JP2009235633A - Production method of liquid crystal polyester fiber - Google Patents

Production method of liquid crystal polyester fiber Download PDF

Info

Publication number
JP2009235633A
JP2009235633A JP2008085269A JP2008085269A JP2009235633A JP 2009235633 A JP2009235633 A JP 2009235633A JP 2008085269 A JP2008085269 A JP 2008085269A JP 2008085269 A JP2008085269 A JP 2008085269A JP 2009235633 A JP2009235633 A JP 2009235633A
Authority
JP
Japan
Prior art keywords
fiber
weight
liquid crystal
crystal polyester
phase polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008085269A
Other languages
Japanese (ja)
Other versions
JP5298597B2 (en
Inventor
Yoshiji Funatsu
義嗣 船津
Takemasa Ono
勇将 小野
Yuhei Maeda
裕平 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008085269A priority Critical patent/JP5298597B2/en
Publication of JP2009235633A publication Critical patent/JP2009235633A/en
Application granted granted Critical
Publication of JP5298597B2 publication Critical patent/JP5298597B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal polyester fiber improved in higher-order process passability and product quality by decreasing faults caused by fusion in a solid phase polymerization process to improve uniformity in the fiber-length direction and then reducing fiber surface adherence of a fusion preventive agent. <P>SOLUTION: The production method of liquid crystal polyester fiber comprises adhering a fusion preventive agent on the surface of the liquid crystal polyester fiber, performing solid-phase polymerization, and removing the fusion preventive agent while travelling the solid phase-polymerized polyester fiber, so that the adhesion amount of the fusion preventive agent on the fiber is made 4.0 wt.% or less based on the fiber weight. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は繊維長手方向の均一性に優れ、かつ融着防止剤等の繊維表面付着物が少なく、高次工程通過性に優れる液晶ポリエステル繊維の製造方法に関するものである。   The present invention relates to a method for producing a liquid crystal polyester fiber which is excellent in uniformity in the fiber longitudinal direction, has few fiber surface deposits such as an anti-fusing agent, and is excellent in high-order process passability.

液晶ポリエステルは剛直な分子鎖からなるポリマーであり、溶融紡糸においてはその分子鎖を繊維軸方向に高度に配向させ、さらに熱処理(固相重合)を施すことにより溶融紡糸で得られる繊維の中では最も高い強度、弾性率が得られることが知られている。また液晶ポリエステルは固相重合により分子量が増加し、融点が上昇するため耐熱性、寸法安定性が向上することも知られている(非特許文献1参照)。このように液晶ポリエステル繊維においては固相重合を施すことにより高強度、高弾性率、優れた耐熱性、熱寸法安定性が発現する。   Liquid crystalline polyester is a polymer composed of rigid molecular chains. In melt spinning, the molecular chains are highly oriented in the fiber axis direction, and further subjected to heat treatment (solid phase polymerization). It is known that the highest strength and elastic modulus can be obtained. In addition, it is also known that liquid crystal polyester has an increased molecular weight due to solid-phase polymerization and an increased melting point, thereby improving heat resistance and dimensional stability (see Non-Patent Document 1). Thus, liquid crystal polyester fibers exhibit high strength, high elastic modulus, excellent heat resistance, and thermal dimensional stability by solid phase polymerization.

液晶ポリエステル繊維の固相重合は、設備の簡素化、生産性の向上の点から、繊維をパッケージとし、これを処理する方法が工業的には採用されているが、固相重合反応が進行しうる温度域では単糸間融着が発生しやすく、パッケージ形状からの解舒の際に融着部分がはがれ欠陥が生じるという問題がある。欠陥は強度低下など繊維長手方向の均一性を損ねる他、欠陥を起点として繊維がフィブリル化するという問題も引き起こす。   Solid-phase polymerization of liquid crystalline polyester fiber is industrially adopted as a method of treating the fiber as a package from the viewpoint of simplifying equipment and improving productivity, but the solid-phase polymerization reaction proceeds. There is a problem that fusion between single yarns is likely to occur in a temperature range, and the fusion part is peeled off during unwinding from the package shape. Defects deteriorate the uniformity in the longitudinal direction of the fiber, such as a decrease in strength, and also cause problems such as fiber fibrillation starting from the defects.

近年、特にモノフィラメントからなるフィルター、スクリーン印刷用紗に対し、性能向上のため織密度の高密度化(高メッシュ化)、紗厚の低減、開口部(オープニング)の開口率向上の要望が強まり、これを達成するために単繊維繊度の細繊度化、高強度化が強く要求されると同時に、高性能化のために開口部の欠点減少も要求されている。開口部の欠点は前記したフィブリルが繊維の製造工程または高次加工工程での摩擦により生じるため、固相重合での融着に起因する欠陥を減少させ、繊維長手方向の強度、繊度の均一性を向上することが求められている。   In recent years, especially for filters made of monofilament and screen printing saddles, there has been a growing demand for higher weaving density (higher mesh), lowering the thickness, and improving the opening ratio of the opening (opening) to improve performance. In order to achieve this, there is a strong demand for fineness and high strength of the single fiber fineness, and at the same time, there is a demand for reducing defects in the opening for high performance. The defects of the openings are caused by friction in the fiber manufacturing process or the high-order processing process, thus reducing defects caused by fusion in solid-phase polymerization, and uniform strength and fineness in the longitudinal direction of the fiber. There is a need to improve.

