JP4817597B2 - Method for producing thermoplastic synthetic fiber - Google Patents

Method for producing thermoplastic synthetic fiber Download PDF

Info

Publication number
JP4817597B2
JP4817597B2 JP2003270590A JP2003270590A JP4817597B2 JP 4817597 B2 JP4817597 B2 JP 4817597B2 JP 2003270590 A JP2003270590 A JP 2003270590A JP 2003270590 A JP2003270590 A JP 2003270590A JP 4817597 B2 JP4817597 B2 JP 4817597B2
Authority
JP
Japan
Prior art keywords
fine powder
fiber
inorganic fine
thermoplastic synthetic
synthetic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003270590A
Other languages
Japanese (ja)
Other versions
JP2005023500A (en
Inventor
康太郎 瀧上
昭二 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Techno Products Ltd
Original Assignee
Teijin Techno Products Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Techno Products Ltd filed Critical Teijin Techno Products Ltd
Priority to JP2003270590A priority Critical patent/JP4817597B2/en
Publication of JP2005023500A publication Critical patent/JP2005023500A/en
Application granted granted Critical
Publication of JP4817597B2 publication Critical patent/JP4817597B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

本発明は、熱可塑性合成繊維の製造方法に関するものである。さらに詳しくは、熱融着性を有する熱可塑性合成重合体からなる繊維を、高温下で熱延伸および/または熱処理して、高強力でかつ加工性にも優れた熱可塑性合成繊維を製造する方法に関するものである。   The present invention relates to a method for producing a thermoplastic synthetic fiber. More specifically, a method for producing a thermoplastic synthetic fiber having high strength and excellent workability by thermally stretching and / or heat-treating a fiber comprising a thermoplastic synthetic polymer having heat-fusibility at a high temperature. It is about.

近年、熱可塑性合成繊維に対する市場要求は高度化し、特に高強力、高弾性率化の物理的性質に対する要請が強くなってきている。このため、例えば全芳香族ポリアミド繊維や全芳香族ポリエステル繊維にあっては、高温下で熱延伸したり長時間熱処理して繊維物性を改善することが行われている。また、近年の製糸速度の高速化に伴って、熱延伸および/または熱処理の温度も高くなってきている。   In recent years, the market demand for thermoplastic synthetic fibers has been advanced, and in particular, the demand for the physical properties of high strength and high elastic modulus has increased. For this reason, for example, in the case of wholly aromatic polyamide fiber or wholly aromatic polyester fiber, fiber properties are improved by hot stretching at a high temperature or heat treatment for a long time. In addition, with the recent increase in the yarn production speed, the temperature of the heat drawing and / or heat treatment has increased.

ところが、このように高温で延伸および/または熱処理を行うと、糸条は著しく軟化し、単繊維間での融着現象が生じる。特に、糸条のフィラメント数が多くなると融着はますます増大し、製糸性が低下するばかりでなく、得られた繊維も著しく柔軟性の低いものとなってしまう。   However, when the drawing and / or heat treatment is performed at such a high temperature as described above, the yarn is remarkably softened and a fusing phenomenon occurs between the single fibers. In particular, when the number of filaments in the yarn is increased, the fusion is increased, and not only the yarn-making property is lowered, but also the obtained fiber is remarkably low in flexibility.

このような問題を改善するため、特開昭53−147811号公報には、高温で熱延伸または熱処理するに際し、予め非融着化物質として水溶性の無機酸、無機塩または無機塩の水溶液、ハロゲン化金属塩、硫酸金属塩、硝酸金属塩、オルト燐酸またはオルトリン酸ナトリウム塩、脂肪族高分子の水性エマルジョンを塗布する方法、特開昭58−54021号公報には、非融着化物質として水和ゲル形成性無機化合物を塗布する方法、特開昭59−163425号公報には、非融着化物質として親水ゲル形成性無機化合物のコロイドと疎水コロイドとの混合物を付与する方法、特開昭59−179818号公報には、親水ゲル形成性無機化合物のコロイドと界面活性剤を付与する方法が提案されている。しかしながら、これらの方法では、繊維に塗布された非融着化物質が熱延伸および/または熱処理後も多量に残存するので、得られた繊維を撚糸する際にスカムが発生しやすい、樹脂補強用繊維として使用する際にはマトリックス樹脂との接着性が低下しやすい等の、加工性の面で好ましくない影響が現れるという欠点がある。   In order to improve such problems, Japanese Patent Application Laid-Open No. 53-14781 discloses a water-soluble inorganic acid, an inorganic salt, or an aqueous solution of an inorganic salt as a non-fusible substance in advance during hot stretching or heat treatment at a high temperature. Metal halide, metal sulfate, metal nitrate, orthophosphoric acid or sodium orthophosphate, a method of applying an aqueous emulsion of an aliphatic polymer, Japanese Patent Application Laid-Open No. 58-54021 discloses a non-fused material. A method for applying a hydrated gel-forming inorganic compound, Japanese Patent Application Laid-Open No. 59-163425, a method for applying a mixture of a colloid of a hydrophilic gel-forming inorganic compound and a hydrophobic colloid as a non-fused material, Japanese Laid-Open Patent Publication No. 59-179818 proposes a method of imparting a hydrophilic gel-forming inorganic compound colloid and a surfactant. However, in these methods, a large amount of the non-fused material applied to the fiber remains after hot drawing and / or heat treatment, so that scum is easily generated when twisting the obtained fiber. When used as a fiber, there is a disadvantage that an undesirable effect appears in terms of workability, such as the adhesiveness with a matrix resin tends to decrease.

