JPS62149934A - Production of thermoplastic synthetic fiber - Google Patents

Production of thermoplastic synthetic fiber

Info

Publication number
JPS62149934A
JPS62149934A JP61206700A JP20670086A JPS62149934A JP S62149934 A JPS62149934 A JP S62149934A JP 61206700 A JP61206700 A JP 61206700A JP 20670086 A JP20670086 A JP 20670086A JP S62149934 A JPS62149934 A JP S62149934A
Authority
JP
Japan
Prior art keywords
fibers
manufacturing
fine powder
aromatic
inorganic fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61206700A
Other languages
Japanese (ja)
Other versions
JPH0415296B2 (en
Inventor
松井 亨景
平塚 尚三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Publication of JPS62149934A publication Critical patent/JPS62149934A/en
Publication of JPH0415296B2 publication Critical patent/JPH0415296B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、熱可塑性合成[1の製造方法に関するもので
ある。さらに詳しくは、熱可塑性合成重合体からなるm
sを高温下で高倍率に延伸するが又は熱処理して、高強
力でありかつ加工性に優れた繊維を製造する方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a thermoplastic composite [1]. More specifically, m made of thermoplastic synthetic polymer
The present invention relates to a method for producing fibers with high strength and excellent workability by drawing s to a high magnification at high temperatures or heat-treating the fibers.

従来技術 近年、合成繊維に対する要求が高度化し、特に高強力、
高モジユラス化の要請に対し、種々の新規な繊維素材が
開発されている。それらのうち、例え′ば芳香族ポリア
ミド繊維、特に英国特許第1501948号明細書に記
載のような、ポリアミド繰返し単位の一部にエーテル結
合を含む実質的にパラ配向の芳香族コポリアミドの繊維
にあっては、その性能を発現させるため、未延伸糸を3
00℃以上の高温で全延伸倍率にして6倍以上の高倍率
に延伸する方法が採用される。
Conventional technology In recent years, the requirements for synthetic fibers have become more sophisticated, especially high strength,
In response to the demand for high modulus, various new fiber materials have been developed. Among them, for example, aromatic polyamide fibers, in particular fibers of substantially para-oriented aromatic copolyamides containing ether linkages in some of the polyamide repeating units, as described in British Patent No. 1,501,948. If so, in order to achieve its performance, the undrawn yarn is
A method is adopted in which the film is stretched at a high temperature of 00° C. or higher to a total stretching ratio of 6 times or more.

また、高分子量のポリエチレン繊維を軟化点近くの高温
で非常な高倍率に延伸して高強力lli維とすることや
、全芳香族ポリエステル11雑を長時間高温で熱処理し
て繊維物性を改善することも行われている。
In addition, high-molecular-weight polyethylene fibers are stretched to a very high magnification at high temperatures near their softening point to produce high-strength LLI fibers, and fully aromatic polyester 11 miscellaneous is heat-treated at high temperatures for long periods of time to improve fiber properties. This is also being done.

ところが、このように高温で延伸又は熱処理を行うと、
糸条は著しく軟化し、単1iIlff間での融着現象が
生じる。特に、糸条のフィラメント数が多くなると融着
はますます増大し、製糸性が低下するばかりでなく、得
られたlIi維も著しく柔軟性の低いものとなってしま
う。
However, when stretched or heat treated at such high temperatures,
The yarn becomes significantly softened and a phenomenon of fusion between the single 1iIlff occurs. In particular, as the number of filaments in the yarn increases, the fusion increases more and more, which not only reduces the spinning properties but also makes the obtained IIi fibers extremely inflexible.

この問題を解決するため、芳香族ポリアミド繊維の延伸
又は熱処理に先立って無機微粉末を塗布して融着を防ぐ
と同時に製糸性を改良する方法が提案された(米国特許
第4525384号)。
In order to solve this problem, a method has been proposed in which fine inorganic powder is applied to aromatic polyamide fibers prior to drawing or heat treatment to prevent fusion and improve spinnability (US Pat. No. 4,525,384).

しかし、この方法は、繊維に塗布された無機微粉末が延
伸後も残存するので、得られた繊維の加工性の面で好ま
しくない影響が現れるという欠点があった。例えば、マ
トリックスとの接着性の低下や繊維の集束性の低下等の
欠点が挙げられる。
However, this method has the disadvantage that the inorganic fine powder applied to the fibers remains even after stretching, which has an unfavorable effect on the processability of the resulting fibers. For example, there are drawbacks such as a decrease in adhesion to the matrix and a decrease in fiber cohesiveness.

11悲l江 本発明の主たる目的は、前述の如く繊維を高温で延伸す
るか又は熱処理する際に生ずる単繊維間の融着を防止し
て製糸性を向上させると共に、繊維の集束性や加工性を
改善し、高品質の繊維を製造することにある。
As mentioned above, the main purpose of the present invention is to improve spinning properties by preventing the fusion between single fibers that occurs when fibers are drawn or heat treated at high temperatures, and to improve fiber cohesiveness and processability. The aim is to improve the quality of fibers and produce high quality fibers.

発明の構成 前述の目的は、本発明に従い、熱可塑性合成重合体の繊
維に、不活性な無機微粉末を塗布し、該IINを高温で
高倍率に延伸するか又は熱処理して高強力の繊維を得る
方法に於いて、延伸又は熱処理後、該IIに付着してい
る前記無機微粉末を水付与処理と空気流噴射処理とによ
って除去し、加工性の優れたa!維を製造することによ
って達成される。
DESCRIPTION OF THE INVENTION According to the present invention, the above-mentioned object is to coat a thermoplastic synthetic polymer fiber with an inert inorganic fine powder, and then draw the IIN at a high temperature to a high magnification or heat-treat it to produce a high-strength fiber. In this method, after stretching or heat treatment, the inorganic fine powder adhering to II is removed by water application treatment and air jet treatment to obtain a! having excellent workability. This is achieved by manufacturing fibers.

本発明でいう「熱可塑性合成重合体からなる繊維」とは
、熱延伸又は熱処理可能な熱可塑性合成lIi雑の未延
伸糸2部分延伸糸又は延伸糸を総称する。
The term "fiber made of a thermoplastic synthetic polymer" as used in the present invention generally refers to undrawn yarns, two-part drawn yarns, or drawn yarns of thermoplastic synthetic IIi miscellaneous that can be heat-stretched or heat-treated.

かかる熱可塑性合成繊維としては、単繊維間の融着が発
生するような高温で高倍率に延伸されるか又は熱処理さ
れる各種の合成1Ii1aが対象となり得るが、その代
表的なものとしては、高温で延伸が行われる芳香族ポリ
アミドlIm、am平均分子量が10万以上のポリエチ
レン繊維や、高温で熱処理が行われる全芳香族ポリエス
テルratsなどがあげられる。
Such thermoplastic synthetic fibers can include various types of synthetic 1Ii1a that are stretched or heat-treated at high temperatures and high magnifications that cause fusion between single fibers, but representative examples include: Examples include aromatic polyamide lIm, polyethylene fibers having an average molecular weight of 100,000 or more, which are stretched at high temperatures, and fully aromatic polyester rats, which are heat treated at high temperatures.

