JPS6332914B2 - - Google Patents

Info

Publication number
JPS6332914B2
JPS6332914B2 JP4727083A JP4727083A JPS6332914B2 JP S6332914 B2 JPS6332914 B2 JP S6332914B2 JP 4727083 A JP4727083 A JP 4727083A JP 4727083 A JP4727083 A JP 4727083A JP S6332914 B2 JPS6332914 B2 JP S6332914B2
Authority
JP
Japan
Prior art keywords
fibers
water
formula
fiber
fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4727083A
Other languages
Japanese (ja)
Other versions
JPS59173374A (en
Inventor
Akihiro Aoki
Shozaburo Hiratsuka
Norihisa Yamaguchi
Shoji Makino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP4727083A priority Critical patent/JPS59173374A/en
Publication of JPS59173374A publication Critical patent/JPS59173374A/en
Publication of JPS6332914B2 publication Critical patent/JPS6332914B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

 発明の利甚分野 本発明は合成繊維の衚面凊理法に関する。曎に
詳しくは熱延䌞及び又は熱凊理時に単糞間の融
着を発生する劂き合成繊維の衚面凊理法に関す
る。  埓来技術 近幎、繊維に察する芁求が高床化し、特に高匷
力・高モゞナラス化の芁請に察し皮々の新芏な玠
材が開発・怜蚎されおきおいる。それらのうち、
ある皮のものは高性胜発芏のため、高枩床䟋え
ば300〜600℃での高倍率延䌞、あるいは高枩床
䟋えば250℃以䞊での熱凊理工皋が適甚され、
この工皋においお奜たしくない単糞間の融着が発
生する。すなわちこれらの延䌞時又は熱凊理
時融着性を有する繊維の䞭には単糞ずしおは高
性胜を発揮するにもかかわらず、倚フむラメント
の繊維束を通垞の方法で延䌞及び又は熱凊理す
るず単糞間融着が著しく、集合䜓ずしおの性胜が
著しくそこなわれるものが倚くある。 䞊述の単糞融着を防止する方法ずしお本発明者
らは先に、熱延䌞およびたたは熱凊理時に繊維
の衚面に氎和ゲル圢成性無機化合物を付䞎する方
法を提案した特願昭56−151944号が、この方
法によ぀おも繊維束を構成する単糞の数が倚くな
るず単糞融着防止効果が薄れおくるずいう問題に
遭遇した。その原因に぀いお本発明者らが鋭意研
究した結果、氎和ゲル圢成無機化合物の氎分散液
を繊維に付䞎しお、也燥する際に、繊維䞊の氎分
が枛少するずずもにゲル圢成無機化合物が凝集し
お、粗倧粒子化し、繊維衚面に粗倧粒子ずしお付
着する結果、該化合物が均䞀に繊維衚面を芆うこ
ずができなくなり、この䞍均䞀付着の珟象は繊維
束の構成単糞の数が倚くなるに぀れお顕著になる
こずを぀きずめた。  発明の目的 本発明の目的は、芪氎ゲル圢成無機化合物の氎
分散液を繊維に付䞎しお埌、也燥し、氎分を枛少
させお行く過皋においお、該無機化合物の濃床が
高くな぀おも該化合物が凝集せず、埮粒子状態で
繊維衚面に付着できる工業的に有利な方法を提䟛
するものである。  発明の構成 すなわち本発明は、熱延䌞およびたたは熱凊
理時に融着性を有する繊維の衚面に芪氎ゲル圢成
性無機化合物のコロむドず氎溶性化合物ずの混合
物を付䞎し、しかる埌、也燥するこずを特城ずす
る合成繊維の衚面凊理法である。 本発明においお䜿甚する芪氎ゲル圢成無機化合
物ずは無氎に還算した該無機化合物に察しお倍
以䞊の氎を含氎しおゲルを圢成する含氎珪酞アル
ミニりムのようなもの、氎和膚最性を有する膚最
性雲母、䟋えば北化珪酞マグネシりムのようなも
のがあげられ、さらには芪氎ゲル圢成性無機化合
物のコロむドずしおは埮现化シリカからなるコロ
むダルシリカや、埮现化アルミナからなるアルミ
ゟルなどがあげられる。 たた氎溶性化合物ずしおは氎溶液䞭で陜むオン
ず陰むオンずに電離するものであればよいが、繊
維の加熱枩床で分解しないもの、たたその結晶が
吞湿性あるいは朮解性を有するものが特に奜たし
い。 本発明に甚いられる氎溶性化合物ずしおは、無
機化合物あるいは有機化合物のいずれでもよい
が、高枩安定性ずいう面から無機化合物が奜たし
くずりわけNaCl2、NaSO4、MgSO4、CaCl2など
が奜たしく、NaClが実甚的により奜たしい。 本発明においおは芪氎ゲル圢成性無機化合物の
コロむド芪氎コロむドのみを繊維に付䞎しお
埌也燥した堎合には、先に述べたように也燥過皋
で該無機化合物が凝結しお二次凝集䜓粗倧粒子ず
な぀お繊維衚面に䞍均䞀に付着するので、繊維束
の構成単糞の数が倚くなるず熱延䌞たたは熱凊理
時の融着防止効果が著しく䜎䞋するずいう珟象か
ら芪氎ゲル圢成性無機化合物の凝結を抑制しお、
該化合物を埮现化状態で繊維衚面に均䞀に付着さ
せるこずを狙぀たものである。 すなわち、本発明に甚いる芪氎コロむドは繊維
衚面に塗着せしめられた埌、蒞発也固する過皋
で、氎分率が少くなるに぀れお、ゟル、ゲル、粗
粒子粉䜓無定圢ず倉化し、この粗粒子粉䜓が
二次凝集ずな぀おいるのであるが、ゟルたたは氎
分の倚い状態でのゲルの段階で凝結に甚いる氎和
結合力を匱めお脱氎をはかれば粗倧粒子ずなら
ず、芪氎コロむドを圢成するずきの基本粒子に近
い状態で糞衚面に付着するのであ぀おコロむド液
䞭に電離むオンを存圚させ埮粒子間の氎和結合力
のバランスを厩すこずができるので、氎溶性化合
物の添加が有効なのである。 本発明の有効性は、芪氎コロむド液をガラス板
に塗垃しお蒞発也固させた状態の顕埮鏡芳察によ
぀お確められる。すなわち、芪氎コロむド液のみ
を蒞発也固させた堎合はゲル圢成無機化合物が粗
倧な二次凝集粒子を圢成するが、芪氎コロむド液
に無機塩氎溶液を添加した堎合は、二次凝集粒子
ができず、埮现粒子の状態で保たれる。特に氎溶
性化合物が埮結晶を圢成する堎合には、䞊蚘の実
隓を行うず、該化合物を栞ずしおゲル圢成性無機
化合物が埮现粒子のたた点圚する。 本発明においお、芪氎コロむドず氎溶性化合物
ずの混合物を䜜成するに際には、芪氎コロむド液
に氎溶性化合物氎溶液を混合しおもよいし、ある
いは芪氎コロむド液に氎溶性化合物を添加混合し
おもよいし、たたその逆であ぀おもよい。 本発明においお、芪氎コロむドおよび氎溶性化
合物は䞀成分の化合物からのみなる必芁はなく、
類䌌機胜を有する皮以䞊の化合物の混合でもよ
いし、たたコロむド化助剀を含んでいおもよいこ
ずは蚀うたでもない。 本発明においお、芪氎ゲル圢成無機化合物ず氎
溶性化合物ずの混合割合は氎分散−氎溶液の系党
䜓が安定であれば任意の割合でよいが奜たしく
は、芪氎ゲル圢成性無機化合物の次凝集を抑制
できる最少限の氎溶性化合物を混合すればよい。 本発明においお芪氎性ゲル圢成性無機化合物の
コロむドず氎溶性化合物ずの混合物を繊維衚面に
付䞎する方法ずしおは、混合液に繊維を走行させ
ながら浞挬する方法が奜たしい。繊維に付䞎する
無機化合物の量ずしおは繊維の重量に察しお、無
氎換算で0.05〜15奜たしくは0.2〜2.0が適甚
される。 本発明方法が適甚される繊維ずしおは、熱延䌞
及び又は熱凊理時に融着性を瀺すものはすべお
含たれる。ここで融着性ずは、耇数の繊維を繊維
束ずしお熱延䌞及び又は熱凊理した際、繊維間
に融着郚分を圢成する性質をいう。かかる本発明
方法が適甚される繊維ずしおは䟋えばポリ゚チレ
ン、ポリプロピレン、ナむロン、ポリ゚ステルず
い぀た熱可塑性ポリマヌ、あるいは郚分硬化され
た熱硬化性暹脂等の繊維があげられる。曎に本発
明方法が適甚される繊維ずしお近幎高匷力高モゞ
ナラス繊維ずしお開発研究されおいる以䞋の劂き
繊維玠材があげられる。たずえば、 (1) 䞋蚘繰返し単䜍 −NR1−Ar1−NR2−CO−Ar2−CO−及
び又は −NR3−Ar3−CO− ここで、R1、R2、R3は氎玠及び又は䜎玚
アルキル基であり、Ar1、Ar2、Ar3は以䞋から
遞ばれた少くずも皮の芳銙族残基を瀺す。
a Field of Application of the Invention The present invention relates to a method for surface treatment of synthetic fibers. More specifically, the present invention relates to a surface treatment method for synthetic fibers that causes fusion between filaments during hot drawing and/or heat treatment. b. Prior Art In recent years, the demands on fibers have become more sophisticated, and in particular, various new materials have been developed and studied to meet the demands for high strength and high modulus. Among them,
Some types require high-strength stretching at high temperatures (for example, 300 to 600 degrees Celsius) or heat treatment processes at high temperatures (for example, over 250 degrees Celsius) to achieve high performance.
In this process, undesirable fusion between single yarns occurs. In other words, although some of these fibers that have fusibility during drawing (or heat treatment) exhibit high performance as a single filament, when a multifilament fiber bundle is drawn and/or heat treated in the usual manner, In many cases, the fusion between single yarns is significant, and the performance as an aggregate is significantly impaired. As a method for preventing the above-mentioned single filament fusion, the present inventors previously proposed a method of applying a hydrated gel-forming inorganic compound to the surface of the fiber during hot drawing and/or heat treatment (Japanese Patent Application No. No. 151944) encountered the problem that even with this method, as the number of single yarns constituting the fiber bundle increases, the effect of preventing single yarn fusion decreases. As a result of intensive research by the present inventors on the cause of this problem, we found that when an aqueous dispersion of a hydrated gel-forming inorganic compound is applied to fibers and then dried, the water content on the fibers decreases and the gel-forming inorganic compounds aggregate. As a result, the compound becomes coarse particles and adheres to the fiber surface as coarse particles, making it impossible for the compound to uniformly cover the fiber surface, and this phenomenon of uneven adhesion becomes more pronounced as the number of single fibers constituting the fiber bundle increases. I found out that it becomes c. Purpose of the Invention The purpose of the present invention is to apply an aqueous dispersion of a hydrophilic gel-forming inorganic compound to a fiber and then dry it to reduce the water content, even if the concentration of the inorganic compound becomes high. The present invention provides an industrially advantageous method in which the compound does not aggregate and can be attached to the fiber surface in the form of fine particles. d. Constitution of the Invention That is, the present invention provides a method of applying a mixture of a colloid of a hydrophilic gel-forming inorganic compound and a water-soluble compound to the surface of a fiber having fusibility during hot drawing and/or heat treatment, and then drying the mixture. This is a surface treatment method for synthetic fibers characterized by: The hydrophilic gel-forming inorganic compound used in the present invention is a compound such as hydrous aluminum silicate that forms a gel by containing 5 times or more water relative to the inorganic compound when reduced to anhydrous form, and has hydration swelling property. Examples include swellable mica, such as magnesium fluorosilicate, and colloids of hydrophilic gel-forming inorganic compounds such as colloidal silica made of finely divided silica and aluminum sol made of finely divided alumina. The water-soluble compound may be one that dissociates into cations and anions in an aqueous solution, but those that do not decompose at the heating temperature of the fibers and those whose crystals have hygroscopic or deliquescent properties are particularly preferred. The water-soluble compound used in the present invention may be either an inorganic compound or an organic compound, but in terms of high temperature stability, inorganic compounds are preferred, and NaCl 2 , NaSO 4 , MgSO 4 , CaCl 2 and the like are particularly preferred, with NaCl being preferred. Practically more preferred. In the present invention, when only a colloid of a hydrophilic gel-forming inorganic compound (hydrocolloid) is applied to the fiber and then dried, the inorganic compound coagulates during the drying process and forms secondary aggregates, as described above. Since they become coarse particles and adhere unevenly to the fiber surface, the effect of preventing fusion during hot drawing or heat treatment decreases significantly when the number of single fibers constituting the fiber bundle increases. By suppressing condensation,
The aim is to uniformly adhere the compound to the fiber surface in a finely divided state. That is, after the hydrocolloid used in the present invention is applied to the fiber surface, during the process of evaporation to dryness, as the moisture content decreases, it changes into a sol, gel, and coarse powder (amorphous). Coarse particle powder becomes secondary agglomeration, but if dehydration is attempted by weakening the hydration bonding force used for coagulation at the sol or gel stage in a water-rich state, it will not become coarse particles and will become hydrophilic. Addition of a water-soluble compound because it attaches to the yarn surface in a state similar to the basic particles when forming a colloid, and the presence of ionized ions in the colloid solution can disrupt the balance of hydration bonding force between fine particles. is valid. The effectiveness of the present invention is confirmed by microscopic observation of a hydrocolloid solution applied to a glass plate and evaporated to dryness. In other words, when only the hydrocolloid liquid is evaporated to dryness, the gel-forming inorganic compound forms coarse secondary agglomerated particles, but when an aqueous inorganic salt solution is added to the hydrocolloid liquid, no secondary agglomerated particles are formed. , kept in the state of fine particles. In particular, when the water-soluble compound forms microcrystals, when the above experiment is performed, the gel-forming inorganic compound is scattered as fine particles with the compound as a core. In the present invention, when creating a mixture of a hydrocolloid and a water-soluble compound, an aqueous solution of a water-soluble compound may be mixed with the hydrocolloid liquid, or a water-soluble compound may be added and mixed with the hydrocolloid liquid. or vice versa. In the present invention, the hydrocolloid and the water-soluble compound do not need to consist of only one component,
It goes without saying that it may be a mixture of two or more types of compounds having similar functions, and may also contain a colloidalization aid. In the present invention, the mixing ratio of the hydrophilic gel-forming inorganic compound and the water-soluble compound may be any ratio as long as the entire aqueous dispersion-aqueous solution system is stable, but preferably, the secondary aggregation of the hydrophilic gel-forming inorganic compound is It is sufficient to mix the minimum amount of water-soluble compounds that can be suppressed. In the present invention, a method of applying a mixture of a colloid of a hydrophilic gel-forming inorganic compound and a water-soluble compound to the fiber surface is preferably a method of immersing the fiber in a mixed solution while running the fiber. The amount of the inorganic compound added to the fibers is 0.05 to 15%, preferably 0.2 to 2.0%, based on the weight of the fibers, on an anhydrous basis. The fibers to which the method of the present invention can be applied include all fibers that exhibit fusibility during hot drawing and/or heat treatment. Here, fusion property refers to the property of forming a fused portion between fibers when a plurality of fibers are heat-stretched and/or heat-treated as a fiber bundle. Examples of the fibers to which the method of the present invention is applied include fibers of thermoplastic polymers such as polyethylene, polypropylene, nylon, and polyester, and partially cured thermosetting resin fibers. Furthermore, examples of fibers to which the method of the present invention can be applied include the following fiber materials that have recently been developed and researched as high-strength, high-modulus fibers. For example, (1) the following repeating unit -NR 1 -Ar 1 -NR 2 -CO-Ar 2 -CO- and/or -NR 3 -Ar 3 -CO- (where R 1 , R 2 , R 3 are It is hydrogen and/or a lower alkyl group, and Ar 1 , Ar 2 and Ar 3 represent at least one aromatic residue selected from the following.

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】 ここでは−−、【formula】 Here, X is -O-,

【匏】−−、[Formula] -S-,

【匏】を瀺す。 たた、芳銙族残基の氎玠原子はハロゲン原子
及び又は䜎玚アルキル基で眮換されおいおも
よい。で瀺される芳銙族ポリアミドの繊維、
䟋えば、盎線及び又は平行軞の結合手を有す
る芳銙族残基䟋えば−プニレン、2.6ナ
フタレン、4.4′−ゞプニル等からなる党芳
銙族ポリアミドに3.4′−ゞプニル゚ヌテル、
4.4′−ゞプニル゚ヌテル、−プニレン等
を共重合したり、曎に芳銙族残基の氎玠原子の
䞀郚をハロゲン原子及び又は䜎玚アルキル基
で眮換するこずにより、繊維に成圢した堎合の
延䌞性を高めた芳銙族コポリアミドの繊維。 特に、前蚘Ar1、Ar2、Ar3の80モル以䞊
が、
[Formula] is shown. Further, the hydrogen atom of the aromatic residue may be substituted with a halogen atom and/or a lower alkyl group. ) aromatic polyamide fibers,
For example, 3,4'-diphenyl ether, 3,4'-diphenyl ether, etc., is added to a fully aromatic polyamide consisting of an aromatic residue having straight and/or parallel axes of bonds (e.g., P-phenylene, 2.6 naphthalene, 4,4'-diphenyl, etc.).
4. Stretching when formed into fibers by copolymerizing 4'-diphenyl ether, m-phenylene, etc., or by substituting some of the hydrogen atoms of aromatic residues with halogen atoms and/or lower alkyl groups. Aromatic copolyamide fiber with enhanced properties. In particular, 80 mol% or more of Ar 1 , Ar 2 , Ar 3 is

【匏】及び[Formula] and

【匏】 で、構成単䜍(A)が90〜60モル、構成単䜍(B)が
10〜40モルである芳銙族コポリアミドの繊
維。 (2) 䞋蚘構成単䜍矀 −NR1−Ar1−CO−NH−NH− −NR2−Ar2−NR3− −NR4−Ar3−CO− −CO−Ar4−CO− ここでR1、R2、R3、R4は氎玠原子及び又
は䜎玚アルキル基であり、Ar1、Ar2、Ar3、
Ar4は以䞋から遞ばれた少くずも䞀皮の芳銙族
残基を瀺す。
[Formula], the structural unit (A) is 90 to 60 mol%, and the structural unit (B) is
Aromatic copolyamide fibers that are 10-40 mol%. (2) The following structural unit group −NR 1 −Ar 1 −CO−NH−NH− −NR 2 −Ar 2 −NR 3 − −NR 4 −Ar 3 −CO− −CO−Ar 4 −CO− (here R 1 , R 2 , R 3 , and R 4 are hydrogen atoms and/or lower alkyl groups, and Ar 1 , Ar 2 , Ar 3 ,
Ar 4 represents at least one aromatic residue selected from the following.

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】 たた芳銙族残基の氎玠原子はハロゲン原子及
び又は䜎玚アルキル基で眮換されおもよい で瀺される芳銙族コポリアミドヒドラゞドから
なる繊維。 䟋えば、盎線及び又は平行軞の結合手を有
する芳銙族残基からなる党芳銙族ポリアミドに
ヒドラゞド結合を導入䟋えば を共重合 した芳銙族コポリアミドヒドラゞド繊維。 (3) 䞋蚘構成単䜍矀 ここでAr1、Ar2は以䞋から遞ばれた少くず
も皮の芳銙族残基を瀺す。
[Formula] Further, the hydrogen atoms of the aromatic residues may be substituted with halogen atoms and/or lower alkyl groups) Fibers made of aromatic copolyamide hydrazide. For example, introducing hydrazide bonds into a fully aromatic polyamide consisting of aromatic residues with straight and/or parallel axes of bonds (e.g. (copolymerized) aromatic copolyamide hydrazide fiber. (3) The following structural unit group (Here, Ar 1 and Ar 2 represent at least one type of aromatic residue selected from the following.

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】【formula】

【匏】 たた、芳銙族残基の氎玠原子はハロゲン原子、
䜎玚アルキル基で眮換されおいおもよい。 で瀺される芳銙族オキサゞアゟヌルメチルヒ
ドラゞドコポリマヌからなる繊維。 䟋えば、以䞋の繰返し単䜍矀
[Formula] In addition, the hydrogen atom of the aromatic residue is a halogen atom,
It may be substituted with a lower alkyl group. ) A fiber made of an aromatic oxadiazole/methyl hydrazide copolymer. For example, the following repeating unit group

【匏】及び[Formula] and

【匏】 からなる芳銙族オキサゞアゟヌルメチルヒド
ラゞドコポリマヌ繊維。 (4) 光孊異方性熔融物を圢成しうる熱可塑性重合
䜓、䟋えば党芳銙族コポリ゚ステル、党芳銙族
ポリアゟメチン等からなる繊維。 等があげられる。 䞊蚘(1)〜(3)の繊維においおは、充分な性胜を発
揮させるためには、繊維間の融着が生成する劂き
高枩での熱延䌞が必芁であり、たた(4)の繊維にお
いおは充分な高匷床を埗るためには繊維間の融着
が生成する劂き高枩でのか぀比范的長時間の熱凊
理が必芁である。 たた、䟋えばポリ゚チレンの劂き熱可塑性繊維
を高延䌞倍率10〜50倍で延䌞するこずによ
り、高匷力・高モゞナラス繊維を埗る堎合におい
おも倚フむラメントの繊維集合䜓で延䌞操䜜を実
斜しようずするず単糞間の融着が避けられない。  発明の効果 本発明方法を、これら熱延䌞時又は熱凊理時又
は熱凊理時に融着性を瀺す繊維に察し、熱延䌞又
は熱凊理前に適甚するこずにより、繊維性胜を損
うこずなく、単糞間の融着を防止あるいは著るし
く䜎枛するこずが可胜ずなり、特に繊維束を構成
する単糞の数が倚いずきに倧きな効果を埗られる
こず等埓来にない利点を有する。  実斜䟋 以䞋本発明方法を実斜䟋によ぀お説明する。な
お、以䞋の䟋においお甚いる䞻な特性倀は次の劂
くである。 (1) ポリマヌの固有粘床IVinherent viscosity オストワルド型粘床管を甚い、溶媒のみの流
䞋時間をto秒、ポリマヌの垌薄溶液の流䞋時
間を秒、該垌薄溶液䞭のポリマヌ濃床を
deずするず IVlntode で衚わされる。特に断わらない限り、溶媒は
97.5硫酞、0.5deずし、30℃で枬定
する。 (2) 繊維の匕匵特性 むンストロン匕匵詊隓機により、初長25cm、
匕匵速床10cm分ずし、20℃65RHの雰囲気
䞭で荷䌞曲線を枬定する。これより匷床
de、䌞床、ダング率deを算出
する。 (3) 融着床、 ダヌン䞭に本来存圚すべき単糞数を、延䌞又
は熱凊理埌のダヌンに぀いお実際に数えられた
フむラメント数で割぀た倀を甚いる。即ち延䌞
又は熱凊理埌のフむラメント本が、平均䜕本
の単糞の融着で構成されおいるかを瀺す。枬定
はケ所で枬定し、その平均倀をずする。 実斜䟋  䞋蚘構成単䜍 により構成されるIV3.1の芳銙族コポリアミド
をCaCl2を含有する−メチル−−ピロリドン
NMPに重量溶解せしめたポリマヌ溶液
を孔埄0.2mm1000孔の口金から940分の吐出速
床で抌し出した。空気䞭を玄10mm走行させた埌、
50℃のNMP氎3070重量の凝固济䞭で
凝固させ、30分の速床で匕き取り、ひき぀づ
き50℃の氎济で掗浄した。氎掗糞を含氎珪酞アル
ミニりムの0.5氎分散コロむド10䞭にNaClを
の割合で混合した液に浞挬させ、絞りロヌラ
ヌで絞぀た埌、也燥ロヌラヌ䞊で也燥した。埮现
粒子の固圢分ずしおの付着量は也燥糞重量に察し
お玄0.6であ぀た。匕き぀づき、500℃の熱板䞊
で12倍に延䌞し、油剀を付䞎した埌巻き取぀た。
埗られた糞の物性を䞋衚に瀺すが、比范䟋は
NaClを混合しない含氎珪酞アルミニりム0.5の
氎分散コロむドのみを䜿甚した堎合である。 本発明 比范䟋 繊床de 1482 1475 匷床de 25.9 25.4 䌞床 4.1 4.0 初期モゞナラス 620 628 融着床 1.01 1.85 実斜䟋  実斜䟋においお含氎珪酞アルミニりムの氎分
散コロむドの替りに、北化珪酞マグネシりムの氎
分散コロむド、コロむダルシリカおよびアルミナ
ゟルを䜿甚した。
An aromatic oxadiazole/methyl hydrazide copolymer fiber consisting of the formula: (4) Fibers made of thermoplastic polymers capable of forming optically anisotropic melts, such as wholly aromatic copolyesters, wholly aromatic polyazomethines, etc. etc. can be mentioned. In order to exhibit sufficient performance, the fibers (1) to (3) above require hot drawing at a high temperature that creates fusion between the fibers, and the fibers (4) require In order to obtain sufficiently high strength, heat treatment at a high temperature and for a relatively long period of time is necessary to form a fusion bond between the fibers. Furthermore, when drawing thermoplastic fibers such as polyethylene at high draw ratios (10 to 50 times) to obtain high-strength, high-modulus fibers, it is difficult to carry out drawing operations on multifilament fiber aggregates. Fusion between single yarns is unavoidable. e Effects of the Invention By applying the method of the present invention to these fibers that exhibit fusibility during hot drawing or heat treatment, or before hot drawing or heat treatment, it is possible to improve the bond between single yarns without impairing fiber performance. It is possible to prevent or significantly reduce the fusion of fibers, and it has an unprecedented advantage that a large effect can be obtained especially when the number of single yarns constituting a fiber bundle is large. f Examples The method of the present invention will be explained below with reference to Examples. The main characteristic values used in the following examples are as follows. (1) Inherent viscosity of the polymer IV (inherent viscosity) Using an Ostwald viscosity tube, the flow time of the solvent alone is to (seconds), the flow time of a dilute polymer solution is t (seconds), and the polymer concentration in the dilute solution. c
(g/de), it is expressed as IV=ln(t/to)/c(de/g). Unless otherwise specified, solvents are
Measure at 30°C using 97.5% sulfuric acid, c=0.5g/de. (2) Tensile properties of fibers Initial length 25 cm,
The stretching curve is measured at a tensile speed of 10 cm/min in an atmosphere of 20°C and 65% RH. From this strength (g/
de), elongation (%), and Young's modulus (q/de). (3) Degree of fusion, f The value obtained by dividing the number of single filaments that should originally exist in the yarn by the number of filaments actually counted in the yarn after drawing or heat treatment is used. That is, it shows how many single filaments on average are fused together to form one filament after drawing or heat treatment. Measurements were taken at five locations, and the average value was taken as f. Example 1 The following structural units A polymer solution prepared by dissolving 6% by weight of an aromatic copolyamide with IV = 3.1 composed of in N-methyl-2-pyrrolidone (NMP) containing CaCl 2 was discharged at 940 g/min from a nozzle with 1000 holes with a pore size of 0.2 mm. I pushed it out at speed. After traveling about 10mm in the air,
It was coagulated in a coagulation bath of NMP/water (30/70% by weight) at 50°C, withdrawn at a speed of 30 m/min and subsequently washed in a water bath at 50°C. The washed yarn was immersed in a mixture of 1 g of NaCl in 0.5% water-dispersed colloid 10 of hydrated aluminum silicate, squeezed with a squeezing roller, and then dried on a drying roller. The amount of fine particles attached as a solid content was about 0.6% based on the weight of the dry yarn. Subsequently, it was stretched 12 times on a hot plate at 500°C, and after applying an oil agent, it was wound up.
The physical properties of the obtained yarn are shown in the table below, and the comparative example is
This is a case where only a 0.5% water-dispersed colloid of hydrated aluminum silicate without mixing NaCl was used. Comparative example of the present invention Fineness (de) 1482 1475 Strength (g/de) 25.9 25.4 Elongation (%) 4.1 4.0 Initial modulus (g/d) 620 628 Fusion degree f 1.01 1.85 Example 2 Hydrous aluminum silicate in Example 1 Instead of the water-dispersed colloid, a water-dispersed colloid of magnesium fluorosilicate, colloidal silica, and alumina sol were used.

【衚】 実斜䟋〜、比范䟋〜 次衚に瀺すポリマヌ溶液を実斜䟋に準じお玡
糞延䌞した。䜆し、各実斜䟋ずも吐出量は最終デ
ニヌルに合うように調敎した。
[Table] Examples 3 to 5, Comparative Examples 3 to 5 Polymer solutions shown in the following table were spun and stretched according to Example 1. However, in each example, the discharge amount was adjusted to match the final denier.

【衚】 埮现粒子の固圢分ずしおの付着量はいづれも也
燥糞重量に察し玄0.5であ぀た。次衚に延䌞条
件ず共に延䌞糞の特性を瀺す。たた、比范䟋ずし
お含氎珪酞アルミニりム氎分散コロむドのみを䜿
甚した堎合を比范䟋ずしお瀺す。
[Table] The amount of fine particles attached as a solid content was about 0.5% based on the weight of the dry yarn. The following table shows the drawing conditions and properties of the drawn yarn. Further, as a comparative example, a case where only a water-dispersed colloid of hydrated aluminum silicate is used is shown as a comparative example.

【衚】 比范䟋の繊維はいずれも単糞床融着により、柔
軟性に欠けるものであ぀た。 実斜䟋  䞋蚘構成単䜍 からなるIV2.1−クロルプノヌル䞭50℃で
枬定の党芳銙族ポリ゚ステルを玡糞枩床330℃
で孔埄0.5mmφ、孔数50を有する玡糞口金より8.5
minで空気䞭に抌し出し、250分で巻き
取぀た。埗られた糞条をの珪酞アルミニりム
マグネシりム氎分散液10äž­NaCl1の割合で混
合した液に浞挬し、也燥した埌、カセ枠に巻き取
぀た。カセ枠に巻いたたた窒玠気流䞭250℃で
時間、260℃で時間、270℃で時間、280℃で
時間、290℃で時間、300℃で時間熱凊理し
た。 熱凊理前及び熱凊理埌のダヌンの特性を以䞋に
瀺す。 未熱凊理糞 熱凊理糞 繊床de 305 290 匷床de 4.1 19 䌞床 1.0 4.0 モゞナラスde 405 395 融着床 1.00 1.03 比范䟋  NaClを䜿甚しない以倖は実斜䟋ず同様に玡
糞・熱凊理したずころ、埗られた糞の融着床は
2.5で極めお品䜍の悪いものであ぀た。
[Table] All of the fibers of the comparative examples lacked flexibility due to monofilament fusion. Example 6 The following structural units A fully aromatic polyester with IV = 2.1 (measured in P-chlorophenol at 50°C) was spun at a temperature of 330°C.
8.5 from a spinneret with a hole diameter of 0.5 mmφ and a number of holes of 50.
It was extruded into the air at a rate of g/min and wound up at a rate of 250 m/min. The obtained yarn was immersed in a mixture of 1 g of NaCl in 10 g of a 1% aqueous dispersion of aluminum magnesium silicate, dried, and then wound around a skein frame. 1 at 250℃ in a nitrogen stream while wrapped in a skein frame.
Heat treatment was performed for 1 hour at 260°C, 1 hour at 270°C, 1 hour at 280°C, 1 hour at 290°C, and 3 hours at 300°C. The properties of the yarn before and after heat treatment are shown below. Unheated yarn Heat treated yarn Fineness (de) 305 290 Strength (g/de) 4.1 19 Elongation (%) 1.0 4.0 Modulus (g/de) 405 395 Degree of fusion f 1.00 1.03 Comparative example 6 Implemented except that NaCl was not used When spinning and heat treatment were carried out in the same manner as in Example 6, the degree of fusion f of the obtained yarn was
2.5, which was extremely poor quality.

Claims (1)

【特蚱請求の範囲】[Claims]  熱延䌞およびたたは熱凊理時に融着性を有
する合成繊維の衚面に、芪氎ゲル圢成性無機化合
物のコロむドずNaCl、Na2SO4、MgSO4、CaCl2
矀から遞ばれる以䞊の氎溶性化合物ずの混合物
を付䞎し、しかる埌也燥するこずを特城ずする合
成繊維の衚面凊理法。
1 Colloids of hydrophilic gel-forming inorganic compounds and NaCl, Na 2 SO 4 , MgSO 4 , CaCl 2 on the surface of synthetic fibers that have fusion properties during hot stretching and/or heat treatment.
1. A method for surface treatment of synthetic fibers, which comprises applying a mixture with one or more water-soluble compounds selected from the group consisting of: followed by drying.
JP4727083A 1983-03-23 1983-03-23 Surface treatment of synthetic fiber Granted JPS59173374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4727083A JPS59173374A (en) 1983-03-23 1983-03-23 Surface treatment of synthetic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4727083A JPS59173374A (en) 1983-03-23 1983-03-23 Surface treatment of synthetic fiber

Publications (2)

Publication Number Publication Date
JPS59173374A JPS59173374A (en) 1984-10-01
JPS6332914B2 true JPS6332914B2 (en) 1988-07-01

Family

ID=12770598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4727083A Granted JPS59173374A (en) 1983-03-23 1983-03-23 Surface treatment of synthetic fiber

Country Status (1)

Country Link
JP (1) JPS59173374A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161918U (en) * 1988-04-28 1989-11-10

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104060465B (en) * 2014-03-25 2016-03-02 安埜柏拉囟涂层织物有限公叞 A kind of shell fabric for fire garment coating and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161918U (en) * 1988-04-28 1989-11-10

Also Published As

Publication number Publication date
JPS59173374A (en) 1984-10-01

Similar Documents

Publication Publication Date Title
RU2522186C2 (en) Highly functional spunbonded fabric made from particle-containing fibres and method for production thereof
US4320081A (en) Process for the manufacture of fibres from poly-p-phenylene terephthalamide
JPS63288237A (en) Cord from poly-p-phenylene-terephthalaminde
EP0121132B1 (en) Process for producing wholly aromatic polyamide filaments heat-treated under tension
EP0165372B1 (en) A process for production of hydraulic substances reinforced with high tenacity acrylonitrile fibers
TW202033613A (en) Method for preparing a functional fiber
CA1282923C (en) High strength polymetaphenylene isophthalamide fiber and process for producing the same
JPS62149934A (en) Production of thermoplastic synthetic fiber
JPS6332914B2 (en)
JP2000119914A (en) Production of antibacterial polyamide fiber
US5512368A (en) Fibers reinforced with inorganic whiskers
JPS6249367B2 (en)
JPS6328133B2 (en)
EP0163403B1 (en) Wholly aromatic polyamide fiber
JPH0246688B2 (en)
JPS60239523A (en) Manufacture of aromatic polyamide fiber
JPS6330409B2 (en)
JP2005002517A (en) Method for producing thermoplastic synthetic fiber
JPS59137535A (en) Stretching of synthetic fiber
JPH09256216A (en) Regenerated cellulose fiber and its production
JPS59179818A (en) Surface modification of fiber
JP4817597B2 (en) Method for producing thermoplastic synthetic fiber
JP4451617B2 (en) Fully aromatic polyamide fiber with excellent processability
JPS6348968B2 (en)
JPS59173314A (en) Drawing of synthetic fiber