かかる加工性の問題を改善するため、特開昭62−149934号公報には、不活性な無機微粉末を用いると共に、延伸または熱処理後に水付与処理と空気流噴射処理とを施して、繊維に塗布された無機微粉末を除去する方法が提案されている。しかしながら、水付与処理と空気流噴射処理とを併用するのみでは、加工性を十分なレベルまで改善できる程度まで無機微粉末を除去することは困難である。もちろん、この方法を多数回繰り返すと該残存量を減少させることは可能であるが、生産性が低下してコストが増大するという問題がある。   In order to improve the workability problem, Japanese Patent Application Laid-Open No. 62-149934 uses an inert inorganic fine powder and, after stretching or heat treatment, a water application treatment and an air flow injection treatment to give fibers. A method of removing the applied inorganic fine powder has been proposed. However, it is difficult to remove the inorganic fine powder to such an extent that the workability can be improved to a sufficient level only by using the water application treatment and the air flow injection treatment together. Of course, if this method is repeated many times, the remaining amount can be reduced, but there is a problem that productivity is lowered and cost is increased.

このように、種々の後加工工程における加工性に優れ、しかも高性能な製品を提供することができる全芳香族ポリアミド繊維は未だ提案されていないのが実情である。
特開昭53−147811号公報 特開昭58−54021号公報 特開昭59−163425号公報 特開昭59−179818号公報 特開昭62−149934号公報
Thus, the actual situation is that no wholly aromatic polyamide fiber that has excellent processability in various post-processing steps and can provide a high-performance product has not yet been proposed.
JP-A-53-147811 JP 58-54021 A JP 59-163425 A JP 59-179818 A JP-A-62-149934

本発明は、上記従来技術を背景になされたもので、その目的は、高温下で熱延伸および/または熱処理する際には単繊維間の融着が防止されているので優れた製糸性を有し、しかも、撚糸や製織工程では優れた加工性を発現する熱可塑性合成繊維が得られる製造方法を提供することにある。   The present invention has been made against the background of the above-described prior art, and its purpose is to provide excellent yarn-making properties because fusion between single fibers is prevented during hot drawing and / or heat treatment at high temperatures. And it is providing the manufacturing method from which the thermoplastic synthetic fiber which expresses the outstanding workability in a twisted yarn or a weaving process is obtained.

本発明者の研究によれば、上記課題は、「熱可塑性合成重合体からなる繊維に、凝集度が2.0以下である、無水珪酸アルミニウム及び/又はアルミノ珪酸ナトリウムの不活性な親水性無機微粉末の水性分散液を塗布し、次いで高温で熱延伸および/または熱処理した後に、該繊維に付着している前記無機微粉末を除去することを特徴とする熱可塑性合成繊維の製造方法。」により達成できることが見いだされた。 According to the study of the present inventor, the above-mentioned problem is as follows: “ Inactive hydrophilic inorganic of anhydrous aluminum silicate and / or sodium aluminosilicate having a degree of aggregation of 2.0 or less on a fiber comprising a thermoplastic synthetic polymer. A method for producing a thermoplastic synthetic fiber, comprising: applying an aqueous dispersion of fine powder , followed by hot stretching and / or heat treatment at a high temperature, and then removing the inorganic fine powder adhering to the fiber. Has been found to be achieved.

