JPS59163425A - Surface modification of synthetic fiber - Google Patents

Surface modification of synthetic fiber

Info

Publication number
JPS59163425A
JPS59163425A JP3577483A JP3577483A JPS59163425A JP S59163425 A JPS59163425 A JP S59163425A JP 3577483 A JP3577483 A JP 3577483A JP 3577483 A JP3577483 A JP 3577483A JP S59163425 A JPS59163425 A JP S59163425A
Authority
JP
Japan
Prior art keywords
synthetic fibers
surface modification
colloid
fibers according
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3577483A
Other languages
Japanese (ja)
Other versions
JPS6328133B2 (en
Inventor
Akihiro Aoki
昭宏 青木
Shiyouzaburou Hiratsuka
平塚 尚三郎
Norihisa Yamaguchi
山口 紀久
Shoji Makino
昭二 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP3577483A priority Critical patent/JPS59163425A/en
Priority to EP84102374A priority patent/EP0121132B1/en
Priority to US06/586,792 priority patent/US4525384A/en
Priority to DE8484102374T priority patent/DE3462159D1/en
Publication of JPS59163425A publication Critical patent/JPS59163425A/en
Publication of JPS6328133B2 publication Critical patent/JPS6328133B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)

Abstract

PURPOSE:To prevent the mutual welding of the filaments of synthetic fiber exhibiting weldability in the heat elongation and heat-treatment process, by applying a mixture of a hydrophobic colloid and a colloid of inorganic compound forming hydrophilic gel to the surface of the fiber, and drying the applied colloid mixture. CONSTITUTION:A mixture of a colloid of an inorganic compound forming hydrophilic gel (preferably a silicate compound, especially hydrated aluminum silicate or magnesium fluorosilicate) and a hydrophobic colloid (preferably colloidal graphite) is applied to the surface of a synthetic fiber weldable in heat-elongation and/or heat-treatment process (preferably an aromatic copolyamide) by dipping, and the mixture is dried to obtain the surface-modified fiber. The mutual welding of filaments can be prevented effectively even if the fiber is composed of a large number of filaments.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は合成繊維の表面改質法に関する。更に詳しくは
熱延伸およ゛び/または熱処理時に単&1間の融着を発
生する如き合成繊維の表面を改質して前記融着を防止す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for surface modification of synthetic fibers. More specifically, the present invention relates to a method of preventing fusion by modifying the surface of synthetic fibers that cause fusion between single and single molecules during hot drawing and/or heat treatment.

近年、繊維に対する要求が高度化し、特に高強力・高モ
ジユラス化の要請に対し、種々の新規な素材が開発・検
討されてきている。それらのうち、ある種のものは高性
能発現のため、高温度での高倍率延伸、あるいは高温度
での熱処理工程が適用され、この工程において好ましく
ない単糸間の融着が発生する。すなわちこれもの延伸時
(又は熱処理時)融着性を有する繊維の中には単糸とし
ては高性能を発揮するにもかかわらず、多フィラメント
の繊維束を通常の方法で延伸および/または熱処理する
と単糸間融着が著L<−1集合体としての性能が著しく
そこなわれるものが多くある。
In recent years, the demands on fibers have become more sophisticated, and in response to the demands for high strength and high modulus, various new materials have been developed and studied. For some of them, high-magnification stretching at high temperatures or a heat treatment process at high temperatures is applied to achieve high performance, and undesirable fusion between single filaments occurs during this process. In other words, some fibers that have fusibility during drawing (or heat treatment) exhibit high performance as single filaments, but when multifilament fiber bundles are drawn and/or heat treated in the usual manner, There are many cases in which the performance as an aggregate is significantly impaired when the fusion between single yarns is significant L<-1.

上述の単糸融着を防止する方法として、本発明者らは先
に、熱延伸および/または熱処理時にffl雄の表面に
水和ゲル形成性無機化合物を付与する方法を提案した(
特願昭56−151944 )eしかし、この方法によ
っても繊維束を構成する単糸の数が多くなると単糸融着
防止効果が薄れてくるという問題に遭遇した。その原因
について、本発明者らが餅、意研究した結果、水和ゲル
形成無機化合物の水分散液を繊維に付与して、乾燥する
場合、繊維上の水分が減少するとともにゲル形成無機化
合物が凝集して、粗大粒子化し、繊維表面に粗大粒子と
して付着する結果、該化合物が均一に繊維表面を覆うこ
とができなくなり、この不均一付着の現象は繊維束の構
成単糸の数が多くなるにつれて顕著になることをつきと
めた。
As a method of preventing the above-mentioned single filament fusion, the present inventors previously proposed a method of applying a hydrated gel-forming inorganic compound to the surface of the ffl male during hot stretching and/or heat treatment (
(Japanese Patent Application No. 56-151944) e However, even with this method, a problem has been encountered in that as the number of single yarns constituting the fiber bundle increases, the effect of preventing single yarn fusion decreases. As a result of our extensive research into the cause of this, we found that when an aqueous dispersion of a hydrated gel-forming inorganic compound is applied to fibers and then dried, the water content on the fibers decreases and the gel-forming inorganic compounds are removed. As a result of agglomerating, forming coarse particles, and adhering to the fiber surface as coarse particles, the compound cannot uniformly cover the fiber surface, and this phenomenon of non-uniform adhesion increases the number of single filaments constituting the fiber bundle. We found that it becomes more noticeable as time goes on.