本発明において好適な芳香族ポリアミド繊維としては、
ポリアミドを構成する繰返し単位の80モル%以上(好
ましくは90モル%以上)が、−NH−Ar +−NH
CO−△r2−CO−である芳香族ホモポリアミド又は
芳香族コポリアミドからなる1iiltがあげられる。
Aromatic polyamide fibers suitable for the present invention include:
80 mol% or more (preferably 90 mol% or more) of the repeating units constituting the polyamide are -NH-Ar + -NH
1iilt consisting of an aromatic homopolyamide or an aromatic copolyamide which is CO-Δr2-CO- is mentioned.

[Ar+ 、Ar7 は、 から選ばれた同−又は相異る芳香族残塁を示す。[Ar+, Ar7 are, Shows the same or different aromatic residues selected from

但し、芳香族残基の水素原子は、ハロゲン原子及び/又
は低級アルキル基で置換されていてもよい。] このような芳香族ポリアミドの製造方法については、例
えば英国特許第1501948号明細書、米国特許第3
733964号明細書、特開昭49−100322号公
報等に記載されている。
However, the hydrogen atom of the aromatic residue may be substituted with a halogen atom and/or a lower alkyl group. ] Regarding the manufacturing method of such aromatic polyamide, for example, British Patent No. 1501948, U.S. Patent No. 3
It is described in specification No. 733964, Japanese Unexamined Patent Publication No. 100322/1984, etc.

本発明方法においては、前記の芳香族ポリアミドのうち
でも、前記Ar 1.Ar 2の80モル%以上が、下
記芳香族残基(A)、(B)、(B’ )[これらの芳
香族残基の水素原子は、ハロゲン原子及び/又は低級ア
ルキル基で置換されていてもよい。] であり、かつ構成単位(B)及び/又は(B′ )の合
計モル%が10〜40%である芳香族コポリアミドが特
に好適である。
In the method of the present invention, among the aromatic polyamides, Ar 1. 80 mol% or more of Ar2 is the following aromatic residues (A), (B), (B') [the hydrogen atoms of these aromatic residues are substituted with a halogen atom and/or a lower alkyl group] It's okay. ] and the total mole % of the structural units (B) and/or (B') is 10 to 40%. Particularly preferred are aromatic copolyamides.

このような芳香族コポリアミドの例としては、次の3つ
のモノマ一単位から構成されるコポリアミドが挙げられ
る。
Examples of such aromatic copolyamides include copolyamides composed of one unit of the following three monomers.

前記の如き芳香族ポリアミド繊維、特にポリマーの一部
にエーテル結合を含む芳香族コポリアミドからなる繊維
は、未延伸糸を高倍率に延伸して高強力、高モジュラス
の延伸糸とするには、未延伸糸を300℃以上、好まし
くは350〜550℃の温度に加熱して、ネックを生じ
ないように徐々に引き延ばす「フロー延伸」を行う必要
がある。このため糸条を高温に加熱するゾーンを長くし
て、延伸終了までの加熱時間を0.2秒以上とする必要
がある。
The above-mentioned aromatic polyamide fibers, especially fibers made of aromatic copolyamides containing ether bonds in a part of the polymer, are prepared by drawing undrawn yarns to a high ratio to obtain drawn yarns with high strength and high modulus. It is necessary to perform "flow stretching" in which the undrawn yarn is heated to a temperature of 300° C. or higher, preferably 350 to 550° C., and gradually stretched to avoid necking. For this reason, it is necessary to lengthen the zone in which the yarn is heated to a high temperature so that the heating time until the end of stretching is 0.2 seconds or more.

この際、該糸条は、高温で延伸されるため、単繊維が軟
化し互いに融着して延伸性が悪化し、かつ延伸糸の品質
も低下することが判明した。また、この種の繊維の延伸
に使用されている熱板上で延伸すると、糸条が集合体と
して熱板に圧着されるため、ますます融着が増大するこ
と、も判明した。
At this time, it has been found that since the yarn is drawn at a high temperature, the single fibers soften and fuse with each other, resulting in poor drawability and deterioration in the quality of the drawn yarn. It has also been found that when this type of fiber is stretched on a hot plate used for stretching, the yarns are compressed as an aggregate to the hot plate, which further increases fusion.

同じ現象は高強力ポリエチレンm*を製造する際にも発
生する。例えば、重量平均分子爪100万のポリエチレ
ンをデカリンに溶解して2%の溶液とし、この溶液を複
数孔の紡糸口金から紡糸し冷水に導入して凝固させ、溶
媒を抽出した後乾燥し120℃以上で約40倍に延伸す
るとヤング率が50GPa以上の高強力l1mを得るこ
とができる。しかし、延伸前の乾燥繊維は単繊維同志が
膠着しており、これを120℃以上で延伸すると部分的
に融着しマルチフィラメントとしての柔軟性が失われて
しまう。
The same phenomenon occurs when producing high-strength polyethylene m*. For example, polyethylene with a weight average molecular weight of 1,000,000 is dissolved in decalin to make a 2% solution, this solution is spun from a spinneret with multiple holes, introduced into cold water and coagulated, the solvent is extracted, and then dried at 120°C. If the film is stretched approximately 40 times in the above manner, a high tensile strength l1m with a Young's modulus of 50 GPa or more can be obtained. However, the single fibers of the dried fibers are stuck to each other before being stretched, and if they are stretched at 120° C. or higher, they will partially fuse and lose their flexibility as multifilaments.

さらに、全芳香族ポリエステルを溶融紡糸した後、該1
1inを高温で熱処理して高強力、高モジュラスのmH
を製造する場合も、熱処理中にtivi間の融着が生じ
るという問題がある。
Furthermore, after melt-spinning the wholly aromatic polyester,
1 inch is heat treated at high temperature to create high strength and high modulus mH.
There is also the problem that fusion between tivs occurs during heat treatment.

例えば、特開昭50−43223号公報、特開昭50=
157619号公報には、各種の全芳香族ポリエステル
からなる1Iit4が示されている。これらの全芳香族
ポリエステルIli雑にあっては、高強度、高ヤング率
の1!雑を得るような高重合ポリエステルを形成し、こ
れを溶融紡糸しようとすると紡糸性が不良のため、比較
的低分子量の状態で紡糸し、紡糸後に長時間にわたり高
温で熱処理して分子量を高め所望の物性のvanとする
必要がある。このような熱処理は高温で長時間性われる
ため、通常の方法で熱処理すると繊維間の融着はさけら
れない。
For example, JP-A-50-43223, JP-A-50=
157619 discloses 1Iit4 made of various wholly aromatic polyesters. These wholly aromatic polyesters have high strength and a high Young's modulus of 1! If you try to melt-spun this into a high-polymerized polyester that has a high molecular weight, it will have poor spinnability, so it will be spun in a relatively low-molecular-weight state, and after spinning, it will be heat-treated at high temperatures for a long time to increase the molecular weight as desired. It is necessary to set the physical properties of the van. Since such heat treatment is carried out at high temperatures for a long period of time, fusion between fibers cannot be avoided if heat treatment is carried out by a normal method.