本発明における熱可塑性合成重合体からなる繊維とは、熱延伸または熱処理が可能な熱可塑性合成繊維の未延伸糸、部分延伸糸または延伸糸をいう。本発明においては、このような熱可塑性合成繊維のなかで、単繊維間の融着が発生するような高温で熱延伸および/または熱処理される各種合成繊維を対象とするが、その代表的なものとしては、ポリパラフェニレンテレフタルアミド繊維、コポリパラフェニレン・3,4’−オキシジフェニレンテレフタルアミド繊維、ポリパラフェニレンベンゾオキサゾール繊維、高強力ポリエチレン繊維、高強力ポリビニルアルコール繊維、全芳香族ポリエステル繊維等を例示することができる。なかでも、コポリパラフェニレン・3,4’−オキシジフェニレンテレフタルアミド繊維は、高強力繊維を得るためには未延伸糸を300℃以上、好ましくは350〜550℃の高温に加熱して6倍以上に熱延伸する必要があり、単繊維が軟化し互いに融着して延伸性が悪化しやすいので、本発明が対象とする繊維としては特に好適である。   The fiber made of a thermoplastic synthetic polymer in the present invention refers to an undrawn yarn, a partially drawn yarn or a drawn yarn of a thermoplastic synthetic fiber that can be hot drawn or heat treated. In the present invention, among such thermoplastic synthetic fibers, various synthetic fibers that are hot-drawn and / or heat-treated at a high temperature that causes fusion between single fibers are targeted. Examples include polyparaphenylene terephthalamide fiber, copolyparaphenylene 3,4'-oxydiphenylene terephthalamide fiber, polyparaphenylene benzoxazole fiber, high strength polyethylene fiber, high strength polyvinyl alcohol fiber, wholly aromatic polyester fiber. Etc. can be illustrated. Among these, copolyparaphenylene 3,4'-oxydiphenylene terephthalamide fiber is obtained by heating an undrawn yarn to a high temperature of 300 ° C. or higher, preferably 350 to 550 ° C. in order to obtain a high tenacity fiber 6 times. Since it is necessary to heat-draw as described above, the single fibers are softened and fused to each other, and the drawability is likely to deteriorate.

本発明においては、上記の熱可塑性重合体からなる未延伸繊維に、先ず不活性な親水性無機微粉末である無水珪酸アルミニウム及び/又はアルミノ珪酸ナトリウムの水性分散液を塗布する必要がある。なお、ここでいう不活性なとは、熱延伸および/または熱処理時の高温においても化学的に安定でかつ合成繊維に対し酸化等の化学作用を及ぼさないことをいう。また、ここでいう親水性無機微粉末とは、該微粉末の水性分散液を調合する際に、分散剤または界面活性剤を必要としない無水珪酸アルミニウム及び/又はアルミノ珪酸ナトリウムをいう。親水性を有しない無機微粉末の場合には、水性分散液を調合する際にヘキサメタリン酸ソーダ等の分散剤または界面活性剤が必要となり、これらの添加剤を回収する、あるいは廃液処理を行う設備が必要となる。また、有機系の分散剤を用いた場合には、延伸および/または熱処理時の高温において大気に飛散するので環境上好ましくない。 In the present invention, it is necessary to first apply an aqueous dispersion of anhydrous aluminum silicate and / or sodium aluminosilicate, which is an inert hydrophilic inorganic fine powder, to unstretched fibers made of the above thermoplastic polymer. The term “inert” as used herein means that it is chemically stable even at a high temperature during heat drawing and / or heat treatment and does not exert a chemical action such as oxidation on the synthetic fiber. The hydrophilic inorganic fine powder here refers to anhydrous aluminum silicate and / or sodium aluminosilicate that does not require a dispersant or a surfactant when preparing an aqueous dispersion of the fine powder. In the case of inorganic fine powders that do not have hydrophilicity, a dispersant or surfactant such as sodium hexametaphosphate is required when preparing an aqueous dispersion, and these additives are collected or used for waste liquid treatment It is that Do not required. In addition, when an organic dispersant is used, it is not environmentally preferable because it is scattered into the atmosphere at a high temperature during stretching and / or heat treatment.

さらに、本発明で使用する無水珪酸アルミニウム及び/又はアルミノ珪酸ナトリウムは、その凝集度が2.0以下である。該凝集度が2.0を超える場合には、高温での熱延伸および/または熱処理時に該無機微粉末が繊維表面でブロッキングしやすくなるため、熱延伸および/または熱処理時に十分な融着防止効果を発現しなくなるばかりか、熱延伸および/または熱処理後に繊維表面に付着した無機微粉末を、後述する方法で除去しようとしても除去が困難となる。 Further, the anhydrous aluminum silicate and / or sodium aluminosilicate used in the present invention has a cohesion degree of 2.0 or less . When the degree of aggregation exceeds 2.0, the inorganic fine powder is likely to block on the fiber surface during hot stretching and / or heat treatment at a high temperature. not only no longer express, the inorganic fine powder adhering to the fiber surface after hot drawing and / or heat treatment, that Do is difficult even removed trying removed by a method described later.