さらに製織など繊維高次加工工程での工程通過性悪化もフィブリルの引っ掛かりやガイドへのフィブリルの堆積による張力変動が要因であり、固相重合での融着に起因する欠陥を減少させ、繊維長手方向の強度、繊度の均一性を向上することが求められている。   In addition, deterioration in process passability in fiber high-order processing such as weaving is caused by fluctuations in tension due to fibril catching and fibril deposition on the guide, reducing defects caused by fusion in solid phase polymerization, There is a need to improve the uniformity of strength and fineness in the direction.

固相重合での融着を低減させる技術として、タルクやシリカ等で処理した後に熱処理(固相重合)する方法(特許文献1参照)、分解温度が200℃以上のフッ素原子を含む界面活性剤を付着させた後、該繊維を熱処理(固相重合)する方法(特許文献2参照)などが開示されている。これらの方法では融着低減の効果は認められ、その付着量が多いほど融着は低減されるが、タルクやシリカ、フッ素化合物などの融着防止剤が繊維表面に付着物として残るため、製織など繊維の高次加工工程で融着防止剤がガイド等に付着し工程通過性を悪化させる他、付着物が脱落し製品に混入して欠点となるなどの課題があった。これを回避するため付着量を低減させると、融着改善効果が減少し、融着に起因する欠陥が増加して繊維長手方向の均一性を損ねると言う問題があった。   As a technique for reducing fusion in solid phase polymerization, a method of treating with talc or silica and then heat-treating (solid phase polymerization) (see Patent Document 1), a surfactant containing a fluorine atom having a decomposition temperature of 200 ° C. or higher A method of heat-treating (solid-phase polymerization) the fibers after adhering the fibers (see Patent Document 2) is disclosed. In these methods, the effect of reducing fusion is recognized, and as the amount of adhesion increases, the fusion decreases. However, since anti-fusing agents such as talc, silica, and fluorine compounds remain on the fiber surface as a deposit, weaving In addition to the adhesion of the anti-fusing agent to the guide and the like in the high-order processing step of the fiber and the like, the passability of the process deteriorates. When the adhesion amount is reduced to avoid this, there is a problem that the effect of improving the fusion is reduced, and defects due to the fusion are increased to deteriorate the uniformity in the fiber longitudinal direction.

なお特許文献2には「熱処理した繊維は所望により冷却後に洗浄、乾燥される」との記載があるが、洗浄の具体的な方法とその効果については何ら記載されていない。
技術情報協会編、「液晶ポリマーの改質と最新応用技術」(2006)(第235頁〜第256頁) 特開昭58−91817号公報(第5頁) 特開昭63−99328号公報(第1頁)
In addition, Patent Document 2 describes that “heat-treated fibers are washed and dried after cooling if desired”, but there is no description of a specific method of washing and its effect.
Edited by Technical Information Association, “Modification of liquid crystal polymer and latest applied technology” (2006) (pages 235-256) JP 58-91817 A (page 5) JP 63-99328 A (first page)

本発明の課題は固相重合での融着に起因する欠陥を減少させ、繊維長手方向の均一性を高めると共に、融着防止剤等の繊維表面付着物が少なく高次工程通過性に優れる液晶ポリエステル繊維の製造方法を提供することにある。   The object of the present invention is to reduce defects caused by fusion in solid-phase polymerization, increase the uniformity in the longitudinal direction of the fiber, and reduce the adhesion of fibers on the fiber surface such as an anti-fusing agent, and is excellent in high-order process passability. It is providing the manufacturing method of a polyester fiber.

本発明者等は、同一の繊維表面付着物の量では固相重合での融着抑制と高次工程通過性向上の両立が困難であるため、固相重合後に繊維表面付着物を効率的に除去することで両者を満足できることを見出した。   The present inventors have found that it is difficult to achieve both fusion suppression in solid phase polymerization and improvement in high-order process passability with the same amount of fiber surface deposits. It was found that both can be satisfied by removal.

すなわち、本発明は液晶ポリエステル繊維に融着防止剤を付着させて固相重合した後、固相重合された液晶ポリエステル繊維を走行させつつ融着防止剤を除去し、繊維への融着防止剤の付着量を繊維重量に対して4.0重量%以下とすることを特徴とする液晶ポリエステル繊維の製造方法である。   That is, the present invention removes the anti-fusing agent while the solid-phase polymerized liquid crystal polyester fiber is running after the anti-fusing agent is attached to the liquid crystal polyester fiber, and the anti-fusing agent to the fiber. This is a method for producing a liquid crystal polyester fiber, characterized in that the amount of adhering is 4.0% by weight or less with respect to the fiber weight.