発明の目的 本発明者らは、前記の知見に基づいて、親水ゲル形成無
機化合物の水分散液を繊維に付与した徒、乾燥し、水分
を減少させて行く過程において、該無機化合物の濃度が
高く々っても該化合物が凝集せず、微粒子状態で繊維表
面に付着でき、単糸数が多くても有効に単糸間の融着を
防止できる方法を提供すべく鋭意研究の結果、本発明に
到達したものである。
Purpose of the Invention Based on the above findings, the present inventors have discovered that after applying an aqueous dispersion of a hydrophilic gel-forming inorganic compound to fibers, in the process of drying and reducing the water content, the concentration of the inorganic compound decreases. As a result of intensive research, the present invention was developed in order to provide a method in which the compound does not aggregate at most, can be attached to the fiber surface in the form of fine particles, and can effectively prevent fusion between single yarns even when the number of single yarns is large. has been reached.

発明の構成 すなわち、本発明は、熱延伸および/または熱処理時に
融着性を有する繊維の表面に親水ゲル形成性無機化合物
のコロイドと疎水コロイドとの混合物を付与し、しかる
後、乾燥することを特徴とする方法である。
Structure of the Invention That is, the present invention provides a method of applying a mixture of a hydrophilic gel-forming inorganic compound colloid and a hydrophobic colloid to the surface of a fiber having fusibility during hot drawing and/or heat treatment, and then drying the mixture. This method is characterized by

ここで、親水ゲル形成無機化合物とは無水に速算した該
無機化合物に対して5倍以上の水を含水してゲルを形成
する含水珪酸アルミニラAのようなもの(水和膨憫性を
有する膨潤性雲母、例えば弗化珪酸マグネシウムのよう
なものがあげられ、さらには親水ゲル形成性無機化合物
のコロイドとしては微細化シリカ力・らなるコロイダル
シリカや、微細化アルミナからなるアルミナゾルなどが
あげられる。また、疎水コロイドとは、水との親和力が
弱い微細化無機物粒子の水分散系で、例えばコロイド黒
鉛などがあけられる。
Here, the hydrophilic gel-forming inorganic compound refers to a compound such as hydrated aluminum silicate A that forms a gel by containing 5 times or more water than the inorganic compound when calculated without water (swelling with hydration swelling property). Examples of the hydrophilic gel-forming inorganic compound colloids include colloidal silica made of finely divided silica and alumina sol made of finely divided alumina. Furthermore, a hydrophobic colloid is an aqueous dispersion system of finely divided inorganic particles that have a weak affinity for water, such as colloidal graphite.

親水ゲル形成性無機化合物のコロイド(親水コロイド)
のみをm維に付与して後乾燥した場合には、先に述べた
ように乾燥過程で校無機化合物が凝結して2次凝集体粗
大粒子となって繊維表面に不均一に何着するので、繊維
束の構成部糸の数が多くなると熱延伸または熱処理時の
融着防止効果が著しく低下するという問題があり、また
疎水コロイドのみであっても、均一に繊維表面に無機σ
夕拉子を付着させることができな込という開閉があるた
め、本発明では、親水ゲル形成性無様化合物の凝結を抑
制して該化合物を微細粒子状態で繊維表面に均一に付着
させるため、親水コロイドと疎水コロイドとを混合し疎
水コロイドの構成ぐ・細粒子を親水コロイドが保護して
疎水コロイドを安定化させると同時に親水コロイドが凝
結に用いる電荷を減少させるようにしたものである。
Colloid of hydrophilic gel-forming inorganic compound (hydrophilic colloid)
When only M-fibers are applied to the fibers and then dried, as mentioned earlier, the inorganic compounds coagulate during the drying process and become coarse particles of secondary aggregates that are deposited unevenly on the fiber surface. However, when the number of component yarns in a fiber bundle increases, there is a problem in that the effect of preventing fusion during hot drawing or heat treatment decreases significantly.Also, even if only hydrophobic colloid is used, inorganic σ
Therefore, in the present invention, in order to suppress the coagulation of the hydrophilic gel-forming amorphous compound and uniformly adhere the compound to the fiber surface in the form of fine particles, the hydrophilic gel-forming amorphous compound is A colloid and a hydrophobic colloid are mixed, and the hydrophilic colloid protects the fine particles constituting the hydrophobic colloid, stabilizing the hydrophobic colloid, and at the same time reducing the charge used by the hydrophilic colloid for coagulation.