ここでいう凝集度(G)とは、無機微粉末を含む水性分散液を粒度分布計により測定した無機微粉末の平均粒径(dμm)と、該水性分散液を110℃で1時間乾燥させた後に再度水性分散液として測定した平均粒径(Dμm)との比率(D/d)である。   The degree of aggregation (G) here means the average particle diameter (dμm) of the inorganic fine powder measured by the particle size distribution meter of the aqueous dispersion containing the inorganic fine powder, and the aqueous dispersion is dried at 110 ° C. for 1 hour. The ratio (D / d) with the average particle diameter (D μm) measured again as an aqueous dispersion.

本発明で使用する無水珪酸アルミニウム及び/又はアルミノ珪酸ナトリウムは、その吸水量が20〜350ml/100gの範囲にあること、特に40〜250ml/100gの範囲にあることが好ましい。吸水量が20ml/100g未満の場合には、水性分散液中での該無機微粉末の沈降速度が著しく速くなるため、均一な水性分散液を保持することが困難となる。一方、吸水量が350ml/100gを超える場合には、該無機微粉末を繊維表面に均一に付着させるためには水性分散液濃度を低下させる必要が発生するため、設備が大型化する等の問題が発生する。さらには、無機微粉末が水性分散液中で膨潤するため、加熱時に繊維表面で無機化合物の層を形成しやすくなり、延伸および/または熱処理後に繊維表面から無機微粉末を除去することが困難となる。 The anhydrous aluminum silicate and / or sodium aluminosilicate used in the present invention preferably has a water absorption of 20 to 350 ml / 100 g, particularly 40 to 250 ml / 100 g. When the water absorption is less than 20 ml / 100 g, the sedimentation rate of the inorganic fine powder in the aqueous dispersion is remarkably increased, so that it is difficult to maintain a uniform aqueous dispersion. On the other hand, when the amount of water absorption exceeds 350 ml / 100 g, it is necessary to reduce the concentration of the aqueous dispersion in order to uniformly adhere the inorganic fine powder to the fiber surface. Will occur. Furthermore, since the inorganic fine powder swells in the aqueous dispersion, it becomes easy to form a layer of an inorganic compound on the fiber surface during heating, and it is difficult to remove the inorganic fine powder from the fiber surface after stretching and / or heat treatment. Become.

ここでいう吸水量(O)は、以下の方法で求めた値である。すなわち、該無機微粉末を105℃で1時間乾燥させた後にデシケーター内で室温まで放冷して重量(Wg)を測定する。次いで、該微粉末にビュレットを用いて水を滴下し、吸水した無機微粉末が急激にやわらかくなる直前までに滴下した水の量(Vml)を測定する。吸水量は、下式より算出した。
O=V/W×100
The amount of water absorption (O) here is a value determined by the following method. That is, the inorganic fine powder is dried at 105 ° C. for 1 hour, then allowed to cool to room temperature in a desiccator, and the weight (Wg) is measured. Next, water is dropped onto the fine powder using a burette, and the amount (Vml) of the dripped water is measured just before the absorbed inorganic fine powder becomes suddenly soft. The amount of water absorption was calculated from the following equation.
O = V / W × 100

本発明で使用する無水珪酸アルミニウム及び/又はアルミノ珪酸ナトリウムは、上記の要件に加えて、単繊維間に十分拡散させて単繊維表面に均一に付着させるためにはその粒子径はできるだけ小さいことが好ましく、平均粒径が5μm以下、特に3μm以下のものが好ましい。 In addition to the above requirements, the anhydrous aluminum silicate and / or sodium aluminosilicate used in the present invention should have a particle size as small as possible in order to sufficiently diffuse between the single fibers and uniformly adhere to the surface of the single fibers. The average particle size is preferably 5 μm or less, particularly 3 μm or less.

さらに、上記無水珪酸アルミニウム及び/又はアルミノ珪酸ナトリウムは、その硬さがモース硬度で5以下、特に4以下であることが好ましい。硬さがモース硬度で5を超える場合には、高温で熱延伸および/または熱処理を行う際の、設備表面の磨耗劣化が増大する傾向にある。 Further, the anhydrous aluminum silicate and / or sodium aluminosilicate preferably has a Mohs hardness of 5 or less, particularly 4 or less. When the hardness exceeds 5 in Mohs hardness, when performing hot stretching and / or heat treatment at a high temperature, wear degradation of equipment surface tends to increase.

本発明においては無水珪酸アルミニウム及び/又はアルミノ珪酸ナトリウムを使用する。 In the present invention , anhydrous aluminum silicate and / or sodium aluminosilicate is used.

