JPH0415296B2 - - Google Patents

Info

Publication number
JPH0415296B2
JPH0415296B2 JP61206700A JP20670086A JPH0415296B2 JP H0415296 B2 JPH0415296 B2 JP H0415296B2 JP 61206700 A JP61206700 A JP 61206700A JP 20670086 A JP20670086 A JP 20670086A JP H0415296 B2 JPH0415296 B2 JP H0415296B2
Authority
JP
Japan
Prior art keywords
fibers
fine powder
manufacturing
aromatic
inorganic fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61206700A
Other languages
Japanese (ja)
Other versions
JPS62149934A (en
Inventor
Yukikage Matsui
Shosaburo Hiratsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Publication of JPS62149934A publication Critical patent/JPS62149934A/en
Publication of JPH0415296B2 publication Critical patent/JPH0415296B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、熱可塑性合成繊維の製造方法に関す
るものである。さらに詳しくは、熱可塑性合成重
合体からなる繊維を高温下で高倍率に延伸するか
又は熱処理して、高強力でありかつ加工性に優れ
た繊維を製造する方法に関するものである。 従来技術 近年、合成繊維に対する要求が高度化し、特に
高強力、高モジユラス化の要請に対し、種々の新
規な繊維素材が開発されている。それらのうち、
例えば芳香族ポリアミド繊維、特に英国特許第
1501948号明細書に記載のような、ポリアミド繰
返し単位の一部にエーテル結合を含む実質的にパ
ラ配向の芳香族コポリアミドの繊維にあつては、
その性能を発現させるため、末延伸糸を300℃以
上の高温で全延伸倍率にして6倍以上の高倍率に
延伸する方法が採用される。 また、高分子量のポリエチレン繊維を軟化点近
くの高温で非常な高倍率に延伸して高強力繊維と
することや、全芳香族ポリエステル繊維を長時間
高温で熱処理して繊維物性を改善することも行わ
れている。 ところが、このように高温で延伸又は熱処理を
行うと、糸条は著しく軟化し、単繊維間での融着
現象が生じる。特に、糸条のフイラメント数が多
くなると融着はますます増大し、製糸性が低下す
るばかりでなく、得られた繊維も著しく柔軟性の
低いものとなつてしまう。 この問題を解決するため、芳香族ポリアミド繊
維の延伸又は熱処理に先立つて無機微粉末を塗布
して融着を防ぐと同時に製糸性を改良する方法が
提案された(米国特許第4525384号)。 しかし、この方法は、繊維に塗布された無機微
粉末が延伸後も残存するので、得られた繊維の加
工性の面で好ましくない影響が現れるという欠点
があつた。例えば、マトリツクスとの接着性の低
下や繊維の集束性の低下等の欠点が挙げられる。 発明の目的 本発明の主たる目的は、前述の如く繊維を高温
で延伸するか又は熱処理する際に生ずる単繊維間
の融着を防止して製糸性を向上させると共に、繊
維の集束性や加工性を改善し、高品質の繊維を製
造することにある。 発明の構成 前述の目的は、本発明に従い、熱可塑性合成重
合体の繊維に、不活性な無機微粉末を塗布し、該
繊維を高温で高倍率に延伸するか又は熱処理して
高強力の繊維を得る方法に於いて、延伸又は熱処
理後、該繊維に付着している前記無機微粉末を水
付与処理した後、エアノズル中へ導入し管内の壁
面から空気を噴射することによつて除去し、集束
性、加工性の優れた繊維を製造することによつて
達成される。 本発明でいう「熱可塑性合成重合体からなる繊
維」とは、熱延伸又は熱処理可能な熱可塑性合成
繊維の未延伸糸、部分延伸糸又は延伸糸を総称す
る。 かかる熱可塑性合成繊維としては、単繊維間の
融着が発生するような高温で高倍率に延伸される
か又は熱処理される各種の合成繊維が対象となり
得るが、その代表的なものとしては、高温で延伸
が行われる芳香族ポリアミド繊維、重量平均分子
量が10万以上のポリエチレン繊維や、高温で熱処
理が行われる全芳香族ポリエステル繊維などがあ
げられる。 本発明において好適な芳香族ポリアミド繊維と
しては、ポリアミドを構成する繰返し単位の80モ
ル%以上(好ましくは90モル%以上)が、 −NH−Ar1−NHCO−Ar2−CO− である芳香族ホモポリアミド又は芳香族コポリア
ミドからなる繊維があげられる。 [Ar1,Ar2は、
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing thermoplastic synthetic fibers. More specifically, the present invention relates to a method for producing fibers having high strength and excellent workability by drawing fibers made of thermoplastic synthetic polymers at high temperatures and at high magnification or heat treating them. Prior Art In recent years, demands for synthetic fibers have become more sophisticated, and in particular, various new fiber materials have been developed in response to demands for high strength and high modulus. Among them,
For example, aromatic polyamide fibers, especially British patent no.
For substantially para-oriented aromatic copolyamide fibers containing ether bonds in some of the polyamide repeating units, as described in No. 1501948,
In order to achieve this performance, a method is adopted in which the partially drawn yarn is drawn at a high temperature of 300° C. or higher to a full draw ratio of 6 times or higher. In addition, it is also possible to make high-strength fibers by drawing high-molecular-weight polyethylene fibers at extremely high magnifications at high temperatures near their softening point, and to improve fiber properties by heat-treating wholly aromatic polyester fibers at high temperatures for long periods of time. It is being done. However, when drawing or heat treatment is performed at such a high temperature, the yarn becomes significantly softened and a phenomenon of fusion between single fibers occurs. In particular, as the number of filaments in the yarn increases, the fusion increases more and more, and not only does the spinning property deteriorate, but the resulting fibers also become extremely inflexible. In order to solve this problem, a method has been proposed in which a fine inorganic powder is applied to aromatic polyamide fibers prior to drawing or heat treatment to prevent fusion and at the same time improve spinnability (US Pat. No. 4,525,384). However, this method has the disadvantage that the inorganic fine powder applied to the fibers remains even after stretching, which has an unfavorable effect on the processability of the resulting fibers. For example, there are drawbacks such as a decrease in adhesion to the matrix and a decrease in fiber cohesiveness. Purpose of the Invention As mentioned above, the main purpose of the present invention is to prevent the fusion between single fibers that occurs when fibers are drawn or heat-treated at high temperatures, thereby improving yarn-spinning properties, and improving the cohesiveness and processability of fibers. The aim is to improve the quality of fibers and produce high quality fibers. Structure of the Invention The above-mentioned object, according to the present invention, is to form a high-strength fiber by applying an inert inorganic fine powder to a thermoplastic synthetic polymer fiber, and then drawing the fiber to a high magnification at a high temperature or heat-treating the fiber. After drawing or heat treatment, the inorganic fine powder adhering to the fibers is treated with water, and then introduced into an air nozzle and removed by injecting air from the wall inside the tube, This is achieved by producing fibers with excellent cohesiveness and processability. The term "fiber made of a thermoplastic synthetic polymer" as used in the present invention generally refers to undrawn yarns, partially drawn yarns, or drawn yarns of thermoplastic synthetic fibers that can be heat-stretched or heat-treated. Such thermoplastic synthetic fibers can include various types of synthetic fibers that are stretched at high magnification or heat treated at high temperatures that cause fusion between single fibers; typical examples include: Examples include aromatic polyamide fibers that are stretched at high temperatures, polyethylene fibers with a weight average molecular weight of 100,000 or more, and fully aromatic polyester fibers that are heat treated at high temperatures. Suitable aromatic polyamide fibers in the present invention include aromatic polyamide fibers in which 80 mol% or more (preferably 90 mol% or more) of the repeating units constituting the polyamide are -NH-Ar 1 -NHCO-Ar 2 -CO- Fibers made of homopolyamide or aromatic copolyamide can be mentioned. [Ar 1 and Ar 2 are