本発明において、親水コロイドと疎水コロイドとを混合
するに際しでは、それぞれの水系コロイドを作成した後
、混合してもよく、疎水コロイドの中に親水ゲル形成性
無機化合物を分散させてもよく、また親水コロイドの中
に疎水コロイドを構成する微細粒子を分散させてもよい
In the present invention, when mixing a hydrophilic colloid and a hydrophobic colloid, the respective aqueous colloids may be prepared and then mixed, or the hydrophilic gel-forming inorganic compound may be dispersed in the hydrophobic colloid. Fine particles constituting the hydrophobic colloid may be dispersed in the hydrophilic colloid.

また、親水コロイドおよび疎水コロイドは、それぞれ−
成分の化合物からのみなる必要はなく類似機能を有する
2種以上の化合物の混合物でもよい。また、必要に応じ
コロイド化助剤を含んでいてもよい。
Moreover, hydrophilic colloid and hydrophobic colloid are respectively −
It does not have to consist only of component compounds, but may be a mixture of two or more kinds of compounds having similar functions. Moreover, a colloidalization aid may be included if necessary.

本発明において、親水コロイドと疎水コロイドとの混合
割合は混合系全体が安定であれば任意の割合でよいが、
好ましくは、疎水コロイドの構成微細粒子を親水ゲル形
成性無機化合物が包みこむような割合、具体的には、そ
れぞれの構成有効成分の比が1o;1ないし10,00
0:1の範囲が好ましい。
In the present invention, the mixing ratio of hydrophilic colloid and hydrophobic colloid may be any ratio as long as the entire mixing system is stable.
Preferably, the ratio of the hydrophilic gel-forming inorganic compound to the constituent fine particles of the hydrophobic colloid is such that the ratio of the respective constituent active ingredients is 1:1 to 10,00.
A range of 0:1 is preferred.

本発明において、親水コロイドと疎水ニア0イドとの混
谷物を繊維表面に付与する方法とじては、・混合液に繊
維を走行させながら浸漬する方法が好ましい。
In the present invention, as a method for applying a mixture of a hydrophilic colloid and a hydrophobic colloid to the fiber surface, it is preferable to immerse the fiber in a mixed solution while running the fiber.

繊維に付与する無機化合物の量としては繊維の重量に対
して、無水換算で0.05〜5重量係好ましくは0.2
〜2.0重量%が適用される。
The amount of the inorganic compound added to the fibers is 0.05 to 5% by weight, preferably 0.2%, based on the weight of the fibers.
~2.0% by weight is applied.

本発明方法が適用される合成繊維としては、熱延伸およ
び/凍たけ熱処理時に融着性を示すものはすべて含まれ
る。ここで融着性とは、複数の繊維を繊維束として熱延
伸および/または熱処理した際、繊維間に融着部分を形
成する性質をいう。かかる本発明方法が適用される繊維
としては例えばポリエチレン、ポリプロピレン。
Synthetic fibers to which the method of the present invention can be applied include all those that exhibit fusion properties during hot drawing and/or freezing heat treatment. Here, fusion property refers to the property of forming a fused portion between fibers when a plurality of fibers are heat-stretched and/or heat-treated as a fiber bundle. Examples of fibers to which the method of the present invention is applied include polyethylene and polypropylene.

ナイロン、ポリエステルといった熱可塑性ホリマー、あ
るいは部分硬化された熱硬化性樹脂等の繊維があげられ
る。
Examples include fibers such as thermoplastic polymers such as nylon and polyester, or partially cured thermosetting resins.

更に本発明方法が適用される繊維として近年高強力・高
モジュラス繊維として開発研究されている以下の如き重
合体からなる合成繊維素材が好適である。
Further, as the fiber to which the method of the present invention is applied, synthetic fiber materials made of the following polymers, which have been recently developed and researched as high strength and high modulus fibers, are suitable.

a)下記繰返し単・位、 −NRI −A r) −NR2−CO−A rz −
CO−および/または −NR3−AR3−CO− で構成される芳香族コポリアミド。
a) The following repeating unit: -NRI -A r) -NR2-CO-A rz -
Aromatic copolyamide composed of CO- and/or -NR3-AR3-CO-.