繊維に無水珪酸アルミニウム及び/又はアルミノ珪酸ナトリウムを塗布する方法としては、予め無水珪酸アルミニウム及び/又はアルミノ珪酸ナトリウムの微粉末を水等の分散媒に分散させた分散浴を用意し、繊維を分散浴に浸漬させた後乾燥を行うのが好ましい。なお、微粉末の分散を均一に行うために有機または無機の分散助剤を分散浴中に添加したり、あるいは、糸条の集束性を向上させるために帯電防止剤や増粘剤を併用してもよい。 As a method for applying the anhydrous aluminum silicate and / or sodium aluminosilicate in fibers previously anhydrous aluminum silicate and / or fine powders of sodium aluminosilicate prepared dispersion bath are dispersed in a dispersion medium such as water, dispersible fibers Drying is preferably performed after immersion in a bath. Na us, or adding a dispersing aid of an organic or inorganic in order to perform the dispersion of the fine powder uniformly in a dispersion bath, or a combination of an antistatic agent and a thickener to improve the convergence of the yarn May be.

無水珪酸アルミニウム及び/又はアルミノ珪酸ナトリウムの繊維に対する付着量は0.3〜2.5重量%、好ましくは0.7〜1.5重量%の範囲が適当である。付着量が0.3重量%未満の場合には、高温での熱延伸および/または熱処理時に単繊維間の融着を十分に抑制することが困難となる。一方、付着量が2.5重量%を超える場合には、高温での熱延伸および/または熱処理後に繊維上に付着している無水珪酸アルミニウム及び/又はアルミノ珪酸ナトリウムを除去する工程において、繊維上に残存する無水珪酸アルミニウム及び/又はアルミノ珪酸ナトリウムを除去する際の除去効率が低下し、また、除去設備の大型化が必要となる。 The adhesion amount of anhydrous aluminum silicate and / or sodium aluminosilicate to the fiber is 0.3 to 2.5% by weight, preferably 0.7 to 1.5% by weight. When the adhesion amount is less than 0.3% by weight, it becomes difficult to sufficiently suppress the fusion between the single fibers at the time of hot drawing at high temperature and / or heat treatment. On the other hand, when the adhesion amount exceeds 2.5% by weight, in the step of removing anhydrous aluminum silicate and / or sodium aluminosilicate adhering to the fiber after hot drawing and / or heat treatment at high temperature, The removal efficiency at the time of removing the anhydrous aluminum silicate and / or sodium aluminosilicate remaining in the steel is lowered, and the removal equipment needs to be enlarged.

次に、無水珪酸アルミニウム及び/又はアルミノ珪酸ナトリウムを付与した後に熱延伸および/または熱処理して得られた繊維の表面には、繊維上に付与した無水珪酸アルミニウム及び/又はアルミノ珪酸ナトリウムの大半が残存しており、その残存量が多い程後加工での加工性が低下するので、繊維に付着している無水珪酸アルミニウム及び/又はアルミノ珪酸ナトリウムを除去する必要がある。除去する方法としては特に限定する必要がない。例えば特開昭63−149934号公報によりすでに公知である、水付与処理と空気流噴射処理とを組合わせる方法により、極めて容易に除去することができる。 Next, most of the anhydrous aluminum silicate and / or sodium aluminosilicate applied on the fiber is present on the surface of the fiber obtained by applying hot drawing and / or heat treatment after applying anhydrous aluminum silicate and / or sodium aluminosilicate. As the remaining amount increases, the workability in post-processing decreases as the residual amount increases, so it is necessary to remove anhydrous aluminum silicate and / or sodium aluminosilicate adhering to the fiber. There is no particular limitation on the removal method. For example, it can be removed very easily by a method of combining water application treatment and air flow injection treatment, which is already known from JP-A-63-149934.

以下、実施例をあげて本発明をさらに具体的に説明する。なお、実施例中における各物性値は下記の方法で測定した。   Hereinafter, the present invention will be described more specifically with reference to examples. In addition, each physical-property value in an Example was measured with the following method.