本発明方法では、このような延伸または熱処理中に単繊
維同志融着しやすい熱可塑性合成繊維の延伸又は熱処理
において、まず、繊維に不活性な無機微粉末を塗布して
4illiHの表面に均一な無機微粉末の被覆を形成せ
しめ、続いて該raettを、高温で高倍率に延伸する
か又は熱処理する。
In the method of the present invention, in the drawing or heat treatment of thermoplastic synthetic fibers that tend to fuse together single fibers during such drawing or heat treatment, an inert inorganic fine powder is first applied to the fibers to uniformly coat the surface of the 4illiH. A coating of fine inorganic powder is formed and the raett is then stretched or heat treated at high temperature and high magnification.

このような無機微粉末の塗布により従来避(プることの
できなかった単繊維間の融着現象を著しく減少させるこ
とができ、実質上融着を皆無に近い状態にまで改善する
ことができる。
By applying such an inorganic fine powder, it is possible to significantly reduce the phenomenon of fusion between single fibers, which could not be avoided in the past, and it is possible to improve the fusion to a state where it is almost completely eliminated. .

本発明方法に使用される不活性な無機微粉末とは、延伸
又は熱処理時の高温においても化学的に安定でかつ糸条
に対し化学作用(例えば酸化等)を及ぼさない無機物の
微粒子である。無機微粉末の大ぎさは、粒子の小さい方
がよく、平均粒径が20ミクロン以下、特に10ミクロ
ン以下、のちのが単aiNの表面に均一に付着するので
好適である。
The inert inorganic fine powder used in the method of the present invention is an inorganic fine particle that is chemically stable even at high temperatures during drawing or heat treatment and does not exert any chemical action (for example, oxidation, etc.) on the yarn. Regarding the size of the inorganic fine powder, the smaller the particles, the better, and the average particle size is 20 microns or less, particularly 10 microns or less, which is preferable because it will adhere uniformly to the surface of the aiN.

本発明方法で有効に使用される無機微粉末は数多く存在
するが、その中でも、硅酸アルミニウム。
There are many inorganic fine powders that can be effectively used in the method of the present invention, and among them, aluminum silicate.

硅酸マグネシウム、グラファイト、タルク、シリカ、マ
イカから選ばれた1種又は2種以上の無機物からなるも
のが特に好適である。
Particularly preferred are one or more inorganic substances selected from magnesium silicate, graphite, talc, silica, and mica.

これらの微粉末は単一成分で使用してもよく、2種以上
混合して使用してもよい。またこれらの微粉、末は水性
分散浴中で水和してコロイド状になるものや、単に分散
するだけのものもあるが、両者いずれも使用可能である
These fine powders may be used as a single component or in combination of two or more. Further, these fine powders and powders may be hydrated in an aqueous dispersion bath to form a colloid, or simply dispersed, and both can be used.

[tにこれらの微粉末を塗布する方法としては、予め微
粉末を水等の分散媒に分散させた分散浴を用意し、Il
i雑を分散浴に浸漬させた後乾燥を行うのが好ましい。
[The method of applying these fine powders to T is to prepare a dispersion bath in which fine powders are dispersed in a dispersion medium such as water,
It is preferable to dry the material after immersing it in the dispersion bath.

なお、無機微粉末の分散を均一に行うために有機又は無
機の分散助剤を分散浴中に添加したり、或いは、糸条の
集束性を向上させるため帯電防止剤や増粘剤を併用して
もさしつかえない。
In addition, in order to uniformly disperse the inorganic fine powder, an organic or inorganic dispersion aid may be added to the dispersion bath, or an antistatic agent or a thickener may be used in combination to improve the cohesiveness of the threads. I don't mind.

無機微粉末の1IiN、に対する付着量は0.5〜3%
が適当である。良好な延伸性を得るためには1.0〜2
.0重量%が好適である。
The adhesion amount of inorganic fine powder to 1IiN is 0.5 to 3%.
is appropriate. 1.0 to 2 to obtain good stretchability
.. 0% by weight is preferred.

一方、上述の方法で延伸又は熱処理して得られた繊維に
着目すると、繊維上に付着した無機微粉末の大半は残存
しており、残存量が多い程加工性に悪影響を及ぼす。従
って、繊維に付着している無機微粉末を除去する必要が
あるが、延伸又は熱処理中に繊維が高温に加熱されて半
溶融状態となることもあって繊維表面の無機’m′#!
iI末は容易にIl見落しない。
On the other hand, when focusing on fibers obtained by drawing or heat-treating by the above method, most of the inorganic fine powder adhering to the fibers remains, and the larger the remaining amount, the more adversely the processability is affected. Therefore, it is necessary to remove the inorganic fine powder adhering to the fibers, but during drawing or heat treatment, the fibers may be heated to high temperatures and become semi-molten, causing the inorganic 'm'# on the fiber surface to disappear.
The iI terminal is not easily overlooked.

このために本発明方法では、まず延伸糸又は熱処理系に
水付与処理を行う。水付与処理の具体的手段としては、
va紺は水中に浸漬(水中を走行させることを含む)す
るか又は水シヤワーを吹き付ける方法が好適である。し
かし、この水付与処理のみでは、付着している無機微粉
末が繊維表面が遊離する程度で除去するには至らない。
For this purpose, in the method of the present invention, water is first applied to the drawn yarn or the heat treatment system. Specific means of water application treatment include:
For VA navy blue, it is preferable to immerse it in water (including running it underwater) or to spray it with a water shower. However, this water application treatment alone does not remove the adhering inorganic fine powder to the extent that the fiber surface is liberated.

それ故、本発明方法では、水付与処理を行ったm雑にさ
らに空気流を噴射して、水付与処理により遊離した無機
微粉末を水と共に吹き飛すことが肝要であり、この2つ
の手段によりm維に残存する無機微粉末の量は効果的に
減少するのである。この残存量が1.0重量%未満とな
れば加工性における実用上の問題は皆無となる。
Therefore, in the method of the present invention, it is important to further inject an air stream into the water-applied surface to blow off the inorganic fine powder liberated by the water-applying treatment together with the water. This effectively reduces the amount of inorganic fine powder remaining in the m-fibers. If this residual amount is less than 1.0% by weight, there will be no practical problem in processability.

また、この水付与処理と空気流噴射処理の効果は、単に
無機微粉末を除去するだけでなく、繊維が湿潤状態にな
るので、仕上げオイルを均一に付与することが容易とな
るほか、m維の集束性が著しく改善されて、製織性は一
段と向上するのである。′ 上記空気流噴射処理の具体的手段としては、走行糸条に
直接空気流を吹きつける方法でも良いが、走行糸条を一
般にエアノズルと称されているような直径1〜3 rt
m 、長さ0.5〜3Cmの管状部に導入して管内の壁
面から空気を噴射する手法が実用上有利である。
In addition, the effect of this water application treatment and air jet treatment is not only to simply remove inorganic fine powder, but also to moisten the fibers, which makes it easier to apply finishing oil uniformly. The cohesiveness of the fabric is significantly improved, and weavability is further improved. ' As a specific means for the above-mentioned air jet treatment, a method of directly spraying the air flow onto the running yarn may be used, but the running yarn may be sprayed with a diameter of 1 to 3 rt, which is generally called an air nozzle.
It is practically advantageous to introduce the air into a tubular part with a length of 0.5 to 3 cm and inject air from the wall surface inside the pipe.

