
Prior art keywords
sintered body
conductive
oxide
heater
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1051459A
Other languages
Japanese (ja)
Inventor
Yutaka Kubo
裕 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP1051459A priority Critical patent/JPH02229765A/en
Publication of JPH02229765A publication Critical patent/JPH02229765A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the rapid oxidation at 800 to 900 deg.C by adding a Cr oxide at a specific ratio to the above sintered body and heater consisting of silicon nitride ceramics contg. a conductive material at a specific ratio. CONSTITUTION:The sintered body and heater of the conductive ceramics consist of 10 to 70vol.% conductive compd., 0.1 to 10wt.% Cr oxide and the balance silicon nitride ceramics. This sintered body and heater are improved in oxidation resistance at 800 to 900 deg.C. The reason thereof lies conceivably in that the thick oxide film to be formed at >=1000 deg.C is not formed at a relatively low temp. of 800 to 900 deg.C and the oxygen in the atm. diffuses through the grain boundary phase in the sintered body to progress the oxidation, but the diffusion of the oxygen in the grain boundaries is suppressed by the addition of the Cr oxide. The effect does not manifest if the amt. of the Cr oxide to be added is below 0.1%. The sinterability is low if the amt. exceeds 10%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、窒化珪素系セラミックスを母材とし導電性化
合物を含有する導電性セラミックス焼結体およびヒータ
ーにおいて、高温での耐酸化性をCr酸化物の添加によ
り改善した焼結体およびヒーターに関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention provides a conductive ceramic sintered body and a heater that have a silicon nitride ceramic as a base material and contain a conductive compound, and the oxidation resistance at high temperatures is improved by improving the oxidation resistance at high temperatures. This invention relates to a sintered body and a heater improved by the addition of oxides.

〔従来の技術〕[Conventional technology]

αまたはβSi,N,を主成分とする窒化珪素、S f
 @ − z A l z O z N m − z 
(0 < Z≦4.2)で示されるβサイアロン、Mx
(SL,Al).(0,N)..(x<2,MはLL,
Mg, CB, Y ,希土類元素(La,Ce除<)
〕で示されるαサイアロン、およびこれらの複合した窒
化珪素系のセラミックスは、高温強度および耐酸化性に
優れ、熱膨張係数が小さく耐熱衝撃性が非常に良いため
、近年種々の分野において利用されている。また一方で
、これらは極めて難加工性材料でもあるため、その対策
として放電加工を可能とするために導電性を付与すると
の提案もなされている(特開昭57−188453号公
報、特開昭57−200265号公報、特開昭59−2
07881号公報、特開昭60−33265号公報など
).また、これらをヒーター材として用いるとの提案も
なされている(特開昭60−60983号公報、特開昭
62−140386号公報など)。
Silicon nitride containing α or βSi,N, as the main component, S f
@ - z A l z O z N m - z
β-sialon, Mx, denoted by (0 < Z ≦ 4.2)
(SL, Al). (0, N). .. (x<2, M is LL,
Mg, CB, Y, rare earth elements (excluding La, Ce)
] α-SiAlON and these composite silicon nitride-based ceramics have been used in a variety of fields in recent years because they have excellent high-temperature strength and oxidation resistance, a small coefficient of thermal expansion, and very good thermal shock resistance. There is. On the other hand, these are extremely difficult-to-process materials, and as a countermeasure, it has been proposed to impart electrical conductivity to enable electrical discharge machining (Japanese Unexamined Patent Publication No. 57-188453; Publication No. 57-200265, Japanese Unexamined Patent Publication No. 59-2
07881, JP-A-60-33265, etc.). There have also been proposals to use these as heater materials (JP-A-60-60983, JP-A-62-140386, etc.).

またTiNとSiCを複合添加し高抵抗材における電気
抵抗のバラツキを抑制した焼結体について特願昭63〜
238281号として本発明者は提案している。
In addition, a patent application has been filed since 1983 regarding a sintered body that suppresses variations in electrical resistance in high-resistance materials by adding a combination of TiN and SiC.
The present inventor has proposed it as No. 238281.