(1)吸水量(ml/100g)
無機微粉末試料を105℃で1時間乾燥させた後にデシケーター内で室温まで放冷して重量(Wg)を測定する。次いで、該微粉末にビュレットを用いて水を4〜5滴ずつ滴下し、金属ヘラでよく練り合わせる。無機微粉末と水の混合物がらせん状に巻くかまたは急激にやわらかくなる直前までの滴下水量(Vml)を測定する。吸水量(O)は、下式より算出した。
O=V/W×100
(1) Water absorption (ml / 100g)
The inorganic fine powder sample is dried at 105 ° C. for 1 hour, then allowed to cool to room temperature in a desiccator, and the weight (Wg) is measured. Next, 4-5 drops of water are dropped into the fine powder using a burette, and kneaded well with a metal spatula. The amount of dripping water (Vml) until the mixture of the inorganic fine powder and water is spirally wound or immediately softens is measured. The water absorption (O) was calculated from the following formula.
O = V / W × 100

(2)凝集度(G)
無機微粉末試料の10重量%水性分散液を作成し、粒度分布計で平均粒径度(dμm)を測る。次に該水性分散液を110℃で1時間乾燥させ、溶媒を蒸発させて乾固させた後の無機化合物を再度10重量%の水性分散液として平均粒粒径(Dμm)を測定する。凝集度(G)は、下式より算出した。
凝集度=D/d
(2) Aggregation degree (G)
A 10% by weight aqueous dispersion of an inorganic fine powder sample is prepared, and the average particle size (dμm) is measured with a particle size distribution meter. Next, the aqueous dispersion is dried at 110 ° C. for 1 hour, and the average particle size (D μm) is measured using the inorganic compound after evaporating the solvent to dryness as an aqueous dispersion of 10% by weight. The degree of aggregation (G) was calculated from the following equation.
Aggregation degree = D / d

(3)繊度、切断強度、切断伸度、弾性率
JIS−L1013に準拠して測定した。
(3) Fineness, cutting strength, cutting elongation, elastic modulus Measured according to JIS-L1013.

(4)融着度
試料繊維のフィラメント総数(N)のうち、融着がなく、1本ずつに分離可能なフィラメント数(n)を数え、次式で融着度を求める。この測定を5回行い、平均値をとる。
融着度(%)={(N−n)/2N}×100
(4) Degree of fusion Of the total number of filaments (N) of the sample fiber, the number of filaments (n) that are not fused and can be separated one by one is counted, and the degree of fusion is determined by the following equation. This measurement is performed 5 times and an average value is taken.
Degree of fusion (%) = {(N−n) / 2N} × 100

(5)非融着性微粉末の付着量(DPU)
予め仕上げオイルを付与しない繊維試料を約3gサンプリングする。次いで120℃で1時間乾燥した後に重量A(g)を精秤する。次いで、この試料を800℃の焼却炉中で完全に灰化させ、灰化後の灰分重量B(g)を測定し、次式で計算する。
DPU(%)={B/(A−B)}×100
(5) Adhesion amount of non-fusible fine powder (DPU)
About 3 g of a fiber sample not previously applied with finishing oil is sampled. Next, after drying at 120 ° C. for 1 hour, the weight A (g) is precisely weighed. Next, the sample is completely incinerated in an incinerator at 800 ° C., and the ash weight B (g) after incineration is measured and calculated by the following formula.
DPU (%) = {B / (A−B)} × 100

(6)製品品位
ワインダーにて5kg巻のチーズ状に巻き取られた製品の表面および側面を目視で観察し、毛羽とループの合計の数から判断した。5個以下の場合を良、5個を超えると不可と判断した。
(6) Product quality The surface and side surface of the product wound in a cheese shape of 5 kg by a winder were visually observed and judged from the total number of fluff and loops. When the number was 5 or less, it was judged to be acceptable.

[実施例1〜3、比較例1]
水分率が100ppm以下のN−メチル−2−ピロリドン(以下NMPという)112.9部、パラフェニレンジアミン1.506部、3,4’−ジアミノジフェニルエーテル2.789部を常温下で反応容器に入れ、窒素中で溶解した後、攪拌しながらテレフタル酸クロリド5.658部を添加した。最終的に85℃で60分間反応せしめ、透明の粘稠なポリマー溶液を得た。次いで22.5重量%の水酸化カルシウムを含有するNMPスラリー9.174部を添加し、中和反応を行った。得られたポリマーの対数粘度は3.33であった。
[Examples 1 to 3, Comparative Example 1]
112.9 parts of N-methyl-2-pyrrolidone (hereinafter referred to as NMP) having a moisture content of 100 ppm or less, 1.506 parts of paraphenylenediamine and 2.789 parts of 3,4'-diaminodiphenyl ether are placed in a reaction vessel at room temperature. After dissolving in nitrogen, 5.658 parts of terephthalic acid chloride was added with stirring. The reaction was finally carried out at 85 ° C. for 60 minutes to obtain a transparent viscous polymer solution. Next, 9.174 parts of NMP slurry containing 22.5 wt% calcium hydroxide was added to carry out a neutralization reaction. The logarithmic viscosity of the obtained polymer was 3.33.