この水付与と空気流噴射の処理は、mlICを一旦巻き
取った後別工程で行っても良く、或いは延伸後直ちに連
続的に工程内で行っても構わない。また水付与処理と空
気流噴射処理とを2段で行ったり繰返して行うと、無機
微粉末除去の効果がさらに増強される。
The water application and air jetting treatments may be performed in a separate process after the mlIC is once rolled up, or may be performed continuously in the process immediately after stretching. Further, if the water application treatment and the air jet treatment are performed in two stages or repeatedly, the effect of removing inorganic fine powder is further enhanced.

発明の効果 本発明方法によれば、まず、繊維に不活性な無機微粉末
を塗布して単繊維表面をこの無機微粉末で薄く被覆し、
単繊維間での融着発生を抑制すると共に、高温で高倍率
に延伸又は熱処理された繊維に対して、水付与処理と空
気流噴射処理の両方をこの順序で施すことによって、単
繊紐間融着が殆んど無く、高強力かつ高モジュラスでし
かも集束性が優れ、u性が良く、スカム発生等の問題も
なく、更に接着性にも優れた高品質のIJi帷が得られ
るのである。
Effects of the Invention According to the method of the present invention, first, an inert inorganic fine powder is applied to the fiber, and the surface of the single fiber is thinly coated with the inorganic fine powder.
In addition to suppressing the occurrence of fusion between single fibers, by applying both water application treatment and air jet treatment in this order to the fibers that have been drawn or heat treated at high temperatures and high magnification, it is possible to prevent the occurrence of fusion between single fiber strands. It is possible to obtain a high-quality IJi cloth with almost no fusion, high strength, high modulus, excellent convergence, good U properties, no problems such as scum generation, and excellent adhesion. .

得られた繊維は織布、ゴムや樹脂の補強材をはじめ、種
々の用途に広く使用することができる。
The resulting fibers can be used in a wide variety of applications, including woven fabrics and reinforcing materials for rubber and resin.

実施例 以下、本発明の方法を実施例によって更に詳しく説明す
る。なお、以下の例においで用いる主な特性値は次の如
く測定される値である。
EXAMPLES Hereinafter, the method of the present invention will be explained in more detail by way of examples. Note that the main characteristic values used in the following examples are values measured as follows.

(1)  ポリマーの固有粘度(I\/)オストワルド
型粘度管を用い、溶媒のみの流下時間をto(秒)、ポ
リマーの希薄溶液の流下15一 時間をt (秒)、該希薄溶液中のポリマー濃度をc(
g/dj)とすると、 IV= In  (t/lo) /c で表わされる。特に断らない限り、溶媒は91.5%硫
酸、 c = 0.5g/djとし、30℃で測定する
(1) Intrinsic viscosity of the polymer (I\/) Using an Ostwald type viscosity tube, the flow time of only the solvent is to (seconds), the flow time of the dilute solution of the polymer is t (seconds), and the flow time of the dilute solution of the polymer is t (seconds). Let the polymer concentration be c(
g/dj), it is expressed as IV=In(t/lo)/c. Unless otherwise specified, the solvent is 91.5% sulfuric acid, c = 0.5 g/dj, and measurements are taken at 30°C.

(2)融着度 延伸又は熱処理された糸条のフィラメント総数・(N)
のうち、融着がなく、1本ずつに分離可能なフィラメン
ト数(n)を数え、次式で融着度を求める。
(2) Degree of fusion: Total number of filaments of drawn or heat-treated yarn (N)
Among them, the number (n) of filaments that are not fused and can be separated one by one is counted, and the degree of fusion is determined using the following formula.

融着度= ((N−n )/2N)x 100(%)こ
の測定を5回行ってその平均値をとる。
Degree of fusion = ((N-n)/2N) x 100 (%) This measurement is performed five times and the average value is taken.

(3)無機微粉末の付着量および残存量無機微粉末の付
着量および無機微粉末の残存量の測定は以下の如く行わ
れる。予め仕上げオイルを付与しないlINを用意し、
これを約3gサンプリングする。次いで120℃で1時
間乾燥し重量を測る。これをA(g)とする。このサン
プルを800℃の焼却炉中で完全に灰化させる。
(3) Amount of attached and remaining amount of fine inorganic powder The amount of attached and remaining amount of fine inorganic powder is measured as follows. Prepare lIN without applying finishing oil in advance,
Sample about 3g of this. Then, it was dried at 120°C for 1 hour and the weight was measured. Let this be A(g). This sample is completely incinerated in an incinerator at 800°C.

灰化後の灰分重量を測定しB(g)とし次式で計算する
The ash weight after ashing is measured and calculated as B (g) using the following formula.

付着量(又は残存量)− (B/ (A−8))x 100(%)実施例1 下記モノマ一単位、 −CO+ CO−50モル% により構成されるIV=3.1の芳香族コポリアミドを
塩化カルシウム(CaCf2)を含有するN−メチル−
2−ピロリドン(NMP)中に6重量%溶解せしめたポ
リマー溶液を、孔径o、3mm、孔数250の紡糸口金
から83g/分の叶出速麿で押出した。空気中を約り0
m走行させた後、50℃のNMP/水(30/ 70重
量%)の凝固浴中で凝固させ、117rLZ分の速度で
引き上げた。続いて、得られた凝固糸を50℃の水浴中
で洗浄しつつ、階段的に1.3倍に予備延伸し、絞りロ
ーラに通して表面付着水を除去し、表1に示すような組
成からなる無機微粉末分散液の浴に約5秒間ネルソンロ
ーラに懸けて浸漬し、次いで絞りローラに通し、無機微
粉末液の付着した水洗糸(予備延伸糸)を得た。引続い
て該水洗糸を表面温度が120℃の直径20 cmの乾
燥ローラと直径3 cmのセパレートローラの組と25
0℃の直径1.5 cmの乾燥ローラと直径1.5 c
mのセパ、レートローラの組にそれぞれ10ターンと5
タ一ン巻きつけて乾燥し、はぼ絶乾した糸となし、これ
を表面温度が500℃、長さ1TrLの熱板に接触させ
つつ、全延伸倍率が11.0倍となるように延伸して巻
取った。
Adhesive amount (or residual amount) - (B/ (A-8)) x 100 (%) Example 1 An aromatic compound with IV = 3.1 composed of one unit of the following monomer, -CO + CO- 50 mol% Polyamide containing N-methyl chloride (CaCf2)
A 6% by weight polymer solution in 2-pyrrolidone (NMP) was extruded through a spinneret with a 3 mm pore size and 250 holes at a speed of 83 g/min. Approximately 0 in the air
After running for m, it was coagulated in a coagulation bath of NMP/water (30/70 wt%) at 50°C and pulled up at a speed of 117 rLZ min. Subsequently, the obtained coagulated thread was pre-stretched stepwise to 1.3 times while being washed in a water bath at 50°C, passed through a squeezing roller to remove water adhering to the surface, and the composition as shown in Table 1 was obtained. The yarn was immersed in a bath of an inorganic fine powder dispersion for about 5 seconds by passing it through a Nelson roller, and then passed through a squeezing roller to obtain a water-washed yarn (pre-drawn yarn) to which the inorganic fine powder liquid was attached. Subsequently, the washed yarn was passed through a set of a drying roller with a diameter of 20 cm and a separate roller with a diameter of 3 cm and a surface temperature of 120°C.
A drying roller with a diameter of 1.5 cm and a diameter of 1.5 c at 0 °C
10 turns and 5 turns for each set of m sepa and rate rollers.
The yarn is wrapped around a single string and dried to form a completely dry yarn, which is then stretched to a total stretching ratio of 11.0 times while contacting a hot plate with a surface temperature of 500°C and a length of 1 TrL. I rolled it up.