本発明は繊維表面の欠陥が少なく、繊維長手方向の均一性に優れ、高次工程通過性の良好な固相重合された液晶ポリエステル繊維が効率よく得られるため、特にフィルター、スクリーン印刷用紗に用いると、製織性向上や織物開口部の欠点が減少して品位の向上した織物が得られる。   The present invention has few defects on the fiber surface, excellent uniformity in the longitudinal direction of the fiber, and solid-state polymerized liquid crystal polyester fibers with good high-order process passability can be obtained efficiently. When used, a fabric with improved quality can be obtained by improving the weaving properties and reducing the defects of the fabric opening.

以下、本発明の液晶ポリエステル繊維の製造方法について詳細に説明する。   Hereinafter, the manufacturing method of the liquid crystalline polyester fiber of this invention is demonstrated in detail.

本発明で用いられる液晶ポリエステルとは、溶融時に異方性溶融相(液晶性)を形成し得るポリエステルである。この特性は例えば、液晶ポリエステルからなる試料をホットステージにのせ、窒素雰囲気下で昇温加熱し、試料の透過光を偏光下で観察することにより確認できる。   The liquid crystal polyester used in the present invention is a polyester capable of forming an anisotropic melt phase (liquid crystallinity) upon melting. This characteristic can be confirmed, for example, by placing a sample made of liquid crystal polyester on a hot stage, heating and heating in a nitrogen atmosphere, and observing the transmitted light of the sample under polarized light.

本発明に用いる液晶ポリエステルとしては、例えばa.芳香族オキシカルボン酸の重合物、b.芳香族ジカルボン酸と芳香族ジオール、脂肪族ジオールの重合物、c.aとbとの共重合物などが挙げられるが、高強度、高弾性率、高耐熱のためには脂肪族ジオールを用いない全芳香族ポリエステルが好ましい。ここで芳香族オキシカルボン酸としては、ヒドロキシ安息香酸、ヒドロキシナフトエ酸など、または上記芳香族オキシカルボン酸のアルキル、アルコキシ、ハロゲン置換体などが挙げられる。また、芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、ジフェニルジカルボン酸、ナフタレンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルエタンジカルボン酸など、または上記芳香族ジカルボン酸のアルキル、アルコキシ、ハロゲン置換体などが挙げられる。さらに、芳香族ジオールとしては、ハイドロキノン、レゾルシン、ジオキシジフェニール、ナフタレンジオールなど、または上記芳香族ジオールのアルキル、アルコキシ、ハロゲン置換体などが挙げられ、脂肪族ジオールとしてはエチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコールなどが挙げられる。   Examples of the liquid crystal polyester used in the present invention include a. A polymer of aromatic oxycarboxylic acid, b. Polymer of aromatic dicarboxylic acid and aromatic diol, aliphatic diol, c. Examples include a copolymer of a and b, and a wholly aromatic polyester that does not use an aliphatic diol is preferable for high strength, high elastic modulus, and high heat resistance. Here, examples of the aromatic oxycarboxylic acid include hydroxybenzoic acid, hydroxynaphthoic acid and the like, and alkyl, alkoxy and halogen substituted products of the above aromatic oxycarboxylic acid. Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, diphenyldicarboxylic acid, naphthalene dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenoxyethanedicarboxylic acid, diphenylethanedicarboxylic acid, and the like, or alkyls, alkoxys of the above aromatic dicarboxylic acids, Examples include halogen substitution products. Furthermore, examples of the aromatic diol include hydroquinone, resorcin, dioxydiphenyl, naphthalene diol, and the like, and alkyl, alkoxy, and halogen substituted products of the above aromatic diol. Examples of the aliphatic diol include ethylene glycol, propylene glycol, Examples include butanediol and neopentyl glycol.

本発明に用いる液晶ポリエステルの好ましい例としては、p−ヒドロキシ安息香酸成分と4,4’−ジヒドロキシビフェニル成分とハイドロキノン成分とテレフタル酸成分および/またはイソフタル酸成分とが共重合されたもの、p−ヒドロキシ安息香酸成分と6−ヒドロキシ2−ナフトエ酸成分とが共重合されたもの、p−ヒドロキシ安息香酸成分と6−ヒドロキシ2−ナフトエ酸成分とハイドロキノン成分とテレフタル酸成分とが共重合されたもの、などが挙げられる。   Preferable examples of the liquid crystalline polyester used in the present invention include a copolymer of a p-hydroxybenzoic acid component, a 4,4′-dihydroxybiphenyl component, a hydroquinone component, a terephthalic acid component and / or an isophthalic acid component, p- A copolymer of a hydroxybenzoic acid component and a 6-hydroxy 2-naphthoic acid component, a copolymer of a p-hydroxybenzoic acid component, a 6-hydroxy 2-naphthoic acid component, a hydroquinone component, and a terephthalic acid component , Etc.

本発明では特に、下記構造単位(I)、(II)、(III)、(IV)および(V)からなる液晶ポリエステルであることが好ましい。なお、本発明において構造単位とはポリマーの主鎖における繰り返し構造を構成し得る単位を指す。   In the present invention, a liquid crystal polyester composed of the following structural units (I), (II), (III), (IV) and (V) is particularly preferable. In the present invention, the structural unit refers to a unit that can constitute a repeating structure in the main chain of the polymer.