このような芳香族コポリアミドとしては、例えば直線お
よび/または平行軸の結合手を有する芳香族残基(p−
フェニレン、2,6ナフタレン、  4.4’−ジフェ
ニル等)からなる全芳香族ポリアミドK1,3.4’−
ジフェニルエーテル、4.4’−ジフェニルエーテル、
m−フェニレン等を共重合したり、更に芳香族残基の水
素原子の一部をノ・ロゲン原子および/または低級アル
キル基で置換することにより、繊維に成形した場合の延
伸性を高めた芳香族コポリアミドがあげられるが、なか
でも、Ar1゜A rz 、 A rlの80モルチ以
上が、であり、かつ構成単位(6)のモルチが10〜4
0であって、且つ、R1,R2,B−B の全てが水素
原子である芳香族コポリアミドが好ましい。
Such aromatic copolyamides include, for example, aromatic residues (p-
Fully aromatic polyamide K1,3.4'-
diphenyl ether, 4,4'-diphenyl ether,
Aromatics with improved stretchability when formed into fibers by copolymerizing m-phenylene, etc., or by substituting some of the hydrogen atoms of aromatic residues with norogen atoms and/or lower alkyl groups. Among them, Ar1゜A rz , Arl is 80 or more mole, and the structural unit (6) has a mole of 10 to 4.
0 and all of R1, R2, and B-B are hydrogen atoms.

b)下記4つの繰返し単位 −NR2−Ar、−Co−NH−NH−(C)NR2A
r2 NR3(D) −NR4−A r3−c O−(E )−co−p、r
、−co−CF) メ・らなる芳香族コポリアミドヒドラジド。
b) The following four repeating units -NR2-Ar, -Co-NH-NH-(C)NR2A
r2 NR3(D) -NR4-A r3-c O-(E)-co-p, r
, -co-CF) Aromatic copolyamide hydrazide.

このような芳香族コポリアミドヒドラジドとしては、た
とえば、直線および/捷たけ平行軸の結合手を有する芳
香族残基からなる全芳香族ポリアミドにヒドラジド結合
を導入した芳香族コポリアミドヒドラジドがあげられる
が、特に、前記Ar4 、 Ar2 、 Ar3 、 
Ar4の80モルφ以上がp−フェニレン残基であり、
且つ、RI 、R21R31R4がすべて水素原子であ
るものが好ましい。
Examples of such aromatic copolyamide hydrazide include aromatic copolyamide hydrazide in which hydrazide bonds are introduced into a fully aromatic polyamide consisting of an aromatic residue having straight and/or twisted parallel axis bonding hands. , especially the aforementioned Ar4, Ar2, Ar3,
80 moles φ or more of Ar4 are p-phenylene residues,
In addition, it is preferable that RI and R21R31R4 are all hydrogen atoms.

C)下記繰返し単位 −N Ar)  CC(G) o / 〔ここでA rl 、 A rzは前記(b)と同様〕
からなる芳香族オキサジアゾール/メチルヒドラシトコ
ポリマー。
C) The following repeating unit - N Ar) CC (G) o / [Here, Arl and Arz are the same as in (b) above]
An aromatic oxadiazole/methyl hydracit copolymer consisting of:

d)光学的異方性熔融物を形成し得る熱可塑性重合体、
例えば全芳香族ポリエステル2芳香族ポリアゾメチンな
ど。
d) a thermoplastic polymer capable of forming optically anisotropic melts;
For example, fully aromatic polyester diaromatic polyazomethine.

発明の効果 上記(、)〜(c)のポリマーからなる繊維においては
、充分な性能を発揮させるためには、繊維間の融着が生
成する如き高温(例えば300℃以上の温度)での熱延
伸が必要であり、また(d)の繊維においては充分な高
強度を得るためには繊維間の融着が生成する如き高温で
のかつ比較的長時間の熱処理が必要である。
Effects of the Invention In order for the fibers made of the polymers (,) to (c) above to exhibit sufficient performance, it is necessary to heat them at a high temperature (e.g., a temperature of 300°C or higher) that causes fusion between the fibers. Stretching is necessary, and in order to obtain sufficiently high strength in the fibers of (d), heat treatment at a high temperature and for a relatively long period of time is necessary to form fusion between the fibers.

また例えばポリエチレンの如き熱可塑性繊維を高延伸倍
率(10〜50倍)で延伸することにより、高強力・高
モジュラス繊維を得る場合においても多フィラメントの
繊維集合体で延伸操作を実施しようとすると、単糸間の
融着が避けられない。
Furthermore, when a thermoplastic fiber such as polyethylene is drawn at a high draw ratio (10 to 50 times) to obtain a high-strength, high-modulus fiber, if the drawing operation is performed on a multifilament fiber aggregate, Fusion between single yarns is unavoidable.

本発明方法を、これらの熱延伸時および/または熱処理
時融着性を示す繊維に適用するととにより1、繊維性能
を損うことなく、単糸間の融着を防止あるいは著るしく
低減することが可能となり、特に繊維束を構成する単糸
の数が多いときに大きな効果を得られる。このような効
果は、次の実施例及び比較例として示す実験結果によっ
て更に明らかとなろう。
By applying the method of the present invention to these fibers that exhibit fusion properties during hot drawing and/or heat treatment, 1. fusion between single yarns can be prevented or significantly reduced without impairing fiber performance. This makes it possible to obtain a great effect, especially when the number of single yarns constituting the fiber bundle is large. Such effects will become clearer from the experimental results shown in the following Examples and Comparative Examples.