得られた延伸糸を50m/分の速度で解舒し長さ1mの
水洗浴中に浸漬走行させ、引き上げてエアノズルを通し
て空気流を噴射し無機微粉末を除去した。エアノズルの
内径は1.5門で走行糸を導入するためのスリットを有
している。エアノズルの内壁には1.ommの空気噴射
孔が1個設けである。
The obtained drawn yarn was unwound at a speed of 50 m/min, immersed in a washing bath with a length of 1 m, and then pulled up and an air stream was sprayed through an air nozzle to remove the inorganic fine powder. The air nozzle has an inner diameter of 1.5 gates and has a slit for introducing the running yarn. The inner wall of the air nozzle has 1. One omm air injection hole is provided.

走行糸はこのエアノズル内部を通過する際空気流が衝突
し、付着している無機微粉末が含水と共に吹き飛ばされ
る。空気流の使用量は100Ω/′分であった。このよ
うに処理された延伸糸に仕上げオイルを2%付与して5
0m/分で巻上げた。
When the running yarn passes through the air nozzle, the airflow collides with the running yarn, and the attached inorganic fine powder is blown off along with the water content. The air flow used was 100 ohms/'min. 2% finishing oil was applied to the drawn yarn treated in this way and 5
It was rolled up at 0 m/min.

また、比較のため無機微粉末を使用しない場合や本発明
の微粉末除去処理の全部又は一部を省略した場合につい
ても、実験を行った。
For comparison, experiments were also conducted in cases where no inorganic fine powder was used and where all or part of the fine powder removal process of the present invention was omitted.

これらの結果を後掲の表1に示す。These results are shown in Table 1 below.

表1に示されるとおり、無機微粉末を使用しない場合(
実験No、1)は、繊維の融着が多く強度も低い。タル
ク/オスモスからなる無機微粉末をf=J与すると融着
が殆んどゼロとなるが、無機微粉末除去処理を全く行わ
ないと(実験No、2)集束性が悪い。水浸漬処理を行
うとく実験No、3)、無機微粉末がかなり除去される
がまだ十分でなく集束′性はあまり改善されていない。
As shown in Table 1, when no inorganic fine powder is used (
In experiment No. 1), there was a lot of fiber fusion and the strength was low. When f=J is applied to the inorganic fine powder consisting of talc/osmos, the fusion becomes almost zero, but if no inorganic fine powder removal treatment is performed (Experiment No. 2), the convergence is poor. In Experiment No. 3), when water immersion treatment was performed, a considerable amount of inorganic fine powder was removed, but it was still not sufficient and the focusing property was not improved much.

エアノズルで空気流噴射のみを行った場合(実験N0.
4)は、殆んど効果がない。
When only air jet is performed using an air nozzle (Experiment No. 0.
4) has almost no effect.

本発明の如く水浸漬を行った後空気流噴射を実施すると
(実験NO,5>、両者の組合せにより無機微粉末は効
果的に除去され集束性は著しく改善される。
When water immersion is followed by air jet injection as in the present invention (Experiment No. 5), the combination of the two effectively removes inorganic fine powder and significantly improves convergence.

実施例2 実施例1と同じ芳香族ポリアミド溶液を、孔径0.25
mm、孔数667の紡糸口金から740g/分の吐出速
度で押し出し空気中を7 mm走行させた後、温度50
℃、濃度30重量%のNMP水溶液の凝固浴中で凝固さ
せ、38.5m/分の速度で引きトげた。
Example 2 The same aromatic polyamide solution as in Example 1 was prepared with a pore size of 0.25.
It was extruded from a spinneret with 667 holes and extruded at a rate of 740 g/min, and after traveling 7 mm in air, the temperature was 50 mm.
It was coagulated in a coagulation bath of an NMP aqueous solution having a concentration of 30% by weight at 10°C and pulled at a speed of 38.5 m/min.

続いて1qられた凝固糸を50℃の水浴中で洗浄しつつ
段階的に163倍に延伸し、絞りローラーに通して表面
付着水を除去し、表2に示すような組成からなる濶磨2
重ω%の無機微粉末の水系分散浴に約1秒間浸漬し、絞
りローラーに通し無機微粉末の付着した水洗糸(予備延
伸糸)を得た。
Subsequently, the 1q coagulated thread was washed in a water bath at 50°C and stretched stepwise to 163 times, passed through a squeezing roller to remove water adhering to the surface, and then stretched to 1 q.
The fibers were immersed in an aqueous dispersion bath containing ω% heavy inorganic fine powder for about 1 second and passed through a squeezing roller to obtain a water-washed yarn (pre-drawn yarn) to which the inorganic fine powder was attached.

表  2 次いで、この水洗糸を120℃の乾燥ローラーに30回
巻ぎつ(づて乾燥した後、三角歯を右する一対のギヤー
ロールの間で乾燥した糸条の揉みぼぐしを行った。なお
、各ギヤーロールは直径84 mmで円周上に40個の
三角歯を有しており、三角歯の先端は曲率半径1 mm
の丸みになるように仕上げである。
Table 2 Next, this washed yarn was dried by winding it around a drying roller at 120°C 30 times, and then the dried yarn was rubbed between a pair of gear rolls with triangular teeth on the right side. , each gear roll has a diameter of 84 mm and 40 triangular teeth on the circumference, and the tips of the triangular teeth have a radius of curvature of 1 mm.
It is finished so that it has a rounded shape.

ギヤーロールはお互にある深さに噛み合っているが、こ
の噛合の深さによって揉みはぐしの程度を変化させる。
The gear rolls are engaged with each other to a certain depth, and the degree of kneading changes depending on the depth of this engagement.

噛み合いの深さは0.6mmとした。この揉みほぐしに
より400℃以上での延伸に於いて開繊し易くなり融着
が減少する。
The depth of engagement was 0.6 mm. This massaging makes it easier to open the fibers during stretching at 400° C. or higher and reduces fusion.

揉゛みほぐし後、乾燥された糸条を温度360℃。After kneading and loosening, the dried yarn was heated to 360°C.

長さ2TrLの熱板上で2倍に延伸し、最後に温度50
0℃、長さ3TrLの熱板上で4倍に延伸した。
Stretched twice on a hot plate with a length of 2 TrL, and finally at a temperature of 50
It was stretched 4 times on a hot plate having a length of 3 TrL at 0°C.

(したがって、全延伸倍率は10.4倍である。)かく
して得られた延伸糸を一旦巻き取ることなく連続的に下
記に示す方法で無機微粉末を除去する処理を行った。
(Thus, the total stretching ratio is 10.4 times.) The thus obtained drawn yarn was continuously treated to remove inorganic fine powder by the method shown below without being wound up.