【式】【formula】

【式】【formula】

【式】 から選ばれた同一又は相異る芳香族残基を示す。 但し、芳香族残基の水素原子は、ハロゲン原子
及び/又は低級アルキル基で置換されていてもよ
い。] このような芳香族ポリアミドの製造方法につい
ては、例えば英国特許第1501948号明細書、米国
特許第3733964号明細書、特開昭49−100322号公
報等に記載されている。 本発明方法においては、前記の芳香族ポリアミ
ドのうちでも、前記Ar1,Ar2の80モル%以上が、
下記芳香族残基(A),(B),(B′) [これらの芳香族残基の水素原子は、ハロゲン
原子及び/又は低級アルキル基で置換されていて
もよい。] であり、かつ構成単位(B)及び/又は(B′)の合
計モル%が10〜40%である芳香族コポリアミドが
特に好適である。 このような芳香族コポリアミドの例としては、
次の3つのモノマー単位から構成されるコポリア
ミドが挙げられる。
[Formula] represents the same or different aromatic residues selected from However, the hydrogen atom of the aromatic residue may be substituted with a halogen atom and/or a lower alkyl group. ] Methods for producing such aromatic polyamides are described in, for example, British Patent No. 1501948, US Patent No. 3733964, and Japanese Patent Application Laid-Open No. 100322/1983. In the method of the present invention, in the aromatic polyamide, 80 mol% or more of Ar 1 and Ar 2 are
The following aromatic residues (A), (B), (B′) [The hydrogen atoms of these aromatic residues may be substituted with a halogen atom and/or a lower alkyl group. Particularly preferred are aromatic copolyamides in which the total molar percentage of the structural units (B) and/or (B') is from 10 to 40%. Examples of such aromatic copolyamides include:
Copolyamides composed of the following three monomer units may be mentioned.

【式】10〜40モル%[Formula] 10-40 mol%

【式】又は 10〜40モル%[Formula] or 10-40 mol%

【式】50モル% 前記の如き芳香族ポリアミド繊維、特にポリマ
ーの一部にエーテル結合を含む芳香族コポリアミ
ドからなる繊維は、未延伸糸を高倍率に延伸して
高強力、高モジユラスの延伸糸とするには、未延
伸糸を300℃以上、好ましくは350〜550℃の温度
に加熱して、ネツクを生じないように徐々に引き
延ばす「フロー延伸」を行う必要がある。このた
め糸条を高温に加熱するゾーンを長くして、延伸
終了までの加熱時間を0.2秒以上とする必要があ
る。 この際、該糸条は、高温で延伸されるため、単
繊維が軟化し互いに融着して延伸性が悪化し、か
つ延伸糸の品質も低下することが判明した。ま
た、この種維の延伸に使用されている熱板上で延
伸すると、糸条が集合体として熱板に圧着される
ため、ますます融着が増大すること、も判明し
た。 同じ現象は高強力ポリエチレン繊維を製造する
際にも発生する。例えば、重量平均分子量100万
のポリエチレンをデカリンに溶融して2%の溶液
とし、この溶液を複数孔の紡糸口金から紡糸し冷
水に導入して凝固させ、溶媒を抽出した後乾燥し
120℃以上で約40倍に延伸するとヤング率が
50GPa以上の高強力繊維を得ることができる。し
かし、延伸前の乾燥繊維は単繊維同志が膠着して
おり、これを120℃以上で延伸すると部分的に融
着しマルチフイラメントとしての柔軟性が失われ
てしまう。 さらに、全芳香族ポリエステルを溶融紡糸した
後、該繊維を高温で熱処理して高強力、高モジユ
ラスの繊維を製造する場合も、熱処理中に繊維間
の融着が生じるという問題がある。 例えば、特開昭50−43223号公報、特開昭50−
157619号公報には、各種の全芳香族ポリエステル
からなる繊維が示されている。これらの全芳香族
ポリエステル繊維にあつては、高強度、高ヤング
率の繊維を得るような高重合ポリエステルを形成
し、これを溶融紡糸しようとすると紡糸性が不良
のため、比較的低分子量の状態で紡糸し、紡糸後
に長時間にわたり高温で熱処理して分子量を高め
所望の物性の繊維とする必要がある。このような
熱処理は高温で長時間行われるため、通常の方法
で熱処理すると繊維間の融着はさけられない。 本発明方法では、このような延伸または熱処理
中に単繊維同志融着しやすい熱可塑性合成繊維の
延伸又は熱処理において、まず、繊維に不活性な
無機微粉末を塗布して繊維の表面に均一な無機微
粉末の被覆を形成せしめ、続いて該繊維を、高温
で高倍率に延伸するか又は熱処理する。 このような無機微粉末の塗布により従来避ける
ことのできなかつた単繊維間の融着現象を著しく
減少させることができ、実質上融着を皆無に近い
状態にまで改善することができる。 本発明方法に使用される不活性な無機微粉末と
は、延伸又は熱処理時の高温においても化学的に
安定でかつ糸条に対し化学作用(例えば酸化等)
を及ぼさない無機物の微粒子である。無機微粉末
の大きさは、粒子の小さい方がよく、平均粒径が
20ミクロン以下、特に10ミクロン以下、のものが
単繊維の表面に均一に付着するので好適である。
本発明方法で有効に使用される無機微粉末は数多
く存在するが、その中でも、硅酸アルミニウム、
硅酸マグネシウム、グラフアイト、タルク、シリ
カ、マイカから選ばれた1種又は2種以上の無機
物からなるものが特に好適である。 これらの微粉末は単一成分で使用してもよく、
2種以上混合して使用してもよい。またこれらの
微粉末は水性分散浴中で水和してコロイド状にな
るものや、単に分散するだけのものもあるがある
が、両者いずれも使用可能である。 繊維にこれらの微粉末を塗布する方法として
は、予め微粉末を水等の分散媒に分散させた分散
浴を用意し、繊維を分散浴に浸漬させた後乾燥を
行うのが好ましい。なお、無機微粉末の分散を均
一に行うために有機又は無機の分散助剤を分散浴
中に添加したり、或いは、糸条の集束性を向上さ
せるため帯電防止剤や増粘剤を併用してもさしつ
かえない。 無機微粉末の繊維に対する付着量は0.5〜3%
が適当である。良好な延伸性を得るためには1.0
〜2.0重量%が好適である。 一方、上述の方法で延伸又は熱処理して得られ
た繊維に着目すると、繊維上に付着した無機微粉
末の大半は残存しており、残存量が多い程加工性
に悪影響を及ぼす。従つて、繊維に付着している
無機微粉末を除去する必要があるが、延伸又は熱
処理中に繊維が高温に加熱されて半溶融状態とな
ることもあつて繊維表面の無機微粉末は容易に脱
落しない。 このために本発明方法では、まず延伸糸又は熱
処理糸に水付与処理を行う。水付与処理の具体的
手段としては、繊維は水中に浸漬(水中を走行さ
せることを含む)するか又は水シヤワーを吹き付
ける方法が好適である。しかし、この水付与処理
のみでは、付着している無機微粉末が繊維表面が
遊離する程度で除去するには至らない。それ故、
本発明方法では、水付与処理を行つた繊維にさら
に空気流を噴射して、水付与処理により遊離した
無機微粉末を水と共に吹き飛すことが肝要であ
り、この2つの手段により繊維に残存する無機微
粉末の量は効果的に減少するのである。この残存
量が1.0重量%未満となれば加工性における実用
上の問題は皆無となる。 また、この水付与処理と空気流噴射処理の効果
は、単に無機微粉末を除去するだけでなく、繊維
が湿潤状態になるので、仕上げオイルを均一に付
与することが容易となるほか、繊維の集束性が著
しく改善されて、製織性は一段と向上するのであ
る。 上記空気流噴射処理の具体的手段としては、走
行糸条を一般にエアノズルと称されているような
直径1〜3mm、長さ0.5〜3cmの管状部に導入し
て管内の壁面から空気を噴射する手法が実用上有
利である。 この水付与と空気流噴射の処理は、繊維を一旦
巻き取つた後別工程で行つても良く、或いは延伸
後直ちに連続的に工程内で行つても構わない。ま
た水付与処理と空気流噴射処理とを2段で行つた
り繰返して行うと、無機微粉末除去の効果がさら
に増強される。 発明の効果 本発明方法によれば、まず、繊維に不活性な無
機微粉末を塗布して単繊維表面をこの無機微粉末
で薄く被覆し、単繊維間での融着発生を抑制する
と共に、高温で高倍率に延伸又は熱処理された繊
維に対して、水付与処理と空気流噴射処理の両方
をこの順序で施すことによつて、単繊維間融着が
殆んど無く、高強力かつ高モジユラスでしかも集
束性が優れ、製織性が良く、スカム発生等の問題
もなく、更に接着性にも優れた高品質の繊維が得
られるのである。 得られた繊維は織布、ゴムや樹脂の補強材をは
じめ、種々の用途に広く使用することができる。 実施例 以下、本発明の方法を実施例によつて更に詳し
く説明する。なお、以下の例においいて用いる主
な特性値は次の如く測定される値である。 (1) ポリマーの固有粘度(IV) オストワルド型粘度管を用い、溶媒のみの流
下時間をto(秒)、ポリマーの希薄溶液の流下時
間をt(秒)、該希薄溶液中のポリマー濃度をc
(g/dl)とすると、 IV=In(t/to)/c で表わされる。特に断らない限り、溶媒は97.5
%硫酸、c=0.5g/dlとし、30℃で測定する。 (2) 融着度 延伸又は熱処理された糸条のフイラメント総
数(N)のうち、融着がなく、1本ずつに分離
可能なフイラメント数(n)を数え、次式で融
着度を求める。 融着度={(N−n)/2N}×100(%) この測定を5回行つてその平均値をとる。 (3) 無機微粉末の付着量および残存量 無機微粉末の付着量および無機微粉末の残存
量の測定は以下の如く行われる。予め仕上げオ
イルを付与しない繊維を用意し、これを約3g
サンプリングする。次いで、120℃で1時間乾
燥し重量を測る。これをA(g)とする。この
サンプルを800℃の焼却炉中で完全に灰化させ
る。灰化後の灰分重量を測定しB(g)とし次
式で計算する。 付着量(又は残存量)= {B/(A−B)}×100(%) 実施例 1 下記モノマー単位、
[Formula] 50 mol% Aromatic polyamide fibers as described above, especially fibers made of aromatic copolyamides containing ether bonds in a part of the polymer, are produced by drawing undrawn yarn to a high ratio to achieve high strength and high modulus. To make yarn, it is necessary to heat the undrawn yarn to a temperature of 300° C. or higher, preferably 350 to 550° C., and perform "flow stretching" in which the undrawn yarn is gradually stretched without causing necking. For this reason, it is necessary to lengthen the zone in which the yarn is heated to a high temperature so that the heating time until the end of stretching is 0.2 seconds or more. At this time, it has been found that since the yarn is drawn at a high temperature, the single fibers soften and fuse with each other, resulting in poor drawability and deterioration in the quality of the drawn yarn. It has also been found that when the seed fibers are stretched on the hot plate used for stretching, the threads are compressed as an aggregate to the hot plate, which further increases fusion. The same phenomenon occurs when producing high-strength polyethylene fibers. For example, polyethylene with a weight average molecular weight of 1 million is melted in decalin to make a 2% solution, this solution is spun through a spinneret with multiple holes, introduced into cold water and solidified, the solvent is extracted, and then dried.
When stretched approximately 40 times at 120℃ or higher, Young's modulus increases.
High strength fibers with a strength of 50GPa or more can be obtained. However, the single fibers of the dried fibers are stuck to each other before being stretched, and if these are stretched at 120°C or higher, they will partially fuse and lose their flexibility as multifilaments. Furthermore, when a fully aromatic polyester is melt-spun and then heat-treated at a high temperature to produce a high-strength, high-modulus fiber, there is also the problem that fusion between the fibers occurs during the heat treatment. For example, JP-A-50-43223, JP-A-50-
Publication No. 157619 discloses fibers made of various wholly aromatic polyesters. These wholly aromatic polyester fibers are produced by forming highly polymerized polyesters that produce fibers with high strength and high Young's modulus, and when attempting to melt-spun this, the spinnability is poor; After spinning, it is necessary to heat-treat at high temperature for a long period of time to increase the molecular weight and obtain fibers with desired physical properties. Since such heat treatment is carried out at high temperatures for a long time, fusion between fibers cannot be avoided if heat treatment is carried out by a normal method. In the method of the present invention, in the drawing or heat treatment of thermoplastic synthetic fibers that tend to fuse together single fibers during such drawing or heat treatment, an inert inorganic fine powder is first applied to the fiber to uniformly coat the surface of the fiber. A coating of fine inorganic powder is formed, and the fibers are subsequently drawn at high temperatures and high magnification or heat treated. By applying such an inorganic fine powder, it is possible to significantly reduce the phenomenon of fusion between single fibers that could not be avoided in the past, and it is possible to improve the fusion to a state where the fusion is virtually eliminated. The inert inorganic fine powder used in the method of the present invention is one that is chemically stable even at high temperatures during drawing or heat treatment, and that has no chemical effects (such as oxidation) on the yarn.
They are fine particles of inorganic substances that do not have any harmful effects. Regarding the size of inorganic fine powder, the smaller the particle size, the better the average particle size.
Thin fibers with a diameter of 20 microns or less, especially 10 microns or less, are suitable because they adhere uniformly to the surface of single fibers.
There are many inorganic fine powders that can be effectively used in the method of the present invention, among which aluminum silicate,
Particularly preferred are one or more inorganic substances selected from magnesium silicate, graphite, talc, silica, and mica. These fine powders may be used as a single component;
Two or more types may be mixed and used. Further, some of these fine powders become colloidal by hydration in an aqueous dispersion bath, while others are simply dispersed, and both can be used. As a method for applying these fine powders to fibers, it is preferable to prepare a dispersion bath in which the fine powders are dispersed in a dispersion medium such as water in advance, and to dry the fibers after immersing them in the dispersion bath. In addition, in order to uniformly disperse the inorganic fine powder, an organic or inorganic dispersion aid may be added to the dispersion bath, or an antistatic agent or a thickener may be used in combination to improve the cohesiveness of the threads. I don't mind. The amount of inorganic fine powder attached to fibers is 0.5 to 3%.
is appropriate. 1.0 for good stretchability
~2.0% by weight is preferred. On the other hand, when focusing on fibers obtained by drawing or heat-treating by the above method, most of the inorganic fine powder adhering to the fibers remains, and the larger the remaining amount, the more adversely the processability is affected. Therefore, it is necessary to remove the inorganic fine powder adhering to the fibers, but during drawing or heat treatment, the fibers are heated to high temperatures and become semi-molten, so the inorganic fine powder on the fiber surface is easily removed. Will not fall off. For this purpose, in the method of the present invention, the drawn yarn or heat-treated yarn is first subjected to water application treatment. As a specific means for the water application treatment, it is preferable to immerse the fibers in water (including running them in water) or to spray them with a water shower. However, this water application treatment alone does not remove the adhering inorganic fine powder to the extent that the fiber surface is liberated. Therefore,
In the method of the present invention, it is important to further inject an air stream onto the fibers that have been subjected to the water application treatment to blow away the inorganic fine powder liberated by the water application treatment together with the water. The amount of inorganic fine powder produced is effectively reduced. If this residual amount is less than 1.0% by weight, there will be no practical problems in processability. In addition, the effect of this water application treatment and air jet treatment is not only to simply remove inorganic fine powder, but also to moisten the fibers, making it easier to apply finishing oil uniformly, as well as The convergence is significantly improved, and weavability is further improved. As a specific means for the above-mentioned air jet injection treatment, the running yarn is introduced into a tubular part generally called an air nozzle, which has a diameter of 1 to 3 mm and a length of 0.5 to 3 cm, and air is injected from the wall surface inside the pipe. The method has practical advantages. The water application and air jetting treatments may be performed in a separate process after the fiber is once wound up, or may be performed continuously within the process immediately after drawing. Further, if the water application treatment and the air jet treatment are performed in two stages or repeatedly, the effect of removing inorganic fine powder is further enhanced. Effects of the Invention According to the method of the present invention, first, an inert inorganic fine powder is applied to the fibers, and the surface of the single fibers is thinly coated with the inorganic fine powder, thereby suppressing the occurrence of fusion between the single fibers, and By applying both water application treatment and air jet treatment in this order to the fibers that have been drawn or heat treated at high temperature and high magnification, there is almost no fusion between single fibers, resulting in high strength and high strength. It is possible to obtain high-quality fibers that are modulus, have excellent cohesiveness, have good weavability, are free from problems such as scum generation, and have excellent adhesive properties. The resulting fibers can be used in a wide variety of applications, including woven fabrics and reinforcing materials for rubber and resin. Examples Hereinafter, the method of the present invention will be explained in more detail with reference to Examples. Note that the main characteristic values used in the following examples are values measured as follows. (1) Intrinsic viscosity of the polymer (IV) Using an Ostwald viscosity tube, the flow time of the solvent alone is to (seconds), the flow time of the dilute polymer solution is t (seconds), and the polymer concentration in the dilute solution is c.
(g/dl), it is expressed as IV=In(t/to)/c. Unless otherwise specified, solvents are 97.5
% sulfuric acid, c = 0.5 g/dl, and measured at 30°C. (2) Degree of fusion Among the total number of filaments (N) of the drawn or heat-treated yarn, count the number (n) of filaments that are not fused and can be separated one by one, and calculate the degree of fusion using the following formula. . Degree of fusion={(N-n)/2N}×100(%) This measurement is performed five times and the average value is taken. (3) Amount of attached and remaining amount of fine inorganic powder The amount of attached and remaining amount of fine inorganic powder is measured as follows. Prepare fibers that are not coated with finishing oil in advance, and add about 3g of them.
sample. Next, dry at 120°C for 1 hour and weigh. Let this be A(g). This sample is completely incinerated in an incinerator at 800°C. The ash weight after ashing is measured and calculated as B (g) using the following formula. Adhesion amount (or residual amount) = {B/(A-B)}×100(%) Example 1 The following monomer units,

【式】 25モル%[Formula] 25 mol%

【式】 25モル%[Formula] 25 mol%

【式】 50モル% により構成されるIV=3.1の芳香族コポリアミド
を塩化カルシウム(CaCl2)を含有するN−メチ
ル−2−ピロリドン(NMP)中に6重量%溶解
せしめたポリマー溶液を、孔径0.3mm、孔数250の
紡糸口金から83g/分の吐出速度で押出した。空
気中を約10mm走行させた後、50℃のNMP/水/
(30/70重量%)凝固浴中で凝固させ、11m/分
の速度で引き上げた。続いて、得られた凝固糸を
50℃の水浴中で洗浄しつつ、階段的に1.3倍に予
備延伸し、絞りローラに通して表面付着水を除去
し、表1に示すような組成からなる無機微粉末分
散液の浴に約5秒間ネルソンローラに懸けて浸漬
し、次いで絞りローラに通し、無機微粉末液の付
着した水洗糸(予備延伸糸)を得た。引続いて該
水洗糸を表面温度が120℃の直径20cmの乾燥ロー
ラと直径3cmのセパレートローラの組と250℃の
直径1.5cmの乾燥ローラと直径1.5cmのセパレート
ローラの組にそれぞれ10ターンと5ターン巻きつ
けて乾燥し、ほぼ乾燥した糸となし、これを表面
温度が500℃、長さ1mの熱板に接触させつつ、全
延伸倍率が11.0倍となるように延伸して巻取つ
た。 得られた延伸糸を50m/分の速度で解舒し長さ
1mの水洗浴中に浸漬走行させ、引き上げてエア
ノズルを通して空気流を噴射し無機微粉末を除去
した。エアノズルの内径は1.5mmで走行糸を導入
するためのスリツトを有している。エアノズルの
内壁には1.0mmの空気噴射孔が1個設けてある。
走行糸はこのエアノズル内部を通過する際空気流
が衝突し、付着している無機微粉末が含水と共に
吹き飛ばされる。空気流の使用量は100l/分であ
つた。このように処理された延伸糸に仕上げオイ
ルを2%付与して50m/分で巻上げた。 また、比較のため無機微粉末を使用しない場合
や本発明の微粉末除去処理の全部又は一部を省略
した場合についても、実験を行つた。 これらの結果を後掲の表1に示す。 実施例1の実験No.5に関する比較例 引例3のように、エアノズルで、1方向性の空
気噴射を空気量100l/分で実施した。 得られた繊維の糸質は下記のとおりであつた。 無機微粉末残存量:1.2% 全織度:370デニール 強度:27.2g/d 伸度:4.5% ヤング率:650g/d 融着度:0.15% 集束性:3級 繊維をエアノズル中に導入しなかつたためか、
無機微粉末の除去が不十分で得られた繊維の集束
性も本発明のエアノズル不使用の場合とあまり変
わらなかつた。
[Formula] A polymer solution prepared by dissolving 6% by weight of an aromatic copolyamide with IV=3.1 composed of 50% by weight in N-methyl-2-pyrrolidone (NMP) containing calcium chloride (CaCl 2 ), It was extruded from a spinneret with a hole diameter of 0.3 mm and a number of holes of 250 at a discharge rate of 83 g/min. After running about 10 mm in the air, 50℃ NMP/water/
(30/70% by weight) coagulated in a coagulation bath and pulled up at a speed of 11 m/min. Next, the obtained coagulated thread is
While washing in a water bath at 50°C, it was pre-stretched stepwise to 1.3 times, passed through a squeezing roller to remove water adhering to the surface, and then placed in a bath of an inorganic fine powder dispersion having the composition shown in Table 1. The yarn was immersed in a Nelson roller for 5 seconds, and then passed through a squeezing roller to obtain a water-washed yarn (pre-drawn yarn) to which the inorganic fine powder liquid was attached. Subsequently, the washed yarn was passed through a pair of a drying roller with a diameter of 20 cm and a separate roller with a diameter of 3 cm with a surface temperature of 120°C, and a set with a drying roller with a diameter of 1.5 cm and a separate roller with a diameter of 1.5 cm with a surface temperature of 250°C for 10 turns each. The yarn was wound for 5 turns and dried to form a nearly dry yarn, which was stretched and wound at a total stretching ratio of 11.0 times while contacting a hot plate with a surface temperature of 500°C and a length of 1 m. . The obtained drawn yarn is unwound at a speed of 50 m/min to determine the length.
The inorganic fine powder was removed by immersing it in a 1 m water washing bath, pulling it up, and spraying an air stream through an air nozzle. The air nozzle has an inner diameter of 1.5 mm and has a slit for introducing the running yarn. One 1.0 mm air injection hole is provided on the inner wall of the air nozzle.
When the running yarn passes through the air nozzle, the airflow collides with the running yarn, and the attached inorganic fine powder is blown off along with the water content. Air flow usage was 100 l/min. The thus treated drawn yarn was coated with 2% finishing oil and wound at 50 m/min. For comparison, experiments were also conducted in cases where no inorganic fine powder was used and where all or part of the fine powder removal process of the present invention was omitted. These results are shown in Table 1 below. Comparative Example Regarding Experiment No. 5 of Example 1 As in Reference 3, unidirectional air injection was performed using an air nozzle at an air flow rate of 100 l/min. The quality of the obtained fibers was as follows. Remaining amount of inorganic fine powder: 1.2% Total weave: 370 denier Strength: 27.2 g/d Elongation: 4.5% Young's modulus: 650 g/d Degree of fusion: 0.15% Convergence: Class 3 Without introducing the fiber into the air nozzle Maybe because of it,
The cohesiveness of the fibers obtained due to insufficient removal of the inorganic fine powder was not much different from the case in which the air nozzle of the present invention was not used.

【表】 表1に示されるとおり、無機微粉末を使用しな
い場合(実験No.1)は、繊維の融着が多く強度も
低い。タルク/オスモスからなる無機微粉末を付
与すると融着が殆んどゼロとなるが、無機微粉末
除去処理を全く行わないと(実験No.2)集束性が
悪い。水浸漬処理を行うと(実験No.3)、無機微
粉末がかなり除去されるがまだ十分でなく集束性
はあまり改善されていない。エアノズルで空気流
噴射のみを行つた場合(実験No.4)は、殆んど効
果がない。 本発明の如く水浸漬を行つた後空気流噴射を実
施すると(実験No.5)、両者の組合せにより無機
微粉末は効果的に除去され集束性は著しく改善さ
れる。 実施例 2 実施例1と同じ芳香族ポリアミド溶液を、孔径
0.25mm、孔数667の紡糸口金から740g/分の吐出
速度で押し出し空気中を7mm走行させた後、温度
50℃、濃度30重量%のNMP水溶液の凝固浴中で
凝固させ、38.5m/分の速度で引き上げた。続い
て得られた凝固糸を50℃の水浴中で洗浄しつつ段
階的に1.3倍に延伸し、絞りローラーに通して表
面付着水を除去し、表2に示すような組成からな
る濃度2重量%の無機微粉末の水系分散浴に約1
秒間浸漬し、絞りローラーに通し無機微粉末の付
着した水洗系(予備延伸糸)を得た。
[Table] As shown in Table 1, when no inorganic fine powder was used (Experiment No. 1), there was a lot of fiber fusion and the strength was low. When inorganic fine powder consisting of talc/osmos is applied, fusion becomes almost zero, but if no inorganic fine powder removal treatment is performed (Experiment No. 2), the convergence is poor. When the water immersion treatment was performed (Experiment No. 3), a considerable amount of inorganic fine powder was removed, but it was still not sufficient and the focusing property was not improved much. When only air jet was performed using an air nozzle (Experiment No. 4), there was almost no effect. When water immersion is followed by air jet injection as in the present invention (Experiment No. 5), the combination of the two effectively removes the inorganic fine powder and significantly improves the convergence. Example 2 The same aromatic polyamide solution as in Example 1 was
After extruding from a 0.25 mm, 667-hole spinneret at a discharge rate of 740 g/min and traveling 7 mm in air, the temperature
It was coagulated in a coagulation bath of an NMP aqueous solution with a concentration of 30% by weight at 50°C and pulled up at a speed of 38.5 m/min. Subsequently, the obtained coagulated thread was washed in a water bath at 50°C and stretched stepwise to 1.3 times, passed through a squeezing roller to remove water adhering to the surface, and a concentration of 2 weight with the composition shown in Table 2 was obtained. % in an aqueous dispersion bath of inorganic fine powder.
The yarn was immersed for seconds and passed through a squeezing roller to obtain a water-washed yarn (pre-drawn yarn) to which inorganic fine powder was attached.

【表】 次いで、この水洗糸を120℃の乾燥ローラーに
30回巻きつけて乾燥した後、三角歯を有する一対
のギヤーロールの間で乾燥した糸条の揉みほぐし
を行つた。なお、各ギヤーロールは直径84mmで円
周上に40個の三角歯を有しており、三角歯の先端
は曲率半径1mmの丸みになるように仕上げてあ
る。ギヤーロールはお互にある深さに噛み合つて
いるが、この噛合の深さによつて揉みほぐしの程
度を変化させる。噛み合いの深さは0.6mmとした。
この揉みほぐしにより400℃以上での延伸に於い
て開繊し易くなり融着が減少する。 揉みほぐし後、乾燥された糸条を温度360℃、
長さ2mの熱板上で2倍に延伸し、最後に温度500
℃、長さ3mの熱板上で4倍に延伸した。(したが
つて、全延伸倍率は10.4倍である。) かくして得られた延伸糸を一旦巻き取ることな
く連続的に下記に示す方法で無機微粉末を除去す
る処理を行つた。 まず走行している延伸糸に水シヤワーを吹き付
ける。シヤワーの水量は10l/分である。この水
シヤワーにより延伸糸は充分湿潤する。次いで内
径2.5mm、長さ10mmのエアノズルに導入する。エ
アノズルの内壁には直径1.7mmの空気噴射孔が穿
いており、この細孔より200l/分の空気流が走行
する湿潤した延伸糸に衝突し繊維に付着した無機
微粉末を水と共に吹き飛ばす。この後もう一度、
水シヤワーと空気流噴射の処理を同一条件で繰返
す。かくの如く処理された延伸糸にフイニツシイ
ングオイルを1.8%付与して、400m/分の速度で
巻き取つた。得られた繊維の繊度は1030デニール
であつた。 比較のため、無機微粉末除去処理をしない延伸
糸を同様にオイリングを行つて巻き取つた。 これらの延伸糸を用いて高密度織物の製織テス
トを行つた。織密度は1インチ当り32本であつ
た。 上述のテストの結果を次の表3に示す。
[Table] Next, the washed yarn was placed on a drying roller at 120°C.
After winding the yarn 30 times and drying it, the dried yarn was loosened between a pair of gear rolls having triangular teeth. Each gear roll has a diameter of 84 mm and has 40 triangular teeth on its circumference, and the tips of the triangular teeth are rounded with a radius of curvature of 1 mm. The gear rolls are engaged with each other to a certain depth, and the degree of kneading changes depending on the depth of this engagement. The depth of engagement was 0.6 mm.
This massaging makes it easier to open the fibers during stretching at 400°C or higher and reduces fusion. After kneading and loosening, the dried yarn is heated at a temperature of 360℃.
Stretch it twice on a 2m long hot plate and finally heat it to 500℃.
℃ and stretched 4 times on a 3 m long hot plate. (Thus, the total stretching ratio is 10.4 times.) The thus obtained drawn yarn was continuously treated to remove inorganic fine powder by the method described below without being wound up. First, a water shower is sprayed onto the running drawn yarn. The water flow rate of the shower is 10l/min. The drawn yarn is sufficiently wetted by this water shower. Then, it is introduced into an air nozzle with an inner diameter of 2.5 mm and a length of 10 mm. The inner wall of the air nozzle has an air injection hole with a diameter of 1.7 mm, and through this hole, an air flow of 200 l/min collides with the running wet drawn fibers, blowing away inorganic fine powder adhering to the fibers together with water. After this, once again,
Repeat the water shower and air jet processes under the same conditions. A finishing oil of 1.8% was applied to the drawn yarn thus treated, and the yarn was wound at a speed of 400 m/min. The fineness of the obtained fiber was 1030 denier. For comparison, a drawn yarn without inorganic fine powder removal treatment was similarly oiled and wound. A high-density fabric weaving test was conducted using these drawn yarns. The weave density was 32 threads per inch. The results of the above tests are shown in Table 3 below.

【表】 表3から分るように無機微粉末除去処理を行う
と糸質も優れ製織性も良好であつた。一方、無機
微粉末を行わないと繊維の集束性不良のため繊機
の停止が多く、またガイド類にもスカムの付着が
見られた。 実施例 3 重量平均分子量100万のポリエチレンをデカリ
ンに溶解し2%の溶液とし、200孔の紡糸口金か
ら135℃の紡糸温度で紡糸し、5℃の冷水に導い
て凝固させた。この凝固繊維をメタノール浴でデ
カリンを抽出した。この繊維を本発明方法に従つ
て、表4に示す組成の無機微粉末の分散浴(タル
ク濃度1.5%)に浸漬した後絞りロールにかけて
50℃の乾燥ロールで乾燥した。この乾燥繊維を
140℃の熱板上で40倍に延伸した後、長さ1mの水
浴を通し次いで実施例1と同じエアノズルにより
タルク微粉末を除去し、仕上げオイルを1.0%付
与し1000デニール/200フイラメントの高強力ポ
リエチレン繊維を得た。 一方、比較実験としてタルク微粉末を付与しな
いで乾燥し上と同じ条件で延伸しそのままオイル
を1.0%付与して巻取つた。
[Table] As can be seen from Table 3, when the inorganic fine powder removal treatment was performed, the yarn quality was excellent and the weavability was also good. On the other hand, if inorganic fine powder was not used, the textile machine often stopped due to poor fiber convergence, and scum was also observed on the guides. Example 3 Polyethylene having a weight average molecular weight of 1 million was dissolved in decalin to make a 2% solution, which was spun from a 200-hole spinneret at a spinning temperature of 135°C, and then introduced into cold water at 5°C to solidify. Decalin was extracted from this coagulated fiber in a methanol bath. This fiber was immersed in a dispersion bath of inorganic fine powder (talc concentration 1.5%) having the composition shown in Table 4 according to the method of the present invention, and then passed through a squeezing roll.
It was dried on a drying roll at 50°C. This dry fiber
After stretching 40 times on a hot plate at 140°C, the fine talc powder was removed by passing it through a 1 m long water bath, using the same air nozzle as in Example 1, and finishing oil was applied at 1.0% to give a height of 1000 denier/200 filament. A strong polyethylene fiber was obtained. On the other hand, as a comparative experiment, the film was dried without applying fine talc powder, stretched under the same conditions as above, and then 1.0% oil was applied and wound.

【表】 これらの実験結果をまとめて、次の表5に示
す。
[Table] The results of these experiments are summarized in Table 5 below.

【表】 上の表5に示されるように、本発明方法によつ
て融着が激減し最終繊維の集束性が著しく向上す
る。 実施例 4 p−アセトキシ安息香酸1350部、テレフタル酸
311部、イソフタル酸104部、4,4′−ジアセトキ
シジフエニル675部を攪拌機及び留出器を備えた
反応器に仕込み窒素ガス気流下反応によつて生成
する酢酸を留去しつつ250〜330℃で3時間、更に
330℃で5時間反応せしめた。生成したポリマー
を冷却後粉砕し絶対圧約0.2mmHgの減圧下で230
〜280℃に昇温しつつ3時間、更に280℃で3時間
固相重合した。 このようにして得た全芳香族ポリエステルを直
径0.2mm、12孔の円形ノズルより360℃で押し出し
実施例2と同じ無機粉末の分散浴に浸漬したのち
乾燥して巻取つた。この繊維の強度は6.5g/de、
ヤング率480g/de、伸度1.3%であつた。 次いで該繊維を窒素気流中200℃から330℃2時
間かけ昇温し更に330℃で5時間熱処理を行つた。
この繊維を1m長の水浴に通し次いで実施例2と
同じエアノズルを通した後仕上げオイルを付与し
て巻取つた。この繊維は強度24.7g/de、ヤング
率890g/de、伸度2.7%であり単繊維間の融着は
なく柔軟であつた。 一方、比較のため同様に製糸するが、無機粉末
の付与を行わずまた水浴処理およびエアノズルに
よる処理を行わなかつた場合、強度24.7g/deの
ものが得られたが単繊維が熱処理時に融着し硬い
繊維となつた。
[Table] As shown in Table 5 above, the method of the present invention dramatically reduces fusion and significantly improves the cohesiveness of the final fiber. Example 4 1350 parts p-acetoxybenzoic acid, terephthalic acid
311 parts of isophthalic acid, 104 parts of isophthalic acid, and 675 parts of 4,4'-diacetoxydiphenyl were charged into a reactor equipped with a stirrer and a distiller, and the acetic acid produced by the reaction under a nitrogen gas stream was distilled off. 3 hours at 330℃, then
The reaction was carried out at 330°C for 5 hours. After cooling, the produced polymer was crushed and crushed under reduced pressure of about 0.2 mmHg absolute pressure.
Solid phase polymerization was carried out for 3 hours while increasing the temperature to ~280°C, and then for 3 hours at 280°C. The wholly aromatic polyester thus obtained was extruded at 360° C. through a circular nozzle with 12 holes and a diameter of 0.2 mm, immersed in the same inorganic powder dispersion bath as in Example 2, dried, and wound up. The strength of this fiber is 6.5g/de,
The Young's modulus was 480 g/de and the elongation was 1.3%. Next, the fiber was heated in a nitrogen stream from 200°C to 330°C over 2 hours, and then heat-treated at 330°C for 5 hours.
The fibers were passed through a 1 m long water bath and then passed through the same air nozzle as in Example 2 before being coated with finishing oil and wound up. This fiber had a strength of 24.7 g/de, Young's modulus of 890 g/de, and elongation of 2.7%, and was flexible with no fusion between single fibers. On the other hand, for comparison, when yarn was spun in the same manner, but no inorganic powder was applied and no water bath treatment or air nozzle treatment was performed, a yarn with a strength of 24.7 g/de was obtained, but the single fibers were fused during heat treatment. It became a hard fiber.

Claims (1)

【特許請求の範囲】 1 熱可塑性合成重合体からなる繊維に、不活性
な無機微粉末を塗布し、該繊維を高温で延伸する
か又は熱処理して高強力繊維を製造する方法にお
いて、延伸又は熱処理後に、該繊維に水付与処理
をして、エアノズル中へ導入し、管内の壁面から
空気を噴射することによつて空気流噴射処理を施
し、該繊維に付着している前記無機微粉末を除去
することを特徴とする優れた熱可塑性合成繊維の
製造方法。 2 熱可塑性合成重合体が、芳香族残基又はヘテ
ロ環残基からなり、かつその繊維が高温で延伸又
は熱処理される際に単繊維間に融着が発生する剛
直高分子である特許請求の範囲第1項記載の製造
方法。 3 熱可塑性合成重合体が、ポリマーの繰返し単
位の80モル%以上が下記繰返し単位: (―NH−Ar1−NHCO−Ar2−CO)― [ここで、Ar1,Ar2は以下から選ばれた少く
とも一種の芳香族残基を示す。 【式】【式】 【式】 但し、芳香族残基の水素原子は、ハロゲン原子
及び/又は低級アルキル基で置換されていてもよ
い。] で構成される芳香族ポリアミドである特許請求の
範囲第1項又は第2項記載の製造方法。 4 Ar1,Ar2の80モル%以上が下記芳香族残基
(A)又は(B)であり、 [但し、これらの芳香族残基の水素原子はハロ
ゲン原子及び又は低級アルキル基で置換されてい
ても良い。] かつ前記(B)のモル%が10〜40%である特許請求
の範囲第3項記載の製造方法。 5 Ar1,Ar2の80モル%以上が、下記芳香族残
基(A)又は(B′)であり、 [但し、これらの芳香族残基の水素原子はハロ
ゲン原子及び又は低級アルキル基で置換されてい
ても良い。] かつ前記(B′)のモル%が10〜40%である特
許請求の範囲第3項記載の製造方法。 6 熱可塑性合成重合体が全芳香族残基ポリエス
テル、全芳香族ポリエーテル又は全芳香族ポリケ
トンのホモポリマー或いはこれらの共重合物又は
混合物である特許請求の範囲第1項又は第2項記
載の製造方法。 7 熱可塑性合成重合体が重量平均分子量が10万
以上のポリオレフインである特許請求の範囲第1
項記載の製造方法。 8 無機微粉末が、平均粒径20ミクロン以下の微
粉末である特許請求の範囲第1項記載の製造方
法。 9 無機微粉末が硅酸アルミニウム、硅酸マグネ
シウム、グラフアイト、タルク、シリカ及びマイ
カからなる群から選ばれた少くとも1種の無機物
質の微粉末である特許請求の範囲第1項又は第8
項記載の製造方法。 10 水付与処理を、繊維の水中浸漬走行により
行う特許請求の範囲第1項又は第9項記載の製造
方法。 11 水付与処理を、走行繊維への水流噴射によ
り行う特許請求の範囲第1項又は第9項記載の製
造方法。
[Scope of Claims] 1. A method for producing high-strength fibers by coating fibers made of a thermoplastic synthetic polymer with inert inorganic fine powder and stretching or heat-treating the fibers at high temperatures, After the heat treatment, the fibers are subjected to water application treatment, introduced into an air nozzle, and subjected to an air jet treatment by injecting air from the wall surface of the tube to remove the inorganic fine powder adhering to the fibers. An excellent method for producing thermoplastic synthetic fibers characterized by removing the fibers. 2. A patent claim in which the thermoplastic synthetic polymer is a rigid polymer consisting of aromatic residues or heterocyclic residues, and in which fusion occurs between single fibers when the fibers are stretched or heat treated at high temperatures. The manufacturing method according to scope 1. 3 The thermoplastic synthetic polymer is such that 80 mol% or more of the repeating units of the polymer are the following repeating units: (-NH-Ar 1 -NHCO-Ar 2 -CO)- [where Ar 1 and Ar 2 are selected from the following indicates at least one aromatic residue. [Formula] [Formula] [Formula] However, the hydrogen atom of the aromatic residue may be substituted with a halogen atom and/or a lower alkyl group. ] The manufacturing method according to claim 1 or 2, wherein the aromatic polyamide is composed of: 4 More than 80 mol% of Ar 1 and Ar 2 are aromatic residues listed below.
(A) or (B), [However, the hydrogen atoms of these aromatic residues may be substituted with halogen atoms and/or lower alkyl groups. ] The manufacturing method according to claim 3, wherein the mol% of said (B) is 10 to 40%. 5 80 mol% or more of Ar 1 and Ar 2 is the following aromatic residue (A) or (B′), [However, the hydrogen atoms of these aromatic residues may be substituted with halogen atoms and/or lower alkyl groups. ] The manufacturing method according to claim 3, wherein the mol% of said (B') is 10 to 40%. 6. The thermoplastic synthetic polymer according to claim 1 or 2, wherein the thermoplastic synthetic polymer is a homopolymer of wholly aromatic residue polyester, wholly aromatic polyether, or wholly aromatic polyketone, or a copolymer or mixture thereof. Production method. 7 Claim 1 in which the thermoplastic synthetic polymer is a polyolefin with a weight average molecular weight of 100,000 or more
Manufacturing method described in section. 8. The manufacturing method according to claim 1, wherein the inorganic fine powder is a fine powder with an average particle size of 20 microns or less. 9. Claim 1 or 8, wherein the inorganic fine powder is a fine powder of at least one inorganic substance selected from the group consisting of aluminum silicate, magnesium silicate, graphite, talc, silica, and mica.
Manufacturing method described in section. 10. The manufacturing method according to claim 1 or 9, wherein the water application treatment is carried out by immersing and running the fibers in water. 11. The manufacturing method according to claim 1 or 9, wherein the water application treatment is performed by jetting water onto the running fibers.
JP61206700A 1985-09-24 1986-09-04 Production of thermoplastic synthetic fiber Granted JPS62149934A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60-208903 1985-09-24
JP20890385 1985-09-24

Publications (2)

Publication Number Publication Date
JPS62149934A JPS62149934A (en) 1987-07-03
JPH0415296B2 true JPH0415296B2 (en) 1992-03-17

Family

ID=16564031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61206700A Granted JPS62149934A (en) 1985-09-24 1986-09-04 Production of thermoplastic synthetic fiber

Country Status (1)

Country Link
JP (1) JPS62149934A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132851A1 (en) * 2011-03-29 2012-10-04 東レ株式会社 Liquid crystal polyester fibers and method for producing same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4500088B2 (en) * 2004-04-16 2010-07-14 帝人テクノプロダクツ株式会社 Method and apparatus for removing fine powder adhering to thermoplastic yarn
JP4594659B2 (en) * 2004-06-22 2010-12-08 帝人テクノプロダクツ株式会社 Method for producing thermoplastic synthetic fiber
DE602004026365D1 (en) 2004-08-31 2010-05-12 Teijin Techno Products Ltd PROCESSABILITY AND ADHESIVITY
JP2006299476A (en) * 2005-04-22 2006-11-02 Teijin Techno Products Ltd Method for producing para-oriented type fully aromatic copolyamide fiber
JP5298597B2 (en) * 2008-03-28 2013-09-25 東レ株式会社 Method for producing liquid crystal polyester fiber
JP5915227B2 (en) * 2011-03-29 2016-05-11 東レ株式会社 Liquid crystal polyester fiber and method for producing the same
CN104024495A (en) * 2011-12-27 2014-09-03 东丽株式会社 Liquid-crystalline polyester multifilament
JP2013177716A (en) * 2012-01-30 2013-09-09 Teijin Ltd Wholly aromatic polyamide regenerated fiber and method for producing the same
JP6834270B2 (en) * 2016-09-07 2021-02-24 東レ株式会社 Liquid crystal polyester multifilament
JP6834269B2 (en) * 2016-09-07 2021-02-24 東レ株式会社 Liquid crystal polyester multifilament

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5170390A (en) * 1974-12-13 1976-06-17 Kuraray Co Arameorimonono medomekakohoho
JPS5242999A (en) * 1975-10-03 1977-04-04 Toray Industries Heat fixing method of clothes
JPS59137535A (en) * 1983-01-24 1984-08-07 帝人株式会社 Stretching of synthetic fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5170390A (en) * 1974-12-13 1976-06-17 Kuraray Co Arameorimonono medomekakohoho
JPS5242999A (en) * 1975-10-03 1977-04-04 Toray Industries Heat fixing method of clothes
JPS59137535A (en) * 1983-01-24 1984-08-07 帝人株式会社 Stretching of synthetic fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132851A1 (en) * 2011-03-29 2012-10-04 東レ株式会社 Liquid crystal polyester fibers and method for producing same
US10584429B2 (en) 2011-03-29 2020-03-10 Toray Industries, Inc. Method of producing liquid crystal polyester fibers

Also Published As

Publication number Publication date
JPS62149934A (en) 1987-07-03

Similar Documents

Publication Publication Date Title
JPS6385107A (en) Production of filament high in modulus and tensile strength
JP2011042921A (en) Wholly aromatic polyamide filament
JPH0415296B2 (en)
JPS61102413A (en) Production of poly-paraphenylene terephthalamide yarn
JPS61108711A (en) Production of polyvinyl alcohol fiber of high strength and high elastic modulus
JP2001146638A (en) Monofilament and method for producing the same
JPS5854021A (en) Surface modifying method of fiber
JPS6353286B2 (en)
JP4664794B2 (en) Method for producing meta-type aromatic polyamide fiber
JPS60239523A (en) Manufacture of aromatic polyamide fiber
JPH02112409A (en) Production of poly-p-phenylene terephthalamide fiber
JP2005002517A (en) Method for producing thermoplastic synthetic fiber
JP4594659B2 (en) Method for producing thermoplastic synthetic fiber
JPS59116411A (en) Novel polyamide yarn and its preparation
JP2004052173A (en) High-strength polyester monofilament and method for producing the same
JPS6399321A (en) Production of poly-p-phenylene terephthalamide based fiber
JPH0123571B2 (en)
JPS6330409B2 (en)
JPH0874122A (en) Production of meta-aromatic polyamide fiber
JPS6158565B2 (en)
JP6807789B2 (en) High-strength hollow fiber
JPS59163425A (en) Surface modification of synthetic fiber
JP2004162230A (en) Method for producing thermoplastic synthetic fiber
JPS59173314A (en) Drawing of synthetic fiber
JPS61289112A (en) Polyvinyl alcohol fiber having ultra-high tenacity

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term