得られたポリマー溶液を用い、孔径0.3mm、孔数1000の紡糸口金からNMP30重量%の凝固浴(水溶液)に押し出し湿式紡糸した。紡糸口金面と凝固浴との距離は10mmとした。紡糸口金から紡出された繊維を水洗し、絞りローラに通して表面付着水を除去し、表1に示すような組成からなる濃度2.0重量%の無機微粉末(無水珪酸アルミニウムの平均粒径1.1μm、アルミノ珪酸ナトリウムの平均粒径2.1μm)の水系分散浴に約1秒間浸漬し、次いで絞りローラに通し、無機微粉末液の付着した糸を得た。引き続いて該糸を表面温度が200℃の乾燥ローラを用いて完全に乾燥させた後、530℃で10倍に熱延伸した。   Using the obtained polymer solution, wet spinning was carried out by extruding from a spinneret having a pore diameter of 0.3 mm and a pore number of 1000 to a coagulation bath (aqueous solution) of 30% by weight of NMP. The distance between the spinneret surface and the coagulation bath was 10 mm. The fibers spun from the spinneret are washed with water, passed through a squeeze roller to remove water adhering to the surface, and an inorganic fine powder having a composition as shown in Table 1 having a concentration of 2.0% by weight (average particles of anhydrous aluminum silicate) The film was immersed in an aqueous dispersion bath having a diameter of 1.1 μm and an average particle diameter of sodium aluminosilicate of 2.1 μm for about 1 second, and then passed through a squeeze roller to obtain a yarn to which an inorganic fine powder was adhered. Subsequently, the yarn was completely dried using a drying roller having a surface temperature of 200 ° C. and then hot-drawn 10 times at 530 ° C.

得られた延伸糸に、まずシャワー水量10L/分で水を吹き付けて、延伸糸を十分に湿潤させた。次いで、内径が2.0mm、長さ10mmのエアーノズルを通して100L/分の空気流を噴射した。これらの操作を2回繰り返した後、仕上げ油剤を付着量が2.0重量%となるように付与し、500m/分の速度で巻き取った。得られた繊維のフィラメント数は1000本、繊度は1670dtexであった。評価結果を表2に示す。   First, water was sprayed onto the obtained drawn yarn at a shower water amount of 10 L / min to sufficiently wet the drawn yarn. Next, an air flow of 100 L / min was jetted through an air nozzle having an inner diameter of 2.0 mm and a length of 10 mm. After these operations were repeated twice, the finishing oil was applied so that the adhesion amount was 2.0% by weight, and wound up at a speed of 500 m / min. The number of filaments of the obtained fiber was 1000, and the fineness was 1670 dtex. The evaluation results are shown in Table 2.

Figure 0004817597
Figure 0004817597

Figure 0004817597
Figure 0004817597

本発明の方法によれば、先ず繊維表面に不活性で親水性且つ凝集度が2.0以下の無水珪酸アルミニウム微粉末及び/又はアルミノ珪酸ナトリウム微粉末の水性分散液を塗布して、単繊維表面を無水珪酸アルミニウム及び/又はアルミノ珪酸ナトリウムで被覆した後に高温で熱延伸および/または熱処理しているので、該工程での単繊維間融着発生を抑制することができるだけでなく、該延伸および/または熱処理後では従来公知の方法により該無水珪酸アルミニウム及び/又はアルミノ珪酸ナトリウムを容易に除去することができる。しかも、得られた繊維には単繊維間融着が殆ど無く、しかも撚糸や製織等の後加工での工程安定性がよく、スカム発生等の問題もない。さらには、ゴム、樹脂等の各種マトリックスの補強材として使用しても、該マトリックスとの接着性にも優れているので、優れた補強効果を発現するといった特徴をも有すし、高品質の繊維として巾広く使用することができる。 According to the method of the present invention, first, the fiber surface is coated with an inert hydrophilic and anhydride aluminum silicate Cohesion 2.0 or less fine powder and / or sodium aluminosilicate powder aqueous dispersion of a single Since the fiber surface is coated with anhydrous aluminum silicate and / or sodium aluminosilicate and then heat-drawn and / or heat-treated at a high temperature, not only the occurrence of fusion between single fibers in this step can be suppressed, but also the drawing. After the heat treatment, the anhydrous aluminum silicate and / or sodium aluminosilicate can be easily removed by a conventionally known method. Moreover, the obtained fiber has almost no fusion between single fibers, and has good process stability in post-processing such as twisting and weaving, and there is no problem of scum generation. Furthermore, even if it is used as a reinforcing material for various matrices such as rubber, resin, etc., it also has excellent adhesiveness with the matrix, so it has the characteristics of exhibiting an excellent reinforcing effect, and is a high-quality fiber. Can be used widely.