実施例 以下本発明方法を実施例によって説明する。Example The method of the present invention will be explained below with reference to Examples.

なお、以下の例において用いる主な特性値は次の如くで
ある。
The main characteristic values used in the following examples are as follows.

(1)  ポリマーの固有粘度IV(inherent
 viscosity)オストワルド型粘度管を用い、
溶媒のみの流下時間をto(秒)、ポリマーの希薄溶液
の流下時間をt(秒)、該希薄溶液中のポリマー濃度を
(f / de)とすると、 で表わされる。特に断わらない限り、溶媒は97.5%
硫酸、 C= 0.5 ? / deとし、30℃で測
定する。
(1) Intrinsic viscosity IV of the polymer
viscosity) using an Ostwald type viscosity tube,
When the flow time of only the solvent is to (seconds), the flow time of the dilute polymer solution is t (seconds), and the polymer concentration in the dilute solution is (f/de), it is expressed as follows. Unless otherwise specified, solvent is 97.5%
Sulfuric acid, C=0.5? /de and measure at 30°C.

(2)  #維の引張特性 インストロン引張試験機により、初長250、引張速度
10an/分とし、20℃、65φRHの雰囲気中で背
伸曲線を測定する。これより強度(4/de)、伸度(
%)、ヤング率(f/cle)を算出する。
(2) Tensile properties of #fibers Using an Instron tensile tester, the elongation curve is measured in an atmosphere of 20° C. and 65φRH with an initial length of 250 and a tensile speed of 10 an/min. From this, strength (4/de), elongation (
%) and Young's modulus (f/cle).

(3)   融  着  度  f ヤーン中に本来存在すべき単糸数を、延伸又は熱処理後
のヤーンについて実際に数えられたフィラメント数で割
った値を用いる。即ち延伸又は熱処理後のフィラメント
1本が、平均何本の単糸の融着で構成されているかを示
す。測定は5ケ所で測定し、その平均値をfとする。
(3) Fusing degree f The value obtained by dividing the number of single filaments that should originally exist in the yarn by the number of filaments actually counted in the yarn after drawing or heat treatment is used. That is, it shows how many single filaments on average are fused together to form one filament after drawing or heat treatment. Measurements were taken at five locations, and the average value was taken as f.

実施例1 下記モノマ一単位 −HN−(C>−NH−25モルチ により構成されるIV−3,1の芳香族コポリアミドを
Ca CZ2を含有するN−メチル−2−ピロ°リドン
(NMP )に6重量%溶解せしめたポリマー溶液を、
孔径0.2−1000孔の口金から940f/分の吐出
速度で押し出した。空気中を約10胡走行させた後、5
0℃のN−メチル−ピロリドン/水(30,/70重量
%)の凝固浴中で凝固させ、30m/分の速度で引き取
り、ひきつづき50℃の水浴で洗浄した。水洗糸を含水
珪酸アルミニウムの0.5係水分散コロイド10を中に
コロイダル黒鉛(黒鉛成分22%)を2頭の割合で混合
した液に浸漬させ、絞りローラーで絞った後、乾燥ロー
ラーに巻回して乾燥した。
Example 1 An aromatic copolyamide of IV-3,1 composed of the following monomer unit -HN-(C>-NH-25) was converted into N-methyl-2-pyrrolidone (NMP) containing CaCZ2. A polymer solution of 6% by weight dissolved in
It was extruded from a nozzle with a hole diameter of 0.2 to 1000 at a discharge rate of 940 f/min. After running about 10 hours in the air, 5
It was coagulated in a coagulation bath of N-methyl-pyrrolidone/water (30,/70% by weight) at 0°C, withdrawn at a speed of 30 m/min and subsequently washed in a water bath at 50°C. The water-washed yarn is immersed in a solution containing 0.5 water dispersion colloid of hydrated aluminum silicate (10 parts) and 2 parts of colloidal graphite (graphite content 22%), squeezed with a squeezing roller, and then wound around a drying roller. Swirled to dry.

微細粒子の固形分としての付着量は乾燥糸重量に対して
約0.6%であった。引き続−き、5o。
The amount of fine particles attached as a solid content was about 0.6% based on the weight of the dry yarn. Continuing, 5o.

℃の熱板上で12倍に延伸し、油剤を付与した後巻き取
った。得られた糸の物性を第1表に示すが、比較例はコ
ロイダル黒鉛を混合しない含水球酸アルミニウム0.5
%水分散コロイドのみを使用した場合でめる。
It was stretched 12 times on a hot plate at 0.degree. C., coated with an oil agent, and then wound up. The physical properties of the obtained yarn are shown in Table 1. In the comparative example, 0.5% of hydrated aluminum spherate was mixed with no colloidal graphite.
% when using only water-dispersed colloid.