まず走行している延伸糸に水シヤワーを吹き付ける。シ
ャワーの水量は101/分である。この水シヤワーによ
り延伸糸は充分湿潤する。次いで内径2.5M、長さ1
0#のエアノズルに導入する。エアノズルの内壁には直
径1.7.mの空気噴射孔が穿いており、この細孔より
200Jl/分の空気流が走行する湿潤した延伸糸に衝
突しmatに付着した無機微粉末を水と共に吹き飛ばJ
。この後もう一度、水シヤワーと空気流噴射の処理を同
一条件で繰返寸。かくの如く処理された延伸糸にフィニ
ラシイングオイルを1,8%付与して、400m /分
の速度で巻き取った。得られた繊維の繊度は1030デ
ニールであった。
First, a water shower is sprayed onto the running drawn yarn. The water flow rate of the shower is 101/min. The drawn yarn is sufficiently wetted by this water shower. Then inner diameter 2.5M, length 1
Introduce into 0# air nozzle. The inner wall of the air nozzle has a diameter of 1.7 mm. There are 200 Jl/min of air injection holes through these pores, which collide with the running wet drawn yarn and blow off the inorganic fine powder adhering to the mat together with water.
. After this, the water shower and air jet treatment were repeated under the same conditions. The thus treated drawn yarn was coated with 1.8% finilazing oil and wound at a speed of 400 m/min. The fineness of the obtained fiber was 1030 denier.

比較のため、無機微粉末除去処理をしない延伸糸も同様
にオイリングを行って巻き取った。
For comparison, a drawn yarn without inorganic fine powder removal treatment was similarly oiled and wound.

これらの延伸糸を用いて高密度織物の製織テストを行っ
た。織密度は1インチ当り32本であった。
A high-density fabric weaving test was conducted using these drawn yarns. The weave density was 32 threads per inch.

上述のテスト結果を次の表3に示す。The above test results are shown in Table 3 below.

−Jo − 表3から分るように無機微粉末除去処理を行うと糸質も
優れ製織性も良好であった。一方、無機粉末処理を行わ
ないと繊維の集束性不良のため織機の停止が多く、また
ガイド類にもスカムの付着が見られた。
-Jo- As can be seen from Table 3, when the inorganic fine powder removal treatment was performed, the yarn quality was excellent and the weavability was also good. On the other hand, without inorganic powder treatment, the loom often stopped due to poor fiber cohesiveness, and scum was also observed on the guides.

実施例3 重量平均分子量100万のポリエチレンをデカリンに溶
解し2%の溶液とし、200孔の紡糸口金から135℃
の紡糸湿度で紡糸し、5℃の冷水に導いて凝固させた。
Example 3 Polyethylene with a weight average molecular weight of 1 million was dissolved in decalin to make a 2% solution, and the solution was heated at 135°C from a 200-hole spinneret.
The fibers were spun at a spinning humidity of 5° C. and coagulated by introducing them into cold water at 5° C.

この凝固繊維をメタノール浴でデカリンを抽出した。こ
の繊維を本発明方法に従って、表4に示す組成の無機微
粉末の分散浴(タルク濃度1.5%)に浸漬した後絞り
ロールにかけて50℃の乾燥ロールで乾燥した。この乾
燥Ili維を140℃の熱板上で40倍に延伸した後、
長さ1mの水浴を通し次いで実施例1と同じエアノズル
によりタルク微粉末を除去し、仕上げオイルを1.0%
付与し1000デニール/200フイラメントの高強力
ポリエチレンtiamを得た。
Decalin was extracted from this coagulated fiber in a methanol bath. According to the method of the present invention, the fibers were immersed in a dispersion bath of inorganic fine powder having the composition shown in Table 4 (talc concentration: 1.5%), and then squeezed with a squeezing roll and dried with a drying roll at 50°C. After stretching this dried Ili fiber 40 times on a hot plate at 140°C,
Fine talc powder was removed through a 1 m long water bath and then using the same air nozzle as in Example 1, and the finishing oil was 1.0%.
A high strength polyethylene tiam of 1000 denier/200 filament was obtained.

一方、比較実験としてタルク微粉末をf」与しないで乾
燥し上と同じ条件で延伸しそのままオイルを1.0%付
与して巻取った。
On the other hand, as a comparative experiment, it was dried without applying fine talc powder, stretched under the same conditions as above, and then 1.0% oil was applied and wound up.

表  4 これらの実験結果をまとめて、次の表5に示す。Table 4 The results of these experiments are summarized in Table 5 below.

上の表5に示されるように、本発明方法によって融着が
激減し最終繊維の集束性が著しく向上する。
As shown in Table 5 above, the method of the present invention dramatically reduces fusion and significantly improves the cohesiveness of the final fibers.

実施例4 p−アセトキシ安息香酸1350部、テレフタル酸31
1部、イソフタル酸104部、  4.4’ −ジアセ
トキシジフェニル675部を撹拌機及び留出器を備えた
反応器に仕込み窒素ガス気流下反応によって生成する酢
酸を留去しつつ250〜330℃で3時間、更に330
℃で5時間反応せしめた。生成したポリマーを冷却後粉
砕し絶対圧約0.2mm1−に+の減圧下で230〜2
80℃に昇温しつつ3時間、更に280℃で3時間固相
重合した。
Example 4 1350 parts of p-acetoxybenzoic acid, 31 parts of terephthalic acid
1 part of isophthalic acid, 104 parts of 4.4'-diacetoxydiphenyl, and 675 parts of 4.4'-diacetoxydiphenyl were charged into a reactor equipped with a stirrer and a distiller, and the mixture was heated at 250 to 330°C while distilling off the acetic acid produced by the reaction under a nitrogen gas stream. 3 hours, 330 more
The reaction was carried out at ℃ for 5 hours. After cooling, the produced polymer was pulverized to an absolute pressure of about 0.2 mm1- under reduced pressure of 230~2
Solid phase polymerization was carried out at 80°C for 3 hours and then at 280°C for 3 hours.

このようにして得た全芳香族ポリエステルを直径0.2
m、12孔の円形ノズルより360℃で押し出し実施例
2と同じ無機粉末の分散浴に浸漬したのち乾燥して巻取
った。このIl雑の強度は6.5g/de、ヤング率4
80g / de、伸度1.3%であった。
The wholly aromatic polyester obtained in this way has a diameter of 0.2
It was extruded at 360° C. through a circular nozzle with 12 holes, immersed in the same inorganic powder dispersion bath as in Example 2, dried, and wound up. The strength of this Il miscellaneous material is 6.5 g/de, Young's modulus is 4
The weight was 80g/de and the elongation was 1.3%.

次いで該繊維を窒素気流中200℃から330℃230
一 時間かけ昇湿し更に330℃で5時間熱処理を行った。
The fibers were then heated at 200°C to 330°C in a nitrogen stream.
The humidity was raised over one hour, and then heat treatment was performed at 330° C. for 5 hours.

この繊維を1771長の水浴に通し次いで実施例2と同
じエアノズルを通した後仕上げオイルを付与して巻取っ
た。この繊維は強度24.7g /de、ヤング率89
0g/da、伸度2.7%であり単繊維間の融着はなく
柔軟であった。
The fiber was passed through a 1771 length water bath and then passed through the same air nozzle as in Example 2 before being coated with finishing oil and wound up. This fiber has a strength of 24.7 g/de and a Young's modulus of 89.
It had an elongation of 0 g/da and an elongation of 2.7%, and was flexible with no fusion between single fibers.

一方、比較のため同様に製糸するが、無機粉末の付与を
行わずまた水浴処理およびエアノズルによる処理を行わ
なかった場合、強度24.7g/deのものが得られた
が単繊維が熱処理時に融着し硬いm雑となった。
On the other hand, for comparison, when yarn was spun in the same manner but no inorganic powder was applied and no water bath treatment or air nozzle treatment was performed, a yarn with a strength of 24.7 g/de was obtained, but the single fibers melted during the heat treatment. It was hard and rough when I wore it.

Claims (12)

【特許請求の範囲】[Claims] (1)熱可塑性合成重合体からなる繊維に、不活性な無
機微粉末を塗布し、該繊維を高温で延伸するか又は熱処
理して高強力繊維を製造する方法において、延伸又は熱
処理後に、該繊維に水付与処理及び空気流噴射処理を施
し、該繊維に付着している前記無機微粉末を除去するこ
とを特徴とする熱可塑性合成繊維の製造方法。
(1) In a method of producing high-strength fibers by applying inert inorganic fine powder to fibers made of thermoplastic synthetic polymers and stretching or heat-treating the fibers at high temperatures, after stretching or heat-treating, A method for producing thermoplastic synthetic fibers, which comprises subjecting the fibers to water application treatment and air jet treatment to remove the inorganic fine powder adhering to the fibers.
(2)熱可塑性合成重合体が、芳香族残基又はヘテロ環
残基からなり、かつその繊維が高温で延伸又は熱処理さ
れる際に単繊維間に融着が発生する剛直高分子である特
許請求範囲第(1)項記載の製造方法。
(2) A patent in which the thermoplastic synthetic polymer is a rigid polymer consisting of aromatic residues or heterocyclic residues, and in which fusion occurs between single fibers when the fibers are stretched or heat treated at high temperatures. A manufacturing method according to claim (1).
(3)熱可塑性合成重合体が、ポリマーの繰返し単位の
80モル%以上かつ下記繰返し単位: ■NH−Ar_1−NHCO−Ar_2−CO■[ここ
で、Ar_1、Ar_2は以下から選ばれた少くとも一
種の芳香族残基を示す。 ▲数式、化学式、表等があります▼、▲数式、化学式、
表等があります▼、 ▲数式、化学式、表等があります▼ 但し、芳香族残基の水素原子は、ハロゲン原子及び/又
は低級アルキル基で置換されていてもよい。] で構成される芳香族ポリアミドである特許請求の範囲第
(1)項又は第(2)項記載の製造方法。
(3) The thermoplastic synthetic polymer contains 80 mol% or more of the repeating units of the polymer and the following repeating units: ■NH-Ar_1-NHCO-Ar_2-CO■ [Here, Ar_1 and Ar_2 are at least one selected from the following. Indicates a type of aromatic residue. ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲Mathematical formulas, chemical formulas,
There are tables, etc.▼, ▲There are mathematical formulas, chemical formulas, tables, etc.▼ However, the hydrogen atom of the aromatic residue may be substituted with a halogen atom and/or a lower alkyl group. ] The method for producing an aromatic polyamide according to claim (1) or (2).
(4)Ar_1、Ar_2の80モル%以上が下記芳香
族残基(A)又は(B)であり、▲数式、化学式、表等
があります▼(A) ▲数式、化学式、表等があります▼(B) [但し、これらの芳香族残基の水素原子はハロゲン原子
及び又は低級アルキル基で置換されていても良い。] かつ前記(B)のモル%が10〜40%である特許請求
の範囲第(3)項記載の製造方法。
(4) More than 80 mol% of Ar_1 and Ar_2 are the following aromatic residues (A) or (B), ▲There are mathematical formulas, chemical formulas, tables, etc.▼(A) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (B) [However, the hydrogen atoms of these aromatic residues may be substituted with a halogen atom and/or a lower alkyl group. ] The manufacturing method according to claim (3), wherein the mol% of said (B) is 10 to 40%.
(5)Ar_1、Ar_2の80モル%以上が、下記芳
香族残基(A)又は(B′)であり、 ▲数式、化学式、表等があります▼(A) ▲数式、化学式、表等があります▼(B′) [但し、これらの芳香族残基の水素原子はハロゲン原子
及び又は低級アルキル基で置換されていても良い。] かつ前記(B′)のモル%が10〜40%である特許請
求の範囲第(3)項記載の製造方法。
(5) 80 mol% or more of Ar_1, Ar_2 is the following aromatic residue (A) or (B'), ▲There are mathematical formulas, chemical formulas, tables, etc.▼(A) ▲Mathematical formulas, chemical formulas, tables, etc. Yes▼(B') [However, the hydrogen atoms of these aromatic residues may be substituted with halogen atoms and/or lower alkyl groups. ] The manufacturing method according to claim (3), wherein the mol% of said (B') is 10 to 40%.
(6)熱可塑性合成重合体が全芳香族ポリエステル、全
芳香族ポリエーテル又は全芳香族ポリケトンのホモポリ
マー或いはこれらの共重合物又は混合物である特許請求
の範囲第(1)項又は第(2)項記載の製造方法。
(6) Claims (1) or (2) in which the thermoplastic synthetic polymer is a homopolymer of wholly aromatic polyester, wholly aromatic polyether, or wholly aromatic polyketone, or a copolymer or mixture thereof. ) The manufacturing method described in section 2.
(7)熱可塑性合成重合体が重量平均分子量が10万以
上のポリオレフィンである特許請求の範囲第(1)項記
載の製造方法。
(7) The manufacturing method according to claim (1), wherein the thermoplastic synthetic polymer is a polyolefin having a weight average molecular weight of 100,000 or more.
(8)無機微粉末が、平均粒径20ミクロン以下の微粉
末である特許請求の範囲第(1)項記載の製造方法。
(8) The manufacturing method according to claim (1), wherein the inorganic fine powder is a fine powder with an average particle size of 20 microns or less.
(9)無機微粉末が硅酸アルミニウム、グラファイト、
タルク、シリカ及びマイカからなる群から選ばれた少く
とも1種の無機物質の微粉末である特許請求の範囲第(
1)項又は第(8)項記載の製造方法。
(9) The inorganic fine powder is aluminum silicate, graphite,
Claim No. 1, which is a fine powder of at least one inorganic substance selected from the group consisting of talc, silica, and mica.
The manufacturing method described in item 1) or item (8).
(10)水付与処理を、繊維の水中浸漬走行により行う
特許請求の範囲第(1)項又は第(9)項記載の製造方
法。
(10) The manufacturing method according to claim (1) or (9), wherein the water application treatment is performed by dipping and running the fibers in water.
(11)水付与処理を、走行繊維への水流噴射により行
う特許請求の範囲第(1)項又は第(9)項記載の製造
方法。
(11) The manufacturing method according to claim (1) or (9), wherein the water application treatment is performed by jetting water onto the running fibers.
(12)空気流噴射処理を、エアノズル中へ走行繊維を
導入することにより行う特許請求の範囲第(1)項又は
第(9)項記載の製造方法。
(12) The manufacturing method according to claim (1) or (9), wherein the air jet treatment is carried out by introducing running fibers into an air nozzle.
JP61206700A 1985-09-24 1986-09-04 Production of thermoplastic synthetic fiber Granted JPS62149934A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60-208903 1985-09-24
JP20890385 1985-09-24

Publications (2)

Publication Number Publication Date
JPS62149934A true JPS62149934A (en) 1987-07-03
JPH0415296B2 JPH0415296B2 (en) 1992-03-17

Family

ID=16564031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61206700A Granted JPS62149934A (en) 1985-09-24 1986-09-04 Production of thermoplastic synthetic fiber

Country Status (1)

Country Link
JP (1) JPS62149934A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307357A (en) * 2004-04-16 2005-11-04 Teijin Techno Products Ltd Method for removing fine powder sticking to thermoplastic yarn and apparatus therefor
JP2006009162A (en) * 2004-06-22 2006-01-12 Teijin Techno Products Ltd Method for producing thermoplastic synthetic fiber
WO2006025113A1 (en) * 2004-08-31 2006-03-09 Teijin Techno Products Limited Fully aromatic polyamide fiber with excellent processability and adhesiveness
JP2006299476A (en) * 2005-04-22 2006-11-02 Teijin Techno Products Ltd Method for producing para-oriented type fully aromatic copolyamide fiber
JP2009235633A (en) * 2008-03-28 2009-10-15 Toray Ind Inc Production method of liquid crystal polyester fiber
JP2012214949A (en) * 2011-03-29 2012-11-08 Toray Ind Inc Liquid crystal polyester fiber and method for producing the same
JP2013177716A (en) * 2012-01-30 2013-09-09 Teijin Ltd Wholly aromatic polyamide regenerated fiber and method for producing the same
CN103459684A (en) * 2011-03-29 2013-12-18 东丽株式会社 Liquid crystal polyester fibers and method for producing same
JPWO2013099863A1 (en) * 2011-12-27 2015-05-07 東レ株式会社 Liquid crystalline polyester multifilament
JP2018040076A (en) * 2016-09-07 2018-03-15 東レ株式会社 Liquid crystal polyester multifilament
JP2018040077A (en) * 2016-09-07 2018-03-15 東レ株式会社 Liquid crystal polyester multifilament

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5170390A (en) * 1974-12-13 1976-06-17 Kuraray Co Arameorimonono medomekakohoho
JPS5242999A (en) * 1975-10-03 1977-04-04 Toray Industries Heat fixing method of clothes
JPS59137535A (en) * 1983-01-24 1984-08-07 帝人株式会社 Stretching of synthetic fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5170390A (en) * 1974-12-13 1976-06-17 Kuraray Co Arameorimonono medomekakohoho
JPS5242999A (en) * 1975-10-03 1977-04-04 Toray Industries Heat fixing method of clothes
JPS59137535A (en) * 1983-01-24 1984-08-07 帝人株式会社 Stretching of synthetic fiber

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307357A (en) * 2004-04-16 2005-11-04 Teijin Techno Products Ltd Method for removing fine powder sticking to thermoplastic yarn and apparatus therefor
JP4500088B2 (en) * 2004-04-16 2010-07-14 帝人テクノプロダクツ株式会社 Method and apparatus for removing fine powder adhering to thermoplastic yarn
JP2006009162A (en) * 2004-06-22 2006-01-12 Teijin Techno Products Ltd Method for producing thermoplastic synthetic fiber
JP4594659B2 (en) * 2004-06-22 2010-12-08 帝人テクノプロダクツ株式会社 Method for producing thermoplastic synthetic fiber
WO2006025113A1 (en) * 2004-08-31 2006-03-09 Teijin Techno Products Limited Fully aromatic polyamide fiber with excellent processability and adhesiveness
US7858182B2 (en) 2004-08-31 2010-12-28 Teijin Techno Products Limited Wholly aromatic polyamide fibers excellent in processability and adhesiveness
JP2006299476A (en) * 2005-04-22 2006-11-02 Teijin Techno Products Ltd Method for producing para-oriented type fully aromatic copolyamide fiber
JP2009235633A (en) * 2008-03-28 2009-10-15 Toray Ind Inc Production method of liquid crystal polyester fiber
JP2012214949A (en) * 2011-03-29 2012-11-08 Toray Ind Inc Liquid crystal polyester fiber and method for producing the same
CN103459684A (en) * 2011-03-29 2013-12-18 东丽株式会社 Liquid crystal polyester fibers and method for producing same
KR20140039166A (en) * 2011-03-29 2014-04-01 도레이 카부시키가이샤 Liquid crystal polyester fibers and method for producing same
TWI602963B (en) * 2011-03-29 2017-10-21 東麗股份有限公司 Liquid crystal polyester fiber and method for preparing the same
US20180305841A1 (en) * 2011-03-29 2018-10-25 Toray Industries, Inc. Method of producing liquid crystal polyester fibers
US10584429B2 (en) 2011-03-29 2020-03-10 Toray Industries, Inc. Method of producing liquid crystal polyester fibers
JPWO2013099863A1 (en) * 2011-12-27 2015-05-07 東レ株式会社 Liquid crystalline polyester multifilament
JP2013177716A (en) * 2012-01-30 2013-09-09 Teijin Ltd Wholly aromatic polyamide regenerated fiber and method for producing the same
JP2018040076A (en) * 2016-09-07 2018-03-15 東レ株式会社 Liquid crystal polyester multifilament
JP2018040077A (en) * 2016-09-07 2018-03-15 東レ株式会社 Liquid crystal polyester multifilament

Also Published As

Publication number Publication date
JPH0415296B2 (en) 1992-03-17

Similar Documents

Publication Publication Date Title
US4525384A (en) Process for producing wholly aromatic polyamide filaments heat-treated under tension
JPS62149934A (en) Production of thermoplastic synthetic fiber
JPS6327444B2 (en)
US3494121A (en) Hollow reinforced composite fiber and process for producing same
US3944708A (en) Synthetic fibers and process for making same
JPS6249367B2 (en)
JPS60239523A (en) Manufacture of aromatic polyamide fiber
JP4664794B2 (en) Method for producing meta-type aromatic polyamide fiber
JPH03185103A (en) Conjugate fiber for artificial hair having thick single fiber and production thereof
JPS6353286B2 (en)
JPS643961B2 (en)
JP2005002517A (en) Method for producing thermoplastic synthetic fiber
US4224271A (en) Process for biconstituent polymer compositions
JPS59116411A (en) Novel polyamide yarn and its preparation
JPS6330409B2 (en)
JPS59163425A (en) Surface modification of synthetic fiber
JP2004052173A (en) High-strength polyester monofilament and method for producing the same
JPS59137535A (en) Stretching of synthetic fiber
JPS63243330A (en) Production of high-modulus fiber
JPS59173314A (en) Drawing of synthetic fiber
JPH0123571B2 (en)
JPS6017112A (en) Preparation of aromatic polyamide yarn
JP3368708B2 (en) Method for producing polybenzazole fiber
JPS59179818A (en) Surface modification of fiber
JPS6348968B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term