Claims (4)

熱可塑性合成重合体からなる繊維に、凝集度が2.0以下である、無水珪酸アルミニウム及び/又はアルミノ珪酸ナトリウムの不活性な親水性無機微粉末の水性分散液を塗布し、次いで高温で熱延伸および/または熱処理した後に、該繊維に付着している前記無機微粉末を除去することを特徴とする熱可塑性合成繊維の製造方法。 An aqueous dispersion of an inert hydrophilic inorganic fine powder of anhydrous aluminum silicate and / or sodium aluminosilicate having a cohesion degree of 2.0 or less is applied to the fiber made of a thermoplastic synthetic polymer, and then heated at a high temperature. A method for producing a thermoplastic synthetic fiber, wherein the inorganic fine powder adhering to the fiber is removed after drawing and / or heat treatment. 無機微粉末の吸水量が20〜350ml/100gである請求項1記載の熱可塑性合成繊維の製造方法。   The method for producing a thermoplastic synthetic fiber according to claim 1, wherein the water absorption of the inorganic fine powder is 20 to 350 ml / 100 g. 無機微粉末の平均粒径が5μm以下である請求項1または2記載の熱可塑性合成繊維の製造方法。   The method for producing a thermoplastic synthetic fiber according to claim 1 or 2, wherein the inorganic fine powder has an average particle size of 5 µm or less. 無機微粉末のモース硬度が5以下である請求項1〜3のいずれかに記載の熱可塑性合成繊維の製造方法。   The method for producing a thermoplastic synthetic fiber according to any one of claims 1 to 3, wherein the inorganic fine powder has a Mohs hardness of 5 or less.
JP2003270590A 2003-07-03 2003-07-03 Method for producing thermoplastic synthetic fiber Expired - Fee Related JP4817597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003270590A JP4817597B2 (en) 2003-07-03 2003-07-03 Method for producing thermoplastic synthetic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003270590A JP4817597B2 (en) 2003-07-03 2003-07-03 Method for producing thermoplastic synthetic fiber

Publications (2)

Publication Number Publication Date
JP2005023500A JP2005023500A (en) 2005-01-27
JP4817597B2 true JP4817597B2 (en) 2011-11-16

Family

ID=34190500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003270590A Expired - Fee Related JP4817597B2 (en) 2003-07-03 2003-07-03 Method for producing thermoplastic synthetic fiber

Country Status (1)

Country Link
JP (1) JP4817597B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299476A (en) * 2005-04-22 2006-11-02 Teijin Techno Products Ltd Method for producing para-oriented type fully aromatic copolyamide fiber

Also Published As

Publication number Publication date
JP2005023500A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP2006299476A (en) Method for producing para-oriented type fully aromatic copolyamide fiber
JPS63288237A (en) Cord from poly-p-phenylene-terephthalaminde
EP0121132B1 (en) Process for producing wholly aromatic polyamide filaments heat-treated under tension
JP4817597B2 (en) Method for producing thermoplastic synthetic fiber
JP2000119914A (en) Production of antibacterial polyamide fiber
JPH0415296B2 (en)
JP2005002517A (en) Method for producing thermoplastic synthetic fiber
JP4351573B2 (en) Para-type wholly aromatic copolyamide extra fine fiber
EP0163403B1 (en) Wholly aromatic polyamide fiber
JP4451617B2 (en) Fully aromatic polyamide fiber with excellent processability
JP5242913B2 (en) High strength rope
JP4507908B2 (en) Oil agent for carbon fiber precursor fiber and carbon fiber precursor fiber bundle
JPS60239523A (en) Manufacture of aromatic polyamide fiber
JP5069659B2 (en) Para-type wholly aromatic copolyamide fiber and method for producing the same
JP2018145562A (en) Carbon fiber precursor acrylic fiber bundle and manufacturing method of carbon fiber bundle using the same
JP2004124269A (en) Tourmaline-containing fiber
JP2002227074A (en) Polyolefin-based fiber for reinforcing cement and method for producing the same
JP4594659B2 (en) Method for producing thermoplastic synthetic fiber
JPWO2014156546A1 (en) Polyvinyl alcohol fiber excellent in heat aging resistance and method for producing the same
JPS6348968B2 (en)
JP2007023452A (en) Highly functional fiber having excellent opening property or paralleling property
JP2004162230A (en) Method for producing thermoplastic synthetic fiber
JPS6332914B2 (en)
JPS59137535A (en) Stretching of synthetic fiber
JPS59179818A (en) Surface modification of fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110712

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4817597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees