JPH04163910A - Semiconductor thin film production method - Google Patents

Semiconductor thin film production method

Info

Publication number
JPH04163910A
JPH04163910A JP29125590A JP29125590A JPH04163910A JP H04163910 A JPH04163910 A JP H04163910A JP 29125590 A JP29125590 A JP 29125590A JP 29125590 A JP29125590 A JP 29125590A JP H04163910 A JPH04163910 A JP H04163910A
Authority
JP
Japan
Prior art keywords
gas
annealing
film
phase growth
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29125590A
Other languages
Japanese (ja)
Other versions
JP3203652B2 (en
Inventor
Masabumi Kunii
正文 国井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP29125590A priority Critical patent/JP3203652B2/en
Publication of JPH04163910A publication Critical patent/JPH04163910A/en
Application granted granted Critical
Publication of JP3203652B2 publication Critical patent/JP3203652B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To prepare poly-Si with a large particle diameter and low resistance in a short anneal period of time by using a mixed gas which consists of forma tion gas of an amorphous semiconductor film whose main component is silicon diluted with helium. CONSTITUTION:An amorphous or polycrystalline Si thin film with a thickness of about 1,000-1,500Angstrom is formed on a quartz substrate 300 by PCVD or reduced pressure vapor phase growth. After this Si thin film is etched to the pattern for the TFT channel region 301, particle diameter is increased by solid phase growth and laser annealing. In order to perform this solid phase growth and anneal process and create poly-Si with particle diameters of a few microns, a mixed gas that consist of the formation gas SiH4 and He gas with the following proportion, (SiH4)/(He)=5-20%. The internal pressure is 0.8 Torr, the rf frequency is 13.56MHz, and the power density is 30-100mW/cm<2>. By annealing the a-Si film formed under these conditions in a 600 deg.C N2 gas, the film can be transformed to poly-Si.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体薄膜の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a semiconductor thin film.

[従来の技術] 多結晶シリコン(poly−3i)薄膜は、高集積化半
導体デバイス、或いは大面積の電子デバイス、例えば液
晶デイスプレィやイメージセンサ等への様々な応用が可
能なので盛んに研究されてきた。高キヤリア移動度を持
つpoly−3i薄膜トランジスタ(TPT)はドライ
バ内蔵型の液晶デイスプレィや密着型イメージセンサに
応用が可能なので精力的に研究が進めちれてきた。特に
、プラズマ化学気相成長法(PCVD)を用いて非晶質
シリコン(a−3i)を作成し、これをN2ガス雰囲気
中で固相成長アニールして大粒径p。
[Prior Art] Polycrystalline silicon (poly-3i) thin films have been actively researched because they can be applied to a variety of highly integrated semiconductor devices and large-area electronic devices, such as liquid crystal displays and image sensors. . Poly-3i thin film transistors (TPTs) with high carrier mobility have been actively researched because they can be applied to liquid crystal displays with built-in drivers and contact image sensors. In particular, amorphous silicon (a-3i) is produced using plasma chemical vapor deposition (PCVD), and then solid-phase growth annealed in an N2 gas atmosphere to obtain a large grain size p.

1y−3iを作成して高キヤリア移動度TPTを作成す
る方法は盛んに研究されている。
A method of creating a high carrier mobility TPT by creating 1y-3i is being actively researched.

また一方、ドープトpoly−3iは従来からTPTの
ゲート電極材料に用いられている。ドープトpoly−
3iの抵抗率を低減させるためにPCVD法で不純物温
度を高温度にドーピングした非晶質シリコン(a−5i
)を成膜し、これを固相成長させることにより低抵抗p
oly−3iを形成する方法がある。
On the other hand, doped poly-3i has been conventionally used as a gate electrode material for TPT. doped poly-
Amorphous silicon (a-5i) doped with high impurity temperature using PCVD method to reduce resistivity of 3i
), and by solid phase growth, a low resistance p
There are ways to form oly-3i.

[発明が解決しようとする課題] PCVD法で形成したa−3iは、従来から希釈ガスに
純水素を用いてきた。このa−3iは水素を多量に含む
ので、この水素をアニールで放出させる時間が結晶核の
発生に要する潜伏時間として働き、固相成長時間が長時
間になるという問題点があった0本発明は以上の問題点
を解決するものでその目的は、大粒径、或いは低抵抗p
oly−3iを短時間のアニールで作成することにある
[Problems to be Solved by the Invention] A-3i formed by the PCVD method has conventionally used pure hydrogen as a diluent gas. Since this a-3i contains a large amount of hydrogen, the time to release this hydrogen during annealing acts as the incubation time required for the generation of crystal nuclei, resulting in a problem that the solid phase growth time becomes long. is intended to solve the above problems, and its purpose is to produce large grain size or low resistance p
The objective is to create oly-3i by short-time annealing.

[課題を解決するための手段] 本発明の半導体薄膜の製造方法は、 (1)シリコンを主成分とする非晶質半導体を基板上に
堆積させる方法において、前記非晶質半導体の成膜ガス
に゛ヘリウムを希釈ガスとした混合ガスを用いたことを
特徴とする。
[Means for Solving the Problems] The method for manufacturing a semiconductor thin film of the present invention includes: (1) a method for depositing an amorphous semiconductor containing silicon as a main component on a substrate; It is characterized by using a mixed gas containing helium as a diluent gas.

(2)前記非晶質半導体をアニールして固相成長させる
工程を含むことを特徴とする。
(2) The method is characterized by including a step of annealing the amorphous semiconductor to cause solid phase growth.

[実施例コ 以下、第3図をもとに、本発明の半導体薄膜の製造方法
を説明する0本実施例では半導体の例にSiを用いて説
明するが、Ge、5iGe等の半導体でも同様に適用で
きる。また本発明の実施例には薄膜トランジスタ(TP
T)を例として取り上げるが、適用例はTPTに限るこ
とはなく結晶シリコンウェハ上に形成した集積回路素子
(IC1LSI)等にももちろん同様に適用できる。
[Example 1] Hereinafter, the method for manufacturing a semiconductor thin film of the present invention will be explained based on FIG. 3. In this example, Si is used as an example of a semiconductor. Applicable to Furthermore, the embodiments of the present invention include thin film transistors (TP).
T) will be taken as an example, but the application is not limited to TPT, and can of course be similarly applied to integrated circuit elements (IC1LSI) formed on crystalline silicon wafers.

まず、石英基板300上にPCVD、または減圧化学気
相成長法(LPGVD)により、非晶質、または多結晶
Si薄膜を約1000〜1500人成膜する。基板は石
英基板に限らず、低融点のガラス基板でも、MgO−A
l2O3、CaF2、BP等の結晶性絶縁基板でも良い
、このSi薄膜をTFTのチャネル領域301のパタン
にエツチングした後、固相成長ミ レーザーアニーリン
グ等の手段によって大粒径化する(第3図(a))固相
成長はパタニングの前に行っても良い。
First, about 1000 to 1500 amorphous or polycrystalline Si thin films are formed on a quartz substrate 300 by PCVD or low pressure chemical vapor deposition (LPGVD). The substrate is not limited to quartz substrate, but also low melting point glass substrate, MgO-A
After etching this Si thin film, which may be a crystalline insulating substrate such as l2O3, CaF2, BP, etc., into the pattern of the channel region 301 of the TFT, the grain size is increased by means such as solid phase epitaxy mirror annealing (see Fig. 3). a)) Solid phase growth may be performed before patterning.

本実施例ではa−3iをPCVD法で成膜し、これを固
相成長アニールして粒径数μmの大粒径poly−3i
を作成する工程を例に述べる。成膜ガスはSiH4とH
eガスを、 [SiH4] / [He] =5〜20%の割合で混
合したガスを用いる。望ましくは18%程度が良い、基
板温度は150〜250℃で、180℃程度が望ましい
、内圧は0.8Torrである。rf周波数は13.5
6MHz、power密度を30−100 m W /
 Cm 2とした。  p。
In this example, poly-3i with a large grain size of several μm was formed by forming a-3i film by the PCVD method, and solid-phase growth annealing.
The process of creating a will be described as an example. Film forming gas is SiH4 and H
A gas mixed with e gas at a ratio of [SiH4]/[He] = 5 to 20% is used. Desirably, it is about 18%, the substrate temperature is 150 to 250°C, preferably about 180°C, and the internal pressure is 0.8 Torr. rf frequency is 13.5
6MHz, power density 30-100mW/
Cm2. p.

wer密度は63 m W / c m ’が望ましイ
、コノ条件で成膜したa−3i膜を600℃のN2ガス
中でアニールしてpoly−3iに転移させる。ここで
He希釈ガスの効果を明らかにするために、希釈ガスに
H2ガスを用いて成膜したa−8i膜を、同様に固相成
長させた時との比較をしてみる。H2ガスの場合のSi
H,ガスの希釈率もHeガスと等しい、第1図番ごラマ
ン散乱法で求めたa−3iの結晶化率の固相成長アニー
ル時間依存性を示す。
The wer density is preferably 63 mW/cm', and the a-3i film formed under these conditions is annealed in N2 gas at 600°C to transform into poly-3i. Here, in order to clarify the effect of the He diluent gas, a comparison will be made between an a-8i film formed using H2 gas as the diluent gas and a case of solid phase growth in the same manner. Si in case of H2 gas
The dilution rate of H gas is also the same as that of He gas. Figure 1 shows the solid phase growth annealing time dependence of the crystallization rate of a-3i determined by Raman scattering method.

アニール温度は600℃である。第1図で実線はHe希
釈ガスを用いた場合の結晶化率変化曲線、破MlよH2
希釈ガスを用いた場合のそれである。第1図から明らか
なように、He希釈ガスを用いた場合はH2希釈ガスの
場合に比較して短時間でpOly−3iに転移すること
がわかる。
The annealing temperature is 600°C. In Figure 1, the solid line is the crystallization rate change curve when He dilution gas is used, and the broken Ml to H2
This is the case when diluting gas is used. As is clear from FIG. 1, when He dilution gas is used, the transition to pOly-3i occurs in a shorter time than when H2 dilution gas is used.

つぎに熱酸化またはスパッタ法等により、Si薄展上に
ゲート絶縁膜の5i02302を約300〜1500A
成膜する。このSiO2薄膜上にドープトa−3i薄膜
303を約2000〜7000人成膜する(第3図(b
))。PCVD法はドーピングガスとSiH,ガスとの
流量比を変化させることによりドーピング濃度を比較的
自由に設定できる。このため不純物、原子が数パーセン
ト以上の高温層ドーピングも容易にできるという利点か
ある。
Next, by thermal oxidation or sputtering, a gate insulating film of 5i02302 is deposited on the Si thin film at a thickness of about 300 to 1500 Å.
Form a film. A doped a-3i thin film 303 is formed on this SiO2 thin film by about 2000 to 7000 people (Fig. 3(b)
)). In the PCVD method, the doping concentration can be relatively freely set by changing the flow rate ratio between the doping gas and the SiH gas. Therefore, there is an advantage that high-temperature layer doping with impurities or atoms of several percent or more can be easily performed.

ここでもa−8i薄膜303の成膜にPCVD法を例に
取って説明する。成膜ガスにはS i HaとHeガス
で希釈し−たドーピングガスとの混合ガスを用いた。ド
ーピングガスにはp型Si薄膜を成膜する場合はB 2
H6ガスを、n型Si薄膜を成膜する場合はPH3ガス
を用いた。He希釈のドーピングガス濃度はB 2 H
6、PH3とも0.1〜1%の範囲で、0.5%が望ま
しい、基板温度は150〜250℃で、特に180℃付
近が望ましい。内圧は0.8Torrである。rf周波
数は13゜56MHz、power密度を30〜100
mW/Cm2とした。power密度は63 m W 
/ c m2が望ましい、SiH,とPH3、B2H6
ガスとの混合比はガス流量比で、 [B2H6] / [8iH4]≧0.1%[PH3]
 /[3iH4]≧0. 1%の範囲で・ B2H6(
p型)の場合番よ5%程度力S、PH3(n型)の場合
は0.5%程度が特に望ましい、ガス流量比が0.1%
未満では、Siに対するB、  Pの固溶限界よりも小
さいので、後述の活性化アニール後の抵抗率の低減効果
が小さく、従来からの熱拡散法で形成したドープトpo
ly−3iと抵抗率に差−がないからである。特にBド
ープの場合は前記固溶限界以上のガス濃度比で成膜する
と効果が大きい、a−3i膜303の作成はPCVD法
に限ルコとはなくSi2H6とB2H6/Heとの混合
ガスを基板温度450℃程度で熱分解するLPCVD法
でも良い。
Here again, the PCVD method will be used to form the a-8i thin film 303 as an example. A mixed gas of SiHa and a doping gas diluted with He gas was used as the film forming gas. The doping gas is B2 when forming a p-type Si thin film.
H6 gas was used, and PH3 gas was used when forming an n-type Si thin film. The doping gas concentration for He dilution is B 2 H
6. PH3 is both in the range of 0.1 to 1%, preferably 0.5%. The substrate temperature is 150 to 250°C, particularly preferably around 180°C. The internal pressure is 0.8 Torr. RF frequency is 13°56MHz, power density is 30~100
mW/Cm2. Power density is 63 mW
/ cm m2 is preferable, SiH, and PH3, B2H6
The mixing ratio with gas is the gas flow rate ratio, [B2H6] / [8iH4] ≧ 0.1% [PH3]
/[3iH4]≧0. In the range of 1%・B2H6(
In the case of PH3 (n type), it is particularly desirable to have a force of about 5%, and in the case of PH3 (n type), about 0.5%, and the gas flow rate ratio is 0.1%.
If it is less than the solid solubility limit of B and P in Si, the effect of reducing the resistivity after activation annealing, which will be described later, will be small, and the doped po
This is because there is no difference in resistivity from ly-3i. In particular, in the case of B doping, the effect is great when the film is formed at a gas concentration ratio above the solid solubility limit.The creation of the a-3i film 303 is not limited to the PCVD method, but rather using a mixed gas of Si2H6 and B2H6/He on the substrate. An LPCVD method in which thermal decomposition is performed at a temperature of about 450° C. may also be used.

この後、固相成長(活性化)アニールをしてドープトa
−Siをドープトpoxy−Si304に転移させる(
第3図(C))。アニール条件は、ドープトa−8i薄
膜のドーパント温度と、ドーパントタイプ(n、p)別
により大きく異なるが、−船釣には550〜1000℃
の範囲の温度で数時間のアニールをする。但し低融点ガ
ラス基板を用いるときは、アニール温度は600℃以下
に制限される。
After this, solid phase growth (activation) annealing is performed to dope the a
-Transfer Si to doped poxy-Si304 (
Figure 3 (C)). Annealing conditions vary greatly depending on the dopant temperature of the doped A-8i thin film and dopant type (n, p), but -550 to 1000°C for boat fishing.
Anneal for several hours at a temperature in the range of . However, when using a low melting point glass substrate, the annealing temperature is limited to 600° C. or less.

ここでもHeガスの希釈効果を明らかにするために、−
例としてドーピングガスのB2H6ガスをN2ガスで希
釈したガスを用いた場合との比較をしてみる。ドーパン
トの希釈ガスに対する希釈温度はHe、N2ガスとも、
 [B 2H6] / [Heコニ[B2H6] / 
[H−2] =0.2%である。第1図にpoly−3
iの抵抗率の固相成長アニール時間依存性を示す。アニ
ール温度は600℃である。
Again, in order to clarify the dilution effect of He gas, −
As an example, a comparison will be made with a case where the doping gas B2H6 gas is diluted with N2 gas. The dilution temperature for the dopant dilution gas is as follows for both He and N2 gas:
[B 2H6] / [He Koni [B2H6] /
[H-2] = 0.2%. Figure 1 shows poly-3
Figure 3 shows the solid phase growth annealing time dependence of the resistivity of i. The annealing temperature is 600°C.

Siに対するドーパントの温度はガス流量比[B2H6
] / [S i H4122%とした。第1図におい
て、実線はHe希釈ドーピングガスを用いた場合で、破
線はN2希釈ドーピングガスを用いた場合である。第1
図から明らかなようにHe希釈ガスを用いた場合はN2
希釈ガスを用いた場合よりも短時間で低抵抗のpoly
−8iが得られることがわかる。これは以下の理由によ
る。  N2希釈ガスを用いた場合はa−3i中の水素
量がHe希釈ガスを用いた場合よりも多いので、アニー
ルの初期段階でN2がa−3i膜中から脱離して一定レ
ベル以下の濃度になるのに時間がかかる。’a−3i膜
中のH2?1度がある一定レベル以下にならないと固相
成長は始まらないため、He希釈ガスでa−3i中のN
2潅度を下げておくことにより、固相成長開始に要する
アニール時間を短縮できる。
The temperature of the dopant relative to Si is determined by the gas flow rate ratio [B2H6
] / [S i H4 122%. In FIG. 1, the solid line shows the case when a He diluted doping gas is used, and the broken line shows the case when a N2 diluted doping gas is used. 1st
As is clear from the figure, when He dilution gas is used, N2
Low resistance poly in a shorter time than using diluent gas
It can be seen that -8i is obtained. This is due to the following reasons. When N2 dilution gas is used, the amount of hydrogen in a-3i is larger than when He dilution gas is used, so N2 is desorbed from the a-3i film at the initial stage of annealing and the concentration drops below a certain level. It takes time to become. Since solid phase growth does not start unless H2 in the a-3i film falls below a certain level, N in the a-3i film is
2 By lowering the irrigation level, the annealing time required to start solid phase growth can be shortened.

アニール方法自体は結晶粒界等へのドーパントの偏析、
異常拡「が起こらない程度の昇温速度と到達温度、かつ
表面酸化膜が形成されにくい降温方法を有するものなら
ばどのような方法でも良い。
The annealing method itself involves segregation of dopants at grain boundaries, etc.
Any method may be used as long as it has a heating rate and temperature that does not cause abnormal expansion, and a cooling method that prevents the formation of a surface oxide film.

アニール時間については、ドーパントの活性化率が飽和
するだけのアニール時間がかけられれば望ましい、特に
ドーパントを2%以上に高温度ドーピングしたpoly
−3iでは、低温から徐々に高温アニーリングに移行す
るステップアニーリングが良い、このようなステップア
ニーリングを施す理由は、昇温速度が速かったり初期ア
ニール温度が高かったりすると、結晶粒界にドーパント
が偏析し、このため低温度ドープのpoly−3iより
も抵抗率が逆に高くなることがあるのを防ぐためである
。低抵抗のpoly−3iを得るためには、初期アニー
ルを550〜620℃の比較的低温で2時間以上アニー
ルしてpoly−3iの平均粒径を1μm以上の大粒径
にすることが望ましい、結晶粒径が小さいと、単位体積
あたりに含まれる結晶粒界の長さが長くなり、不純物が
粒界に偏析した場合、抵抗率の著しい上昇を招くからで
ある。    − アニール時の最高温度が900°C未満で固相成長アニ
ールしたpoly−3i薄膜の結晶粒界には、微視的に
は非晶質領域が残っている。この粒界での非晶質領域は
活性化アニール時間を長くしても完全には結晶質に転移
させることはできない。
Regarding the annealing time, it is desirable that the annealing time is long enough to saturate the activation rate of the dopant, especially for polys doped with 2% or more dopant at high temperature.
For -3i, step annealing that gradually moves from low temperature to high temperature annealing is better.The reason for performing such step annealing is that if the heating rate is fast or the initial annealing temperature is high, dopants will segregate at grain boundaries. This is to prevent the resistivity from becoming higher than that of low-temperature doped poly-3i. In order to obtain poly-3i with low resistance, it is desirable that the initial annealing is performed at a relatively low temperature of 550 to 620 ° C. for 2 hours or more to make the average grain size of poly-3i large to 1 μm or more. This is because when the crystal grain size is small, the length of the crystal grain boundaries included per unit volume becomes long, and when impurities segregate at the grain boundaries, this causes a significant increase in resistivity. - Microscopically, amorphous regions remain at the grain boundaries of a poly-3i thin film annealed by solid phase growth at a maximum temperature of less than 900°C during annealing. The amorphous region at the grain boundary cannot be completely transformed into a crystalline region even if the activation annealing time is increased.

そこでn型試料の場合は固相成長アニールの後で、N2
アニールを900℃以上の温度で30分間以上行うこと
が望ましい、それは非晶質相を結晶質に転移させ、結晶
粒径を大きく保ったまま非晶買相の体積を更に減少させ
ることで更に抵抗率を下げることができるからである。
Therefore, in the case of n-type samples, N2
It is desirable to carry out the annealing at a temperature of 900°C or higher for 30 minutes or more, which transforms the amorphous phase into a crystalline phase and further reduces the volume of the amorphous phase while keeping the grain size large, resulting in further resistance. This is because the rate can be lowered.

またこの短時間アニール工程はN2アニールに限らずハ
ロゲンランプ等によるラビッドサーマルアニーリング法
等で代替することもできる。ドーパントがホウ素の場合
は前記N2アニール温度は1000℃未満にする。N2
アニールを1000℃以上で行うと、シリコン中の8M
子が結晶粒界中、或いは石英基板中に偏析して、かえっ
て抵抗率が高くなるからである。
Further, this short-time annealing process is not limited to N2 annealing, but may be replaced by a rapid thermal annealing method using a halogen lamp or the like. When the dopant is boron, the N2 annealing temperature is less than 1000°C. N2
When annealing is performed at 1000°C or higher, 8M in silicon
This is because the particles segregate in the crystal grain boundaries or in the quartz substrate, and the resistivity increases instead.

この後、ドープトpoly−8iをパタニングしてゲー
ト電極゛3”05を形成する。上述のドープ)a−3i
の固相成長はゲート電極のパタニング後に行っても良い
0次に、nチャネルTPTの場合はP+イオンを、pチ
ャネルTPTの場合はP+イオンをゲート電極をマスク
としてイオンインプランテーションし、ソース領域30
6及びドレイン領域307を形成する。この後ソース・
ドレインの活性化を目的として600〜900”Cで熱
アニールを施す(第3図(d))。
After this, the doped poly-8i is patterned to form the gate electrode "3"05.
The solid phase growth may be performed after patterning the gate electrode. Next, ion implantation is performed with P+ ions in the case of n-channel TPT and P+ ions in the case of p-channel TPT using the gate electrode as a mask, and the source region 30
6 and a drain region 307 are formed. After this source
Thermal annealing is performed at 600 to 900''C for the purpose of activating the drain (FIG. 3(d)).

次いでこの上部に減圧CVD法により、層間絶縁膜のS
 i O2膜308を約8000人成膜する(第3図(
e))、層間絶縁膜には窒化シリコン膜等でもよい、こ
の段階で水素プラズマ法、水素イオン注入法、あるいは
プラズマ窒化膜からの水素の拡散法等の方法で水素をチ
ャネルシリコン層中に導入すると、ゲート絶縁膜/Si
界面や結晶粒界等に存在するダングリングボンドが終端
化され、欠陥準位密度が減る効果がある。この様な水素
化工程は眉間絶縁膜を積層する前に行なっても良い。
Next, an interlayer insulating film of S is deposited on top of this by low pressure CVD.
i O2 film 308 is deposited by about 8,000 people (see Figure 3 (
e)) The interlayer insulating film may be a silicon nitride film, etc. At this stage, hydrogen is introduced into the channel silicon layer by a method such as a hydrogen plasma method, a hydrogen ion implantation method, or a hydrogen diffusion method from a plasma nitride film. Then, the gate insulating film/Si
This has the effect of terminating dangling bonds existing at interfaces, grain boundaries, etc., and reducing defect level density. Such a hydrogenation step may be performed before laminating the glabellar insulating film.

最後にソース、−ドレインのコンタクトホールを空けて
配線材の金属膜(AI等)を約800OAスパツタ法で
成膜し、ソース電極309、ドレイン電極310を成膜
、パタニングしてTPTの完成となる(第3図(f))
Finally, source and -drain contact holes are opened and a metal film (AI, etc.) for wiring material is deposited by sputtering at approximately 800 OA, and a source electrode 309 and a drain electrode 310 are deposited and patterned to complete the TPT. (Figure 3(f))
.

[発明の効果] 本発明の半導体薄膜の製造方法によれば、従来の水素希
釈ガスを用いたa−3iから固相成長させる方法に比較
して短時間で低抵抗のドープトpo1y−3iを形成す
ることができる。このためTPT等を用いた大面積電子
デバイスの量産時のスルーブツトを大きく上昇させるこ
とができる。
[Effects of the Invention] According to the method for manufacturing a semiconductor thin film of the present invention, doped poly-3i with low resistance can be formed in a shorter time than in the conventional solid-phase growth method from a-3i using hydrogen dilution gas. can do. Therefore, the throughput during mass production of large-area electronic devices using TPT or the like can be greatly increased.

このため、大面積液晶パネル、密着型イメージセンサ、
TPT駆動液晶シャッタアレイ、TPT駆動サーマルヘ
ッド等への応用に際して効果を発揮する。またTPT応
用商品ばかりでなく、3次元SO工素子あるいはSRA
M等の高集積化半導体素子、バイポーラトランジスタ等
の半導体デバイス全般に応用可能である。
For this reason, large-area LCD panels, close-contact image sensors,
It is effective when applied to TPT-driven liquid crystal shutter arrays, TPT-driven thermal heads, etc. In addition to TPT applied products, 3D SO elements or SRA
It is applicable to all semiconductor devices such as highly integrated semiconductor elements such as M and bipolar transistors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はアニール時間に対するa−3iの結晶化率の変
化を示す図。 第2図はアニール時間に対するドープトpoly−8i
の抵抗率の変化を示す図。 第3図はTPTの製造工程を示す図。 101 、、、水素希釈ガスを用いて成膜したa−8i
の結晶化率変化曲線。 102、、、ヘリウムガスを用いて成膜したa−3iの
結晶化率変化曲線。 201 、、、水素希釈ガスを用いて成膜したpoly
−3iの抵抗率変化曲線。 202 、、、ヘリウム希釈ガスを用いて成膜したp。 1y−3iの抵抗率変化曲線。 300、、、石英基板。 301 、、、チャネル領域。 302 、、、ゲート酸化膜。 303 、、、ドープトa−3i。 304、、、ドープトpoly−3i。 305 、、、ゲート電極。 306 、、、ソース領域。 307 、、ドレイン領域。 308、、、層間絶縁膜。 309 、、、ソース電極。 310、、、ドレイン電極。 以上 出願人 セイコーエプソン株式会社 アニ−j1411 (h r 5!、 )アニール時−
(hrm、)
FIG. 1 is a diagram showing changes in the crystallization rate of a-3i with respect to annealing time. Figure 2 shows doped poly-8i versus annealing time.
A diagram showing changes in resistivity of. FIG. 3 is a diagram showing the manufacturing process of TPT. 101, a-8i film formed using hydrogen dilution gas
Crystallization rate change curve. 102,...Crystallization rate change curve of a-3i formed into a film using helium gas. 201, poly film formed using hydrogen dilution gas
-3i resistivity change curve. 202, p deposited using helium dilution gas. 1y-3i resistivity change curve. 300, quartz substrate. 301,,,channel region. 302,..., gate oxide film. 303,,,doped a-3i. 304, doped poly-3i. 305,,,gate electrode. 306, source area. 307,, drain region. 308, interlayer insulating film. 309, source electrode. 310, Drain electrode. Applicant: Seiko Epson Co., Ltd. Annie-j1411 (hr 5!, ) During annealing-
(hrm,)

Claims (2)

【特許請求の範囲】[Claims] (1)シリコンを主成分とする非晶質半導体を基板上に
堆積させる方法において、前記非晶質半導体の成膜ガス
にヘリウムを希釈ガスとした混合ガスを用いたことを特
徴とする半導体薄膜の製造方法。
(1) A method for depositing an amorphous semiconductor mainly composed of silicon on a substrate, characterized in that a mixed gas containing helium as a diluent gas is used as a film forming gas for the amorphous semiconductor. manufacturing method.
(2)前記非晶質半導体をアニールして固相成長させる
工程を含むことを特徴とする請求項1記載の半導体装置
の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, further comprising the step of: (2) annealing the amorphous semiconductor to cause solid phase growth.
JP29125590A 1990-10-29 1990-10-29 Semiconductor thin film manufacturing method Expired - Lifetime JP3203652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29125590A JP3203652B2 (en) 1990-10-29 1990-10-29 Semiconductor thin film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29125590A JP3203652B2 (en) 1990-10-29 1990-10-29 Semiconductor thin film manufacturing method

Publications (2)

Publication Number Publication Date
JPH04163910A true JPH04163910A (en) 1992-06-09
JP3203652B2 JP3203652B2 (en) 2001-08-27

Family

ID=17766496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29125590A Expired - Lifetime JP3203652B2 (en) 1990-10-29 1990-10-29 Semiconductor thin film manufacturing method

Country Status (1)

Country Link
JP (1) JP3203652B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183361A (en) * 1995-07-12 2000-06-30 Semiconductor Energy Lab Co Ltd Semiconductor device
US6635900B1 (en) 1995-06-01 2003-10-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film having a single-crystal like region with no grain boundary
KR100398829B1 (en) * 1994-10-19 2004-03-02 소니 가부시끼 가이샤 Method of preparing polycrystalline semiconductor thin film
US7238557B2 (en) 2001-11-14 2007-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US7503975B2 (en) * 2000-06-27 2009-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398829B1 (en) * 1994-10-19 2004-03-02 소니 가부시끼 가이샤 Method of preparing polycrystalline semiconductor thin film
US6635900B1 (en) 1995-06-01 2003-10-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film having a single-crystal like region with no grain boundary
JP2000183361A (en) * 1995-07-12 2000-06-30 Semiconductor Energy Lab Co Ltd Semiconductor device
US7503975B2 (en) * 2000-06-27 2009-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method therefor
US7238557B2 (en) 2001-11-14 2007-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US7834356B2 (en) 2001-11-14 2010-11-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
US8043905B2 (en) 2001-11-14 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same

Also Published As

Publication number Publication date
JP3203652B2 (en) 2001-08-27

Similar Documents

Publication Publication Date Title
EP0598409B1 (en) A method of manufacturing a semiconductor device
JP3306258B2 (en) Method for manufacturing semiconductor device
US6118151A (en) Thin film semiconductor device, method for fabricating the same and semiconductor device
JP2917392B2 (en) Method for manufacturing semiconductor device
JPH0422120A (en) Thin film semiconductor device
JPH04163910A (en) Semiconductor thin film production method
JPH06283422A (en) Polycrystalline semiconductor film, thin film using thereof, manufacturing method thereof
JPH06301056A (en) Production of thin-film semiconductor device
JPH03289140A (en) Manufacture of thin film semiconductor device
JPH08250421A (en) Manufacture of semiconductor substrate and semiconductor substrate
Jiroku et al. High-performance polycrystalline silicon thin-film transistors fabricated by high-temperature process with excimer laser annealing
JPH034564A (en) Manufacture of semiconductor device
JP2751420B2 (en) Method for manufacturing semiconductor device
JP3266185B2 (en) Method for manufacturing polycrystalline semiconductor thin film
JPH07111331A (en) Manufacture of thin film semiconductor device
JPH05218368A (en) Thin film semiconductor device
JPH0284772A (en) Manufacture of semiconductor device
JPH04286335A (en) Manufacture of thin film semiconductor device
JPH04100210A (en) Manufacture of semiconductor device
JPH03280474A (en) Semiconductor device and manufacture thereof
JPH04152628A (en) Manufacture of semiconductor device
JPH0613404A (en) Semiconductor device and manufacture thereof
JPH03120872A (en) Semiconductor device and manufacture thereof
JPH03161977A (en) Thin film semiconductor device and its manufacture
JPH04286370A (en) Thin film semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090629

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 9