第  1  表 実施例2 実施例1において含水珪酸アルミニウムの水分散コロイ
ドの代りに、弗化珪酸マグネシウムの水分散コロイド、
コロイダルシリカおよびアルミナゾルを使用した。その
結果を第2表に示す。
Table 1 Example 2 In Example 1, instead of the water-dispersed colloid of hydrated aluminum silicate, a water-dispersed colloid of magnesium fluorosilicate,
Colloidal silica and alumina sol were used. The results are shown in Table 2.

第  2  表 上記第2表において、()はコロイダルm 鉛を混合使
用しない場合の融着度を示す。
Table 2 In the above Table 2, () indicates the degree of fusion when colloidal m-lead is not mixed and used.

実施例3〜5.比較例3〜5゜ 第3表に示すポリマー溶液を実施例IK準じて紡糸延伸
した。但し、各実施例とも吐出量は最終デニールに合う
ように調整した。
Examples 3-5. Comparative Examples 3 to 5 The polymer solutions shown in Table 3 were spun and drawn according to Example IK. However, in each example, the discharge amount was adjusted to match the final denier.

微細粒子の固形分としての付着量はいづれも乾燥糸重量
に対し約0.5チであった。次の第4表に延伸条件と共
に延伸糸の特性を示す。また比のため含水珪酸アルミニ
ウム水分散コロイドのみを使用した場合を比較例として
示す。
The amount of fine particles deposited as a solid content was about 0.5 inch based on the weight of the dry yarn. Table 4 below shows the drawing conditions and properties of the drawn yarn. Further, for the purpose of comparison, a case where only a hydrated aluminum silicate water-dispersed colloid is used is shown as a comparative example.

比較例の繊維はいずれも単糸間融着により、柔軟性に欠
けるもので・・ヲ、つた。
All of the fibers in the comparative examples lacked flexibility due to fusion between single filaments.

実施例6 下記の構成単位 カラなるIV=2.1 (p−クロルフェノール中50
℃で測定)の全芳香族ポリエステルを紡糸温度330℃
で孔径0.5配φ、孔数50を有する紡糸口金よりs、
s f /―で空気中に押し出し2507?i/分で巻
き取った。
Example 6 The following structural unit empty IV = 2.1 (50% in p-chlorophenol)
The spinning temperature of fully aromatic polyester (measured in °C) is 330 °C.
s from a spinneret with a hole diameter of 0.5 mm and a number of holes of 50,
Push out into the air with s f /-2507? It was wound up at i/min.

得られた糸条を1チの珪酸アルミニウムマグネシウム水
分散液10を中にコロイダル黒鉛(黒鉛1反分22%)
を2頭の割合で混合した液に浸漬し、乾燥した後、カセ
粋に巻き取った。
The obtained thread was placed in 10% of an aqueous dispersion of aluminum magnesium silicate with colloidal graphite (22% for 1 part of graphite).
The fish were immersed in a mixture of two parts, dried, and then rolled up into a skein.

カセ粋に巻いたまま窒素気流中250℃で1時間、26
0℃で1時間、270℃で1時間。
1 hour at 250°C in a nitrogen stream while tightly rolled in a skein.
1 hour at 0℃, 1 hour at 270℃.

280℃で1時間、290℃1時間、300℃で3時間
熱処理した。
Heat treatment was performed at 280°C for 1 hour, at 290°C for 1 hour, and at 300°C for 3 hours.

熱処理前及び熱処理後のヤーンの特性を次の第5表に示
す。
The properties of the yarn before and after heat treatment are shown in Table 5 below.

第5表 比較例6 コロイダル黒鉛を混合使用しない以外は実於例6と同様
に紡糸・熱処理したところ、得られた糸の融着度fは2
.5で極めて品位の悪いものであった。
Table 5 Comparative Example 6 The yarn was spun and heat treated in the same manner as in Example 6 except that colloidal graphite was not used in the mixture, and the degree of fusion f of the obtained yarn was 2.
.. 5, which was extremely poor quality.

特許出願人 帝人株式会社Patent applicant Teijin Ltd.

Claims (1)

【特許請求の範囲】 (1)  熱延伸および/または熱処理時に融着性を有
する合成繊維の表面に、親水ゲル形成性動機化合物のコ
ロイドと疎水コロイドとの混合物を付与し、しかる後乾
燥することを%徴とする合成繊維の表面改質法。 (2)疎水コロイドがコロイド黒鉛である特許請求範囲
第(11項記載の合成繊維の表面改質法。 (3)  親水ゲル形成性無機化合物が珪酸化合物てお
る特許請求範囲第(1)項または第(2)項記載の合成
繊維の表面改質法。 (4)  親水ゲル形成性無機化合物が含水珪酸アルミ
ニウム寸たは弗化珪酸マグネシウムである特許請求範囲
第(1)項または、第(2)項記載の合成繊維の表面改
質法。 (5) 親水ゲル形成性無機化合物のコロイドが、コロ
イダルンリカ、またはアルミナゾルである特許請求範囲
第(1)項または第(2)項記載の合成繊維の表面改質
法。 (6)  合成繊維が、下記繰り返し単位−NRI−A
rl−NR2−Co−Ar2−Co−および/または NR3Arg co− からなる芳香族コポリアミドの繊維である特許請求の範
囲第(1)項〜第(5)項の何れか1項に”記載の合成
繊維の表面改質法。 (7)  Arl 、 Ar2 、 Ar3の80モル
係以上が下記芳香族残基 であり、かつ構成単位(B)の量が10〜40モルチで
ある特許請求の範囲第(6)項記載の合成繊維の表面改
質法、 (81R+ 1. ”21馬 がすべて水素原子である
特許請求の範囲第(6)項貰たは第(7)項記載の合成
繊維の表面改質法。 (9)  合成繊維が、下記繰返し却位徂−NRIAr
1co NHNH(C) −NR2−A C2−NR3−(D )−NR4−A 
C3−Co−(E ) −c O−A C4−Co−(F ) から彦る芳香族コポリアミドヒドラジドの繊維である特
許請求の範囲第(1)項〜第(5)項の何れかに記載の
合成繊維の表面改質法。 (II  Arl 、 Ar2 、 Arz 、 Ar
4の80モル係以上がp−フェニレン残基である特許請
求の範囲第(9)項記載の合成繊維の表面改質法。 αl)  R1+ R2r R3+ R4がすべて水素
原子でおる特許請求の範囲第(9)項または第(10項
記載の合成繊維の表面改質法。 (13合成繊維が、下記繰返し単位群 からなる芳香族オキサジアゾール/メチルヒドラジドコ
ポリマーの仮綴でおる特許請求の範囲第C1+項〜第(
5)項の何れか1項に記載の合成繊維の表面改質法。 (13)  Ar、 、 Ar2の80モルチ以上がp
−フェニレン残基である特許請求の範囲第02項記載の
合成繊維の表面改り1法。 0・「l 合成繊維が光学的異方性熔融物を形成し得る
熱可塑性重合体からなる特許請求の範囲第(])項〜第
(5)項の倒れかに記載の合成繊維の表面改質法。 (1つ 熱可塑性重合体が全芳香族ポリエステルである
特許請求の範囲第(14項記載の合成繊維の表面改質法
。 fIF  熱可塑性重合体が芳香族ポリアゾメチンであ
る特許請求の範囲第一項記載の合成繊維の表面改質法。
[Scope of Claims] (1) Applying a mixture of a hydrophilic gel-forming motive compound colloid and a hydrophobic colloid to the surface of a synthetic fiber that has fusibility during hot drawing and/or heat treatment, and then drying. A surface modification method for synthetic fibers with % characteristics. (2) The method for surface modification of synthetic fibers according to claim 11, in which the hydrophobic colloid is colloidal graphite. (3) Claim 1, in which the hydrophilic gel-forming inorganic compound is a silicate compound, or The method for surface modification of synthetic fibers according to claim (2). (4) Claims (1) or (2) wherein the hydrophilic gel-forming inorganic compound is hydrated aluminum silicate or magnesium fluorosilicate. ) The method for surface modification of synthetic fibers according to claim 1. (5) The synthesis according to claim 1 or 2, wherein the colloid of the hydrophilic gel-forming inorganic compound is colloidal alumina or alumina sol. Method for surface modification of fibers. (6) Synthetic fibers contain the following repeating unit -NRI-A
rl-NR2-Co-Ar2-Co- and/or NR3Arg co- Aromatic copolyamide fibers according to any one of claims (1) to (5) Method for surface modification of synthetic fibers. (7) 80 or more moles of Arl, Ar2, Ar3 are the following aromatic residues, and the amount of the structural unit (B) is 10 to 40 moles. The method for surface modification of synthetic fibers according to claim (6), the surface of synthetic fibers according to claim (6) or claim (7), in which (81R+ 1. "21" are all hydrogen atoms) Modification method. (9) Synthetic fibers are repeatedly disposed of as follows - NRIAr
1co NHNH(C) -NR2-A C2-NR3-(D)-NR4-A
Any one of claims (1) to (5) which is a fiber of aromatic copolyamide hydrazide consisting of C3-Co-(E)-cO-A C4-Co-(F) The method for surface modification of synthetic fibers described. (II Arl, Ar2, Arz, Ar
9. The method for surface modification of synthetic fibers according to claim 9, wherein 80 or more moles of 4 are p-phenylene residues. αl) A method for surface modification of synthetic fibers according to claim 9 or 10, wherein R1+ R2r R3+ R4 are all hydrogen atoms. Claims Nos. C1+ to (
5) The method for surface modification of synthetic fibers according to any one of the above. (13) More than 80 mol of Ar, , Ar2 is p
- 1 method for surface modification of synthetic fibers according to claim 02, which is a phenylene residue. 0・``l The synthetic fiber is made of a thermoplastic polymer capable of forming an optically anisotropic melt. (1) A method for surface modification of synthetic fibers according to claim 14, in which the thermoplastic polymer is a wholly aromatic polyester. A method for surface modification of synthetic fibers as described in scope 1.
JP3577483A 1983-03-07 1983-03-07 Surface modification of synthetic fiber Granted JPS59163425A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3577483A JPS59163425A (en) 1983-03-07 1983-03-07 Surface modification of synthetic fiber
EP84102374A EP0121132B1 (en) 1983-03-07 1984-03-06 Process for producing wholly aromatic polyamide filaments heat-treated under tension
US06/586,792 US4525384A (en) 1983-03-07 1984-03-06 Process for producing wholly aromatic polyamide filaments heat-treated under tension
DE8484102374T DE3462159D1 (en) 1983-03-07 1984-03-06 Process for producing wholly aromatic polyamide filaments heat-treated under tension