(発明が解決しようとする問題点) ところが、上記材料は1000℃以上の温度域では表面
に厚い酸化膜が形成され、それ以上酸化が進行しないの
に対して、約800〜900℃で50時間以上の長時間
保持した場合に酸化量が異常に大きくなり、ふくれ、割
れ等の発生につながることが明らかになった。これはヒ
ーターとして用いる場合、断線に直接結びつき、寿命の
低下につながるものである。
(Problem to be Solved by the Invention) However, with the above materials, a thick oxide film is formed on the surface in the temperature range of 1000°C or higher, and oxidation does not proceed any further; It has become clear that when held for a longer period of time, the amount of oxidation becomes abnormally large, leading to the occurrence of blisters, cracks, etc. When used as a heater, this directly leads to disconnection and shortens the service life.

本発明の目的は、上記の800〜900℃における酸化
現象を抑制した耐酸化性に優れる導電性セラミックス焼
結体およびヒーターを提供することである。
An object of the present invention is to provide a conductive ceramic sintered body and a heater that suppress the above-mentioned oxidation phenomenon at 800 to 900°C and have excellent oxidation resistance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は前記の800〜900℃における酸化現象を
抑制するために種々検討した結果、Cr酸化物を添加す
ることにより、上記の酸化現象を抑制できることを見出
し本発明を完成するに至った。
As a result of various studies in order to suppress the above-mentioned oxidation phenomenon at 800 to 900°C, the present inventor found that the above-mentioned oxidation phenomenon could be suppressed by adding Cr oxide, and completed the present invention.

本発明において、Cr酸化物の添加により、800〜9
00℃の耐酸化性を向上することができるのは以下の理
由によるものと考える。
In the present invention, by adding Cr oxide, the
It is believed that the reason why the oxidation resistance at 00°C can be improved is as follows.

すなわち、800〜900℃の比較的低温では、100
0℃以上で形成される厚い酸化膜が形成されておらず、
本系焼結体中の粒界相を通じて大気中の酸素が拡散し、
酸化が進行するものと考えられるが、Cr酸化物を添加
することにより粒界相中の酸素の拡散が抑制されること
により、酸化が防止されるものと考えられる。
That is, at a relatively low temperature of 800 to 900°C, 100
A thick oxide film that is formed at temperatures above 0°C is not formed,
Oxygen in the atmosphere diffuses through the grain boundary phase in this sintered body,
Although it is thought that oxidation progresses, it is thought that oxidation is prevented by suppressing the diffusion of oxygen in the grain boundary phase by adding Cr oxide.

本発明において、Cr酸化物の添加量は、0.1〜10
wt%であり、その理由は0 . lwt%より少ない
とCr酸化物の添加の効果が現われず、また10wt%
を越えて添加した場合には、焼結性が低下するからであ
る.より好ましくは0.3〜3wt%である.Cr酸化
物としては、化合物として最も安定なCr,O,を用い
ればよい。また、Cr酸化物粉末を原料として加える代
りに、焼結中にCr酸化物に変化する化合物、例えばC
r(N O,),・9H,O,CrCl,・6H,0な
どを用いることも可能である。
In the present invention, the amount of Cr oxide added is 0.1 to 10
wt%, and the reason is 0. If it is less than lwt%, the effect of adding Cr oxide will not appear, and if it is less than 10wt%
This is because if it is added in excess of this amount, sinterability will decrease. More preferably, it is 0.3 to 3 wt%. As the Cr oxide, Cr and O, which are the most stable compounds, may be used. Also, instead of adding Cr oxide powder as a raw material, compounds that change to Cr oxide during sintering, such as C
It is also possible to use r(N O, ), .9H,O, CrCl, .6H,0, etc.

また、本発明は従来公知の導電性セラミックス焼結体に
広く遺用が可能である。
Furthermore, the present invention can be broadly applied to conventionally known conductive ceramic sintered bodies.

すなわち、母材となる窒化珪素系セラミックスとしては
、 αまたはβSt,N4を主成分とする窒化珪素焼結体 Si.−ZAIZO!N,−Z(0<Z≦4.2)で示
されるβサイアロン焼結体、 Mx(Si,AI),.(0,N).[x(2,MはL
i,Mg,Ca, Y ,希土類元素(La,Ce除<
)]で示されるαサイアロン焼結体、 およびこれらの複合した窒化珪素系セラミックス焼結体 のいずれであっても所定の効果を得ることができる。な
お、βサイアロンにあっては、z<1の場合には常温、
高温強度が優れ、硬さ、靭性も高いものとなるので望ま
しい。
That is, as the silicon nitride ceramics serving as the base material, a silicon nitride sintered body Si. -ZAIZO! β-sialon sintered body represented by N,-Z (0<Z≦4.2), Mx(Si,AI), . (0,N). [x(2, M is L
i, Mg, Ca, Y, rare earth elements (excluding La, Ce <
) ], and a composite silicon nitride ceramic sintered body can achieve the desired effect. In addition, for β-sialon, if z<1, at room temperature,
It is desirable because it has excellent high-temperature strength, hardness, and toughness.

また、本系導電性セラミックス焼結体においては、導電
性物質の量を10〜70VO1%とすることが必要であ
る。導電性化合物量が10vol%未満では導電性を付
与することができず、また70vol%を越えると窒化
珪素系セラミックスが本来持つ高温強度、耐酸化性が損
なわれるからである。
Further, in the present conductive ceramic sintered body, the amount of the conductive substance must be 10 to 70 VO1%. This is because if the amount of the conductive compound is less than 10 vol%, conductivity cannot be imparted, and if it exceeds 70 vol%, the high temperature strength and oxidation resistance inherent to silicon nitride ceramics will be impaired.

導電性物質としては、IVa,VaおよびVla族の遷
移金属元素の炭化物、窒化物およびこれら化合物から形
成される複化合物の1種または2種以上の導電性化合物
としては、種々のものを選択することが可能であるが、
TiNを選択した場合には、焼結性、強度、耐酸化性等
の面から好ましい結果が得られる。
As the conductive substance, one or more conductive compounds selected from carbides and nitrides of transition metal elements of the IVa, Va and Vla groups, and composite compounds formed from these compounds. It is possible, but
When TiN is selected, favorable results can be obtained in terms of sinterability, strength, oxidation resistance, etc.

また、前記複化合物とは炭窒化物、さらに複窒化物、複
炭化物等を言う。
Further, the complex compound refers to carbonitride, double nitride, double carbide, and the like.

導電性セラミックスをヒータiとして用いる場合に高い
電気抵抗率が必要となる場合もある。この場合には、上
記の導電性物質に加え、SiCを添加すれば電気抵抗率
のパラツキを抑制しつつ、高い電気抵抗率を得ることが
できる.SiC添加によって電気抵抗率のパラツキが抑
制される理由は前記特開昭63〜238281号に記載
した通りである.SiCの添加量は0.1〜50vol
%とする必要がある.0.1vol%末滴ではその効果
が期待できず、50vol%を越えると焼結性が低下し
、緻密な焼結体を得ることが困難となるからである.さ
らに望ましいSiCの添加量は3〜30vol%である
When using conductive ceramics as the heater i, high electrical resistivity may be required. In this case, by adding SiC in addition to the above-mentioned conductive substances, high electrical resistivity can be obtained while suppressing variations in electrical resistivity. The reason why the variation in electrical resistivity is suppressed by the addition of SiC is as described in the above-mentioned JP-A-63-238281. The amount of SiC added is 0.1 to 50 vol.
It needs to be expressed as %. This is because the effect cannot be expected with powder droplets of 0.1 vol%, and if it exceeds 50 vol%, the sinterability decreases and it becomes difficult to obtain a dense sintered body. A more desirable amount of SiC added is 3 to 30 vol%.

上記の本発明導電性セラミックス焼結体は、次のような
製造方法により得ることができる.すなわちSi,N4
粉末、Al,O,粉末、AIN粉末、IIIa族元素(
希土類元素を含む)の酸化物粉末,MgO粉末等を所定
の窒化珪素および/またはサイアロンとなるように配合
し、これらに対し導電性物質であるNa,Vaおよび■
a族の遷移金属元素の炭化物、窒化物およびこれら化合
物から形成される複化合物の1種または2種以上の粉末
、あるいはさらにSiC粉末を所定量添加し、さらにC
r酸化物粉末(あるいは焼結中にCr酸化物となる物質
)を添加する.そして、混合、成形の後、非酸化性雰囲
気中で焼結する。ここで焼結は常圧焼結、ガス圧焼結、
HIP焼結(熱間静水圧プレス)、ホットプレス等の各
種方法を選ぶことができる。焼結の雰囲気は非酸化性雰
囲気で行なうことが好ましく、N,ガス雰囲気、加圧N
,ガス雰囲気、減圧N2ガス雰囲気、N,を含む不活性
ガス雰囲気等必要に応じ各種の条件で焼結を行なうこと
が可能である。
The above-mentioned conductive ceramic sintered body of the present invention can be obtained by the following manufacturing method. That is, Si, N4
powder, Al, O, powder, AIN powder, group IIIa elements (
Oxide powder (including rare earth elements), MgO powder, etc. are blended to form the specified silicon nitride and/or sialon, and conductive substances such as Na, Va, and
Adding a predetermined amount of one or more powders of carbides, nitrides, and composite compounds of group a transition metal elements, or SiC powder, and further adding C
Add r-oxide powder (or a substance that becomes Cr-oxide during sintering). After mixing and shaping, the mixture is sintered in a non-oxidizing atmosphere. Here, sintering is normal pressure sintering, gas pressure sintering,
Various methods such as HIP sintering (hot isostatic pressing) and hot pressing can be selected. The sintering atmosphere is preferably a non-oxidizing atmosphere, such as N, gas atmosphere, pressurized N
The sintering can be carried out under various conditions as required, such as a gas atmosphere, a reduced pressure N2 gas atmosphere, and an inert gas atmosphere containing N.

なお、IVa、VaおよびVIa族の遷移金属元素の炭
化物、窒化物およびこれら化合物から形成される複化合
物は、焼結中にそれぞれそれらの化合物に変化するもの
を原料として用いることもできる.また、焼結後にHI
P(熱間静水圧プレス)処理によりさらに特性の向上を
図ったり、熱処理を行ない粒界相を結晶化させたりする
ことも可能である。
Note that carbides, nitrides, and composite compounds formed from transition metal elements of groups IVa, Va, and VIa, and composite compounds formed from these compounds, can also be used as raw materials that convert into their respective compounds during sintering. Also, after sintering, HI
It is also possible to further improve the properties by P (hot isostatic pressing) treatment, or to crystallize the grain boundary phase by heat treatment.

[実施例] 以下、本発明を実施例に基づいてさらに詳しく説明する
[Examples] Hereinafter, the present invention will be explained in more detail based on Examples.

実施例I Si,N,粉末(粒度0.7μrn,α化率93%)、
Y,O,粉末(粒度1μm,純度99.99%)、AI
N粉末(粒度1μm)、At,O,粉末(粒度0.5μ
m,純度99.5%)を用い、Zの値が0.4のβサイ
アロンとなるような組成に配合した(y,o,量は6w
t%)。これに対し、TiN粉末を25vol%添加し
たものを原料粉末とし、これにW.84C,Zr○,、
MOおよびC r@ O s (粉末粒径1〜3μm)
をそれぞれIWt%添加した後、混合、成形し、1気圧
窒素雰囲気中で1720℃×6時間焼結した。
Example I Si, N, powder (particle size 0.7 μrn, gelatinization rate 93%),
Y, O, powder (particle size 1 μm, purity 99.99%), AI
N powder (particle size 1μm), At, O, powder (particle size 0.5μm)
(m, purity 99.5%) was used and blended into a composition such that β-sialon with a Z value of 0.4 (y, o, amount was 6w)
t%). On the other hand, 25 vol% of TiN powder was added as a raw material powder, and W. 84C, Zr○,,
MO and C r@O s (powder particle size 1-3 μm)
After adding IWt% of each, they were mixed, molded, and sintered at 1720° C. for 6 hours in a 1 atm nitrogen atmosphere.

得られた焼結体より3X4X 40mの試験片を切り出
し、大気中で850℃、100時間保持の酸化試験を行
ない、酸化増量を調べた。結果を第1図に示す.これよ
りCr,O,添加により800〜900℃での耐酸化性
が著しく改善されることがわかる. なお、これら焼結体の相対密度はいずれも98%以上で
あった。
A test piece measuring 3×4×40 m was cut out from the obtained sintered body and subjected to an oxidation test held at 850° C. for 100 hours in the atmosphere to examine the oxidation weight gain. The results are shown in Figure 1. This shows that the addition of Cr and O significantly improves the oxidation resistance at 800 to 900°C. Note that the relative densities of these sintered bodies were all 98% or more.

実施例2 実施例1と同様の粉末およびSiC粉末(粒径0.7I
Ln)を用いて,実施例1と同一組成のサイアロンおよ
び20vol%のTiN、8v01%のSiCとなるよ
うな組成に配合した。これにCr,O,を0.1〜8w
t%添加した。これらを実施例1と同様な条件で焼結し
、得られた焼結体の密度を測定後、これより3X4X4
0mmの試験片を切出し、大気中で850℃、150時
間保持の酸化試験を行ない。酸化増量を測定した。結果
を第1表に示す。
Example 2 Powder similar to Example 1 and SiC powder (particle size 0.7I
Ln) was blended into a composition of Sialon having the same composition as in Example 1, 20vol% TiN, and 8vol% SiC. Add 0.1 to 8w of Cr, O,
t% was added. These were sintered under the same conditions as in Example 1, and the density of the obtained sintered body was measured.
A 0 mm test piece was cut out and subjected to an oxidation test held at 850° C. for 150 hours in the atmosphere. Oxidative weight gain was measured. The results are shown in Table 1.

第  1  表 で耐酸化性向上が達成されることが理解される。Table 1 It is understood that improved oxidation resistance can be achieved.

但し、焼結密度を考慮した場合、0.3〜3wt%にす
ることが望ましい。
However, when considering the sintered density, it is desirable to set the content to 0.3 to 3 wt%.

実施例3 実施例1と同様の粉末およびTiC,ZrN(いずれも
粒径1 .5 μm)、およびMgO(粒径0.5μm
)を用い、第2表に示す組成のSi,N4およびサイア
ロンとなるよう配合し、これらに対し25vol%の導
電性化合物を添加した。さらにCr,O,を1 .5w
t%添加し、混合、成形、焼結を行なった。焼結条件は
表中に示す。これらにつき実施例1と同様に試験片を切
り出し、大気中で850℃、150時間保持の酸化試験
を行なった。ここでそれぞれCr.O,を添加していな
いものを比較例として用いた。結果を第2表に示す。
Example 3 The same powder as in Example 1, TiC, ZrN (all particle size 1.5 μm), and MgO (particle size 0.5 μm
), Si, N4, and Sialon were blended to have the composition shown in Table 2, and 25 vol% of a conductive compound was added thereto. Furthermore, Cr, O, 1. 5w
t% was added, mixed, molded, and sintered. Sintering conditions are shown in the table. Test pieces were cut out in the same manner as in Example 1, and an oxidation test was conducted at 850° C. for 150 hours in the atmosphere. Here each Cr. A sample to which O was not added was used as a comparative example. The results are shown in Table 2.

?上より、Cr■O,添加量が0.1〜8.Owtχの
範囲以上より、各種導電性化合物、サイアロン、Si,
N,の種類によらずCr,○,添加により800〜90
0℃の耐酸化性が大幅に改善されることがわかる。
? From the top, the amount of CrO added is 0.1 to 8. Various conductive compounds, sialon, Si,
Regardless of the type of N, 800 to 90 depending on the addition of Cr, ○.
It can be seen that the oxidation resistance at 0°C is significantly improved.

以上の実施例により、SL,N4基セラミックスを母材
としTiNなとの導電性化合物を添加した導電性セラミ
ックス焼結体およびヒーターにおいて、特に問題となる
800〜900℃の急激な酸化現象を抑制するためにC
r,O,を添加することが極めて有効であることがわか
る。
The above examples suppress the rapid oxidation phenomenon at 800 to 900°C, which is particularly problematic in conductive ceramic sintered bodies and heaters made of SL, N4-based ceramics as a base material and added with conductive compounds such as TiN. C to do
It can be seen that adding r, O, is extremely effective.

〔発明の効果〕〔Effect of the invention〕

本発明により、従来の導電性を有する窒化珪素、サイア
ロン焼結体において問題である800〜900℃におけ
る急激な酸化現象を抑制することが可能となった。これ
によりヒーター材、高温用途への本系材料の使用が可能
となり、用途も大幅に広がる。
According to the present invention, it has become possible to suppress the rapid oxidation phenomenon at 800 to 900° C., which is a problem in conventional conductive silicon nitride and sialon sintered bodies. This makes it possible to use this material for heater materials and high-temperature applications, greatly expanding the range of applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種添加元素と酸化増量の関係を示すグラフで
ある。
FIG. 1 is a graph showing the relationship between various additive elements and oxidation weight gain.

Claims (1)

【特許請求の範囲】 1 導電性物質が10〜70vol%、Cr酸化物が0
.1〜10wt%、残部窒化珪素系セラミックスからな
ることを特徴とする導電性セラミックス焼結体。 2 窒化珪素系セラミックスがサイアロンである特許請
求の範囲第1項記載の導電性セラミックス焼結体。 3 導電性物質がIVa、VaおよびVIa族の遷移金属元
素の炭化物、窒化物およびこれら化合物から形成される
複化合物の1種または2種以上の導電性化合物である特
許請求の範囲第1項または第2項記載の導電性セラミッ
クス焼結体。 4 導電性物質がTiNである特許請求の範囲第1項ま
たは第2項記載の導電性セラミックス焼結体。 5 導電性物質がIVa、VaおよびVIa族の遷移金属元
素の炭化物、窒化物およびこれら化合物から形成される
複化合物の1種または2種以上の導電性化合物が10〜
70vol%、ならびに第2の導電性物質としてSiC
を0.1〜50vol%、Cr酸化物が0.1〜10w
t%、残部窒化珪素系セラミックスからなることを特徴
とする導電性セラミックス焼結体。 6 第1の導電性物質がTiNである特許請求の範囲第
5項記載の導電性セラミックス焼結体。 7 Cr酸化物の添加量が0.3〜3wt%であること
を特徴とする特許請求の範囲第1項ないし第6項のいず
れかに記載の導電性セラミックス焼結体。 8 TiNが10〜60vol%、Cr酸化物が0.1
〜10wt%、残部窒化珪素系セラミックスからなるこ
とを特徴とするヒーター。 9 TiNが10〜40vol%、SiCが3〜30v
ol%、Cr酸化物が0.1〜10wt%、残部窒化珪
素からなることを特徴とするヒーター。
[Claims] 1 The conductive substance is 10 to 70 vol%, and the Cr oxide is 0.
.. A conductive ceramic sintered body comprising 1 to 10 wt% of silicon nitride based ceramics. 2. The conductive ceramic sintered body according to claim 1, wherein the silicon nitride ceramic is Sialon. 3. Claim 1, wherein the conductive substance is one or more conductive compounds of carbides, nitrides, and composite compounds formed from transition metal elements of groups IVa, Va, and VIa, or 2. The conductive ceramic sintered body according to item 2. 4. The conductive ceramic sintered body according to claim 1 or 2, wherein the conductive substance is TiN. 5 The conductive substance is one or more conductive compounds formed from carbides, nitrides, and these compounds of transition metal elements of groups IVa, Va, and VIa.
70 vol% and SiC as the second conductive material
0.1-50vol%, Cr oxide 0.1-10w
A conductive ceramic sintered body characterized in that the balance is silicon nitride ceramic. 6. The conductive ceramic sintered body according to claim 5, wherein the first conductive substance is TiN. 7. The conductive ceramic sintered body according to claim 1, wherein the amount of Cr oxide added is 0.3 to 3 wt%. 8 TiN is 10 to 60 vol%, Cr oxide is 0.1
A heater characterized in that the heater is made of ~10 wt%, the balance being silicon nitride ceramics. 9 TiN is 10-40vol%, SiC is 3-30v
Cr oxide is 0.1 to 10 wt %, and the balance is silicon nitride.
JP1051459A 1989-03-03 1989-03-03 Sintered body of conductive ceramics and heater Pending JPH02229765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1051459A JPH02229765A (en) 1989-03-03 1989-03-03 Sintered body of conductive ceramics and heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1051459A JPH02229765A (en) 1989-03-03 1989-03-03 Sintered body of conductive ceramics and heater

Publications (1)

Publication Number Publication Date
JPH02229765A true JPH02229765A (en) 1990-09-12

Family

ID=12887519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1051459A Pending JPH02229765A (en) 1989-03-03 1989-03-03 Sintered body of conductive ceramics and heater

Country Status (1)

Country Link
JP (1) JPH02229765A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303055B1 (en) 1998-01-16 2001-10-16 Kabushiki Kaisha Toyota Chuo Kenkyusho Composition of a high sensitivity sensor for detecting mechanical quantity
JP2003300780A (en) * 2002-04-04 2003-10-21 Toshiba Corp Wear resistant member made of silicon nitride and production method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303055B1 (en) 1998-01-16 2001-10-16 Kabushiki Kaisha Toyota Chuo Kenkyusho Composition of a high sensitivity sensor for detecting mechanical quantity
JP2003300780A (en) * 2002-04-04 2003-10-21 Toshiba Corp Wear resistant member made of silicon nitride and production method therefor
JP4497787B2 (en) * 2002-04-04 2010-07-07 株式会社東芝 Rolling ball

Similar Documents

Publication Publication Date Title
EP0071997B1 (en) Sintered body of ceramics and preparation thereof
US4407971A (en) Sintered body of silicon nitride-based ceramics
EP0227471B1 (en) Sintered silicon nitride ceramic article
EP0336377B1 (en) Silicon nitride sintered body
JP2556888B2 (en) Ceramics conductive material with less variation in electrical resistivity
US5635431A (en) Silicon nitride-based sinter
JP2988966B2 (en) Sialon sintered body, method for producing the same, and gas turbine blade using the same
JPH02229765A (en) Sintered body of conductive ceramics and heater
JPS59190274A (en) Silicon nitride sintered body and manufacture
JPH03199169A (en) Silicon nitride-based sintered body
JP2736386B2 (en) Silicon nitride sintered body
JP3290685B2 (en) Silicon nitride based sintered body
JP3231950B2 (en) Surface coated silicon nitride material
JPH025711B2 (en)
JPH09157028A (en) Silicon nitride sintered compact and its production
JP2828582B2 (en) Surface-coated silicon nitride heat-resistant member
JP2684250B2 (en) Silicon nitride sintered body and method for producing the same
JP2828583B2 (en) Surface-coated silicon nitride heat-resistant member
JPS5969477A (en) Manufacture of sialon base ceramic sintering material
JPH01243388A (en) Ceramic heater
JPH06183840A (en) Silicon nitride-silicon carbide-based reactionally sintered compact
JP2720201B2 (en) Method for producing silicon nitride sintered body
JPH05238829A (en) Sintered silicone nitride ceramic
JPS6320791B2 (en)
JPH0416565A (en) Conductive sialon sintered body and production thereof