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3577483A JPS59163425A (en) 1983-03-07 1983-03-07 Surface modification of synthetic fiber

Publications (2)

Publication Number Publication Date
JPS59163425A true JPS59163425A (en) 1984-09-14
JPS6328133B2 JPS6328133B2 (en) 1988-06-07

Family

ID=12451227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3577483A Granted JPS59163425A (en) 1983-03-07 1983-03-07 Surface modification of synthetic fiber

Country Status (1)

Country Link
JP (1) JPS59163425A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075675A (en) * 1983-07-04 1985-04-30 アクゾ・ナ−ムロ−ゼ・フエンノ−トシヤツプ Aromatic polyamide yarn impregnated with wettable particle, its production and packing material or rope containing same
US4865790A (en) * 1985-04-02 1989-09-12 Sumitomo Chemical Company, Limited Process for producing aromatic polyester fiber
WO2006025113A1 (en) * 2004-08-31 2006-03-09 Teijin Techno Products Limited Fully aromatic polyamide fiber with excellent processability and adhesiveness

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50157619A (en) * 1974-05-10 1975-12-19
JPS53147811A (en) * 1977-05-31 1978-12-22 Teijin Ltd Production of fibers having good opening properties

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50157619A (en) * 1974-05-10 1975-12-19
JPS53147811A (en) * 1977-05-31 1978-12-22 Teijin Ltd Production of fibers having good opening properties

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075675A (en) * 1983-07-04 1985-04-30 アクゾ・ナ−ムロ−ゼ・フエンノ−トシヤツプ Aromatic polyamide yarn impregnated with wettable particle, its production and packing material or rope containing same
US4865790A (en) * 1985-04-02 1989-09-12 Sumitomo Chemical Company, Limited Process for producing aromatic polyester fiber
WO2006025113A1 (en) * 2004-08-31 2006-03-09 Teijin Techno Products Limited Fully aromatic polyamide fiber with excellent processability and adhesiveness
US7858182B2 (en) 2004-08-31 2010-12-28 Teijin Techno Products Limited Wholly aromatic polyamide fibers excellent in processability and adhesiveness

Also Published As

Publication number Publication date
JPS6328133B2 (en) 1988-06-07

Similar Documents

Publication Publication Date Title
US4368615A (en) Fibre, thread bundle and cord from poly-p-phenylene terephthalamide
US4320081A (en) Process for the manufacture of fibres from poly-p-phenylene terephthalamide
EP0121132B1 (en) Process for producing wholly aromatic polyamide filaments heat-treated under tension
JPS62149934A (en) Production of thermoplastic synthetic fiber
JPS59163425A (en) Surface modification of synthetic fiber
JPH02133605A (en) Polyvinyl alcohol-based fiber, tire cord therefrom and production thereof
US4721755A (en) Fibers and yarns from a blend of aromatic polyamides
JPS6249367B2 (en)
US4670343A (en) Wholly aromatic polyamide fiber
KR950000736B1 (en) Process for producing yarns by melt-spinning polyethylene terephthalate
JPS60239523A (en) Manufacture of aromatic polyamide fiber
JPWO2014157543A1 (en) Polyphenylene sulfide monofilament and method for producing the same
JPS643961B2 (en)
JPS6332914B2 (en)
JPS6052623A (en) Surface treatment of heat-meltable yarn
JP2005002517A (en) Method for producing thermoplastic synthetic fiber
RU2099448C1 (en) Fiber from aromatic polyamide, method of manufacturing thereof, and reinforcing material based on this fiber
JP4451617B2 (en) Fully aromatic polyamide fiber with excellent processability
JPS636650B2 (en)
JPS59137535A (en) Stretching of synthetic fiber
JPS59173314A (en) Drawing of synthetic fiber
JPS6024846B2 (en) composite yarn
JPS6348968B2 (en)
WO2018021522A1 (en) Polyolefin fiber and method for producing same
JP4817597B2 (en) Method for producing thermoplastic synthetic fiber