Figure 2009235633
Figure 2009235633

この組み合わせにより分子鎖は適切な結晶性と非直線性、すなわち溶融紡糸可能な融点を有するようになる。したがってポリマーの融点と熱分解温度の間で設定される紡糸温度において良好な製糸性を有するようになり長手方向に均一な繊維が得られ、かつ適度な結晶性を有するため繊維の強度、弾性率を高めることができる。   This combination allows the molecular chains to have appropriate crystallinity and non-linearity, i.e. a melt-spinnable melting point. Therefore, the fiber has good spinning performance at the spinning temperature set between the melting point of the polymer and the thermal decomposition temperature, and a uniform fiber can be obtained in the longitudinal direction. Can be increased.

さらに構造単位(II)、(III)のような嵩高くなく、直線性の高いジオールからなる成分を組み合わせることが重要であり、この成分を組み合わせることにより繊維中で分子鎖は秩序だった乱れの少ない構造を取ると共に、結晶性が過度に高まらず繊維軸垂直方向の相互作用も維持できる。これにより高い強度、弾性率が得られることに加えて、優れた耐摩耗性も得られるのである。   Furthermore, it is important to combine components composed of diols that are not bulky and have high linearity such as structural units (II) and (III). By combining these components, the molecular chains in the fibers are ordered and disordered. In addition to having a small structure, the crystallinity is not excessively increased and the interaction in the direction perpendicular to the fiber axis can be maintained. Thereby, in addition to obtaining high strength and elastic modulus, excellent wear resistance is also obtained.

また、上記した構造単位(I)は構造単位(I)、(II)および(III)の合計に対して40〜85モル%が好ましく、より好ましくは65〜80モル%、さらに好ましくは68〜75モル%である。このような範囲とすることで結晶性を適切な範囲とすることができ高い強度、弾性率が得られ、かつ融点も溶融紡糸可能な範囲となる。   Further, the structural unit (I) is preferably 40 to 85 mol%, more preferably 65 to 80 mol%, still more preferably 68 to 85 mol% with respect to the total of the structural units (I), (II) and (III). 75 mol%. By setting it as such a range, crystallinity can be made into an appropriate range, high intensity | strength and an elasticity modulus are obtained, and melting | fusing point also becomes the range which can be melt-spun.

構造単位(II)は構造単位(II)および(III)の合計に対して60〜90モル%が好ましく、より好ましくは60〜80モル%、さらに好ましくは65〜75モル%である。このような範囲とすることで結晶性が過度に高まらず繊維軸垂直方向の相互作用も維持できるため、耐摩耗性に優れる。   The structural unit (II) is preferably 60 to 90 mol%, more preferably 60 to 80 mol%, still more preferably 65 to 75 mol%, based on the total of the structural units (II) and (III). By setting it as such a range, since crystallinity does not become high excessively and the interaction of a fiber axis perpendicular | vertical direction can be maintained, it is excellent in abrasion resistance.

構造単位(IV)は構造単位(IV)および(V)の合計に対して40〜95モル%が好ましく、より好ましくは50〜90モル%、さらに好ましくは60〜85モル%である。このような範囲とすることでポリマーの融点が適切な範囲となり、ポリマーの融点と熱分解温度の間で設定される紡糸温度において良好な製糸性を有するようになり単繊維繊度が細く、長手方向に均一な繊維が得られる。   The structural unit (IV) is preferably 40 to 95 mol%, more preferably 50 to 90 mol%, still more preferably 60 to 85 mol%, based on the total of the structural units (IV) and (V). By setting such a range, the melting point of the polymer becomes an appropriate range, and has a good spinning property at a spinning temperature set between the melting point of the polymer and the thermal decomposition temperature. Uniform fibers can be obtained.

本発明に用いる液晶ポリエステルの各構造単位の好ましい範囲は以下のとおりである。この範囲の中で上記した条件を満たすよう組成を調整することで特に好適な液晶ポリエステル繊維が得られる。
構造単位(I)45〜65モル%
構造単位(II)12〜18モル%
構造単位(III)3〜10モル%
構造単位(IV)5〜20モル%
構造単位(V)2〜15モル%
なお本発明で用いる液晶ポリエステルには上記構造単位以外に3,3’−ジフェニルジカルボン酸、2,2’−ジフェニルジカルボン酸などの芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジオン酸などの脂肪族ジカルボン酸、ヘキサヒドロテレフタル酸(1,4−シクロヘキサンジカルボン酸)などの脂環式ジカルボン酸、クロロハイドロキノン、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシジフェニルスルフィド、4,4’−ジヒドロキシベンゾフェノン等の芳香族ジオールおよびp−アミノフェノールなどを本発明の効果を損なわない5モル%程度以下の範囲で共重合させても良い。
The preferred range of each structural unit of the liquid crystalline polyester used in the present invention is as follows. A particularly suitable liquid crystal polyester fiber can be obtained by adjusting the composition so as to satisfy the above-mentioned conditions within this range.
Structural unit (I) 45-65 mol%
Structural unit (II) 12-18 mol%
Structural unit (III) 3 to 10 mol%
Structural unit (IV) 5-20 mol%
Structural unit (V) 2-15 mol%
In addition to the above structural units, the liquid crystalline polyester used in the present invention includes aromatic dicarboxylic acids such as 3,3′-diphenyldicarboxylic acid and 2,2′-diphenyldicarboxylic acid, adipic acid, azelaic acid, sebacic acid, and dodecanedioic acid. Aliphatic dicarboxylic acids such as hexahydroterephthalic acid (1,4-cyclohexanedicarboxylic acid), chlorohydroquinone, 4,4′-dihydroxydiphenyl sulfone, 4,4′-dihydroxydiphenyl sulfide, 4 An aromatic diol such as 4,4'-dihydroxybenzophenone and p-aminophenol may be copolymerized within a range of about 5 mol% or less without impairing the effects of the present invention.

また本発明の効果を損なわない5重量%程度以下の範囲で、ポリエステル、ポリオレフィンやポリスチレンなどのビニル系重合体、ポリカーボネート、ポリアミド、ポリイミド、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリスルホン、芳香族ポリケトン、脂肪族ポリケトン、半芳香族ポリエステルアミド、ポリエーテルエーテルケトン、フッ素樹脂などのポリマーを添加しても良く、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ナイロン6、ナイロン66、ナイロン46、ナイロン6T、ナイロン9T、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリシクロヘキサンジメタノールテレフタレート、ポリエステル99Mなどが好適な例として挙げられる。なおこれらのポリマーを添加する場合、その融点は液晶ポリエステルの融点±30℃以内にすることが製糸性を損なわないために好ましい。   Further, in the range of about 5% by weight or less which does not impair the effects of the present invention, a vinyl polymer such as polyester, polyolefin or polystyrene, polycarbonate, polyamide, polyimide, polyphenylene sulfide, polyphenylene oxide, polysulfone, aromatic polyketone, aliphatic polyketone. , Semi-aromatic polyester amide, polyether ether ketone, fluororesin and other polymers may be added. Polyphenylene sulfide, polyether ether ketone, nylon 6, nylon 66, nylon 46, nylon 6T, nylon 9T, polyethylene terephthalate, Polypropylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycyclohexanedimethanol terephthalate, polyester 99M, etc. are suitable It is mentioned as examples. When these polymers are added, the melting point thereof is preferably within the melting point ± 30 ° C. of the liquid crystalline polyester so as not to impair the spinning property.

さらに本発明の効果を損なわない範囲内で、各種金属酸化物、カオリン、シリカなどの無機物や、着色剤、艶消剤、難燃剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤、結晶核剤、蛍光増白剤、末端基封止剤、相溶化剤等の各種添加剤を少量含有しても良い。   Furthermore, within the range not impairing the effects of the present invention, various metal oxides, kaolin, silica and other inorganic substances, colorants, matting agents, flame retardants, antioxidants, ultraviolet absorbers, infrared absorbers, crystal nucleating agents In addition, various additives such as a fluorescent brightening agent, a terminal group blocking agent, and a compatibilizing agent may be contained in a small amount.

本発明に用いる液晶ポリエステルの製造方法は公知の製造方法に準じて製造でき、例えば以下の製造方法が好ましく挙げられる。   The method for producing the liquid crystal polyester used in the present invention can be produced according to a known production method. For example, the following production methods are preferred.

(1)p−アセトキシ安息香酸などのアセトキシカルボン酸および4,4’−ジアセトキシビフェニル、ジアセトキシベンゼンなどの芳香族ジヒドロキシ化合物のジアセチル化物とテレフタル酸、イソフタル酸などの芳香族ジカルボン酸から脱酢酸縮重合反応によって液晶性ポリエステルを製造する方法。   (1) Deacetic acid from acetoxycarboxylic acid such as p-acetoxybenzoic acid and diacetylated compounds of aromatic dihydroxy compounds such as 4,4′-diacetoxybiphenyl and diacetoxybenzene and aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid A method for producing a liquid crystalline polyester by a condensation polymerization reaction.

(2)p−ヒドロキシ安息香酸などのヒドロキシカルボン酸および4,4’−ジヒドロキシビフェニル、ハイドロキノンなどの芳香族ジヒドロキシ化合物とテレフタル酸、イソフタル酸などの芳香族ジカルボン酸に無水酢酸を反応させて、フェノール性水酸基をアシル化した後、脱酢酸重縮合反応によって液晶性ポリエステルを製造する方法。   (2) Hydroxycarboxylic acid such as p-hydroxybenzoic acid and aromatic dihydroxy compounds such as 4,4′-dihydroxybiphenyl and hydroquinone and aromatic dicarboxylic acid such as terephthalic acid and isophthalic acid are reacted with acetic anhydride to produce phenol. A method for producing a liquid crystalline polyester by deacetic acid polycondensation reaction after acylating a functional hydroxyl group.

(3)p−ヒドロキシ安息香酸などのヒドロキシカルボン酸のフェニルエステルおよび4,4’−ジヒドロキシビフェニル、ハイドロキノンなどの芳香族ジヒドロキシ化合物とテレフタル酸、イソフタル酸などの芳香族ジカルボン酸のジフェニルエステルから脱フェノール重縮合反応により液晶性ポリエステルを製造する方法。   (3) Dephenolization from phenyl esters of hydroxycarboxylic acids such as p-hydroxybenzoic acid and aromatic dihydroxy compounds such as 4,4′-dihydroxybiphenyl and hydroquinone and diphenyl esters of aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid A method for producing a liquid crystalline polyester by a polycondensation reaction.

(4)p−ヒドロキシ安息香酸などのヒドロキシカルボン酸およびテレフタル酸、イソフタル酸などの芳香族ジカルボン酸に所定量のジフェニルカーボネートを反応させて、それぞれジフェニルエステルとした後、4,4’−ジヒドロキシビフェニル、ハイドロキノンなどの芳香族ジヒドロキシ化合物を加え、脱フェノール重縮合反応により液晶性ポリエステルを製造する方法。   (4) A predetermined amount of diphenyl carbonate is reacted with a hydroxycarboxylic acid such as p-hydroxybenzoic acid and an aromatic dicarboxylic acid such as terephthalic acid or isophthalic acid to form a diphenyl ester, and then 4,4′-dihydroxybiphenyl. A method for producing a liquid crystalline polyester by dephenol polycondensation reaction by adding an aromatic dihydroxy compound such as hydroquinone.

なかでもp−ヒドロキシ安息香酸などのヒドロキシカルボン酸および4,4’−ジヒドロキシビフェニル、ハイドロキノンなどの芳香族ジヒドロキシ化合物、テレフタル酸、イソフタル酸などの芳香族ジカルボン酸に無水酢酸を反応させて、フェノール性水酸基をアシル化した後、脱酢酸重縮合反応によって液晶性ポリエステルを製造する方法が好ましい。さらに、4,4’−ジヒドロキシビフェニルおよびハイドロキノン等の芳香族ジヒドロキシ化合物の合計使用量とテレフタル酸およびイソフタル酸等の芳香族ジカルボン酸の合計使用量は、実質的に等モルである。無水酢酸の使用量は、p−ヒドロキシ安息香酸、4,4’−ジヒドロキシビフェニルおよびハイドロキノンのフェノール性水酸基の合計の1.12当量以下であることが好ましく、1.10当量以下であることがより好ましく、下限については1.0当量以上であることが好ましい。   Among them, hydroxycarboxylic acids such as p-hydroxybenzoic acid, aromatic dihydroxy compounds such as 4,4′-dihydroxybiphenyl and hydroquinone, and aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid are reacted with acetic anhydride to produce phenolic compounds. A method of producing a liquid crystalline polyester by deacetic acid polycondensation reaction after acylating a hydroxyl group is preferred. Furthermore, the total amount of aromatic dihydroxy compounds such as 4,4'-dihydroxybiphenyl and hydroquinone and the total amount of aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid are substantially equimolar. The amount of acetic anhydride used is preferably 1.12 equivalents or less, more preferably 1.10 equivalents or less of the total of the phenolic hydroxyl groups of p-hydroxybenzoic acid, 4,4′-dihydroxybiphenyl and hydroquinone. Preferably, the lower limit is 1.0 equivalent or more.

本発明で用いる液晶ポリエステルを脱酢酸重縮合反応により製造する際には、液晶ポリエステルが溶融する温度で減圧下反応させ、重縮合反応を完了させる溶融重合法が好ましい。例えば、所定量のp−ヒドロキシ安息香酸等のヒドロキシカルボン酸および4,4’−ジヒドロキシビフェニル、ハイドロキノン等の芳香族ジヒドロキシ化合物、テレフタル酸、イソフタル酸等の芳香族ジカルボン酸、無水酢酸を攪拌翼、留出管を備え、下部に吐出口を備えた反応容器中に仕込み、窒素ガス雰囲気下で攪拌しながら加熱し水酸基をアセチル化させた後、液晶性樹脂の溶融温度まで昇温し、減圧により重縮合し、反応を完了させる方法が挙げられる。アセチル化させる条件は、通常130〜300℃の範囲、好ましくは135〜200℃の範囲で通常1〜6時間、好ましくは140〜180℃の範囲で2〜4時間反応させる。重縮合させる温度は、液晶ポリエステルの溶融温度、例えば、250〜350℃の範囲であり、好ましくは液晶ポリエステルポリマーの融点+10℃以上の温度である。重縮合させるときの減圧度は通常13.3〜2660Paであり、好ましくは1330Pa以下、より好ましくは665Pa以下である。なお、アセチル化と重縮合は同一の反応容器で連続して行っても良いが、アセチル化と重縮合を異なる反応容器で行っても良い。   When the liquid crystalline polyester used in the present invention is produced by a deacetic acid polycondensation reaction, a melt polymerization method in which the polycondensation reaction is completed by reacting under reduced pressure at a temperature at which the liquid crystalline polyester melts is preferable. For example, a predetermined amount of a hydroxycarboxylic acid such as p-hydroxybenzoic acid and an aromatic dihydroxy compound such as 4,4′-dihydroxybiphenyl and hydroquinone, an aromatic dicarboxylic acid such as terephthalic acid and isophthalic acid, and an acetic anhydride stirring blade, Charged into a reaction vessel equipped with a distillation pipe and provided with a discharge port at the bottom, heated under stirring in a nitrogen gas atmosphere to acetylate the hydroxyl group, then raised to the melting temperature of the liquid crystalline resin, and reduced pressure A method of completing the reaction by polycondensation is mentioned. The conditions for the acetylation are usually 130 to 300 ° C., preferably 135 to 200 ° C., usually 1 to 6 hours, preferably 140 to 180 ° C. for 2 to 4 hours. The polycondensation temperature is the melting temperature of the liquid crystal polyester, for example, in the range of 250 to 350 ° C., and preferably the melting point of the liquid crystal polyester polymer + 10 ° C. or higher. The degree of pressure reduction during polycondensation is usually 13.3 to 2660 Pa, preferably 1330 Pa or less, more preferably 665 Pa or less. In addition, although acetylation and polycondensation may be performed continuously in the same reaction vessel, acetylation and polycondensation may be performed in different reaction vessels.

得られたポリマーは、それが溶融する温度で反応容器内を例えば、およそ0.1±0.05MPaに加圧し、反応容器下部に設けられた吐出口よりストランド状に吐出することができる。溶融重合法は均一なポリマーを製造するために有利な方法であり、ガス発生量がより少ない優れたポリマーを得ることができ、好ましい。   The obtained polymer can be pressurized in the reaction vessel to, for example, about 0.1 ± 0.05 MPa at a temperature at which it melts and discharged in a strand form from the discharge port provided at the lower portion of the reaction vessel. The melt polymerization method is an advantageous method for producing a uniform polymer, and an excellent polymer with less gas generation can be obtained, which is preferable.

本発明に用いる液晶ポリエステルを製造する際に、固相重合法により重縮合反応を完了させることも可能である。例えば、液晶ポリエステルポリマーまたはオリゴマーを粉砕機で粉砕し、窒素気流下または減圧下、液晶ポリエステルの融点(Tm)−5℃〜融点(Tm)−50℃(例えば、200〜300℃)の範囲で1〜50時間加熱し、所望の重合度まで重縮合し、反応を完了させる方法が挙げられる。   When producing the liquid crystalline polyester used in the present invention, the polycondensation reaction can be completed by a solid phase polymerization method. For example, the liquid crystal polyester polymer or oligomer is pulverized by a pulverizer, and the melting point (Tm) -5 ° C. to the melting point (Tm) −50 ° C. (for example, 200 to 300 ° C.) of the liquid crystal polyester under a nitrogen stream or reduced pressure. A method of heating for 1 to 50 hours, polycondensing to a desired degree of polymerization, and completing the reaction can be mentioned.

ただし紡糸においては、固相重合法により製造した液晶性樹脂をそのまま用いると、固相重合によって生じた高結晶化部分が未溶融で残り、紡糸パック圧の上昇や糸中の異物の原因となる可能性があるため、一度二軸押出機などで混練して(リペレタイズ)、高結晶化部分を完全に溶融することが好ましい。   However, in spinning, if the liquid crystalline resin produced by the solid phase polymerization method is used as it is, the highly crystallized portion generated by the solid phase polymerization remains unmelted, which causes an increase in spinning pack pressure and foreign matter in the yarn. Since there is a possibility, it is preferable that the highly crystallized portion is completely melted by kneading (repletizing) once with a twin screw extruder or the like.

上記液晶ポリエステルの重縮合反応は無触媒でも進行するが、酢酸第一錫、テトラブチルチタネート、酢酸カリウムおよび酢酸ナトリウム、三酸化アンチモン、金属マグネシウムなどの金属化合物を使用することもできる。   The polycondensation reaction of the liquid crystal polyester proceeds even without catalyst, but metal compounds such as stannous acetate, tetrabutyl titanate, potassium acetate and sodium acetate, antimony trioxide, and magnesium metal can also be used.

本発明に用いる液晶ポリエステルポリマーの融点は、溶融紡糸可能な温度範囲を広くするため好ましくは200〜380℃であり、より好ましくは250〜350℃であり、さらに好ましくは290〜340℃である。なお液晶ポリエステルポリマーの融点(吸熱ピーク)は実施例記載の方法で測定される値を指す。   The melting point of the liquid crystalline polyester polymer used in the present invention is preferably 200 to 380 ° C., more preferably 250 to 350 ° C., and further preferably 290 to 340 ° C. in order to widen the temperature range capable of melt spinning. In addition, melting | fusing point (endothermic peak) of a liquid crystal polyester polymer points out the value measured by the method of an Example description.

本発明に用いる液晶ポリエステルポリマーの溶融粘度は、0.5〜200Pa・sが好ましく、特に1〜100Pa・sが好ましく、紡糸性の点から10〜50Pa・sがより好ましい。なお、この溶融粘度は、融点(Tm)+10℃の条件で、ずり速度1,000(1/s)の条件下で高化式フローテスターによって測定した値である。   The melt viscosity of the liquid crystalline polyester polymer used in the present invention is preferably 0.5 to 200 Pa · s, particularly preferably 1 to 100 Pa · s, and more preferably 10 to 50 Pa · s from the viewpoint of spinnability. The melt viscosity is a value measured with a Koka flow tester under the condition of melting point (Tm) + 10 ° C. and shear rate of 1,000 (1 / s).

本発明に用いる液晶ポリエステルのポリスチレン換算の重量平均分子量(以下、分子量と記載)は3.0万以上が好ましく、5.0万以上がより好ましい。分子量を3.0万以上とすることで紡糸温度において適切な粘度を持ち製糸性を高めることができ、分子量が高いほど得られる繊維の強度、伸度、弾性率は高まる。また分子量が高すぎると粘度が高くなり流動性が悪くなり、ついには流動しなくなるため分子量は25.0万未満が好ましく、15.0万未満がより好ましい。   The polystyrene equivalent weight average molecular weight (hereinafter referred to as molecular weight) of the liquid crystalline polyester used in the present invention is preferably 30,000 or more, and more preferably 50,000 or more. By setting the molecular weight to 30,000 or more, the spinning property can be improved with an appropriate viscosity at the spinning temperature, and the higher the molecular weight, the higher the strength, elongation and elastic modulus of the resulting fiber. On the other hand, if the molecular weight is too high, the viscosity becomes high, the fluidity is deteriorated, and finally the fluid does not flow. Therefore, the molecular weight is preferably less than 255,000, more preferably less than 150,000.

溶融紡糸において、液晶ポリエステルの溶融押出は公知の手法を用いることができるが、重合時に生成する秩序構造をなくすためにエクストルーダー型の押出機を用いることが好ましい。押し出されたポリマーは配管を経由してギアーポンプなど公知の計量装置により計量され、異物除去のフィルターを通過した後、口金へと導かれる。このときポリマー配管から口金までの温度(紡糸温度)は液晶ポリエステルの融点以上、500℃以下とすることが好ましく、液晶ポリエステルの融点+10℃以上、400℃以下とすることがより好ましく、液晶ポリエステルの融点+20℃以上、370℃以下とすることがさらに好ましい。なお、ポリマー配管から口金までの温度をそれぞれ独立して調整することも可能である。この場合、口金に近い部位の温度をその上流側の温度より高くすることで吐出が安定する。   In melt spinning, a known method can be used for melt extrusion of liquid crystal polyester, but an extruder type extruder is preferably used in order to eliminate the ordered structure generated during polymerization. The extruded polymer is measured by a known measuring device such as a gear pump through a pipe, and after passing through a filter for removing foreign matter, it is led to a base. At this time, the temperature from the polymer pipe to the die (spinning temperature) is preferably not lower than the melting point of the liquid crystal polyester and not higher than 500 ° C., more preferably not lower than the melting point of the liquid crystal polyester + 10 ° C. and not higher than 400 ° C. More preferably, the melting point is 20 ° C. or higher and 370 ° C. or lower. It is also possible to independently adjust the temperature from the polymer pipe to the base. In this case, the discharge is stabilized by making the temperature of the part close to the base higher than the temperature on the upstream side.

溶融紡糸においては、細繊度、低繊度変動率の繊維を得るためには、吐出時の安定性、細化挙動の安定性を高めるべきであり、工業的な溶融紡糸ではエネルギーコストの低減、生産性向上のため1つの口金に多数の口金孔を穿孔するため、それぞれの孔の吐出、細化を安定させる必要がある。   In melt spinning, in order to obtain fibers with fineness and low fineness fluctuation rate, stability during discharge and stability of thinning behavior should be improved. In industrial melt spinning, energy costs are reduced and production is reduced. In order to improve the performance, a large number of base holes are drilled in one base, and it is necessary to stabilize the discharge and thinning of each hole.

これを達成するためには口金孔の孔径を小さくするとともに、ランド長(口金孔の孔径と同一の直管部の長さ)を長くすることが重要である。ただし孔径が過度に小さいと孔の詰まりが発生しやすくなるため直径0.03mm以上0.30mm以下が好ましく、0.05mm以上0.25mm以下がより好ましく、0.08mm以上0.20mm以下がさらに好ましい。ランド長は過度に長いと圧力損失が高くなるため、ランド長を孔径で除した商で定義されるL/Dは0.5以上3.0以下が好ましく0.8以上2.5以下がより好ましく、1.0以上2.0以下がさらに好ましい。また均一性を維持するために1つの口金の孔数は50孔以下が好ましく、40孔以下がより好ましく、20孔以下がさらに好ましい。なお、口金孔の直上に位置する導入孔は直径が口金孔径の5倍以上のストレート孔とすることが圧力損失を高めない点で好ましい。導入孔と口金孔の接続部分はテーパーとすることが異常滞留を抑制する上で好ましいが、テーパー部分の長さはランド長の2倍以下とすることが圧力損失を高めず、流線を安定させる上で好ましい。   In order to achieve this, it is important to reduce the diameter of the base hole and increase the land length (the length of the straight pipe portion equal to the diameter of the base hole). However, if the hole diameter is excessively small, clogging of the hole is likely to occur, so that the diameter is preferably 0.03 mm to 0.30 mm, more preferably 0.05 mm to 0.25 mm, and further preferably 0.08 mm to 0.20 mm. preferable. If the land length is excessively long, the pressure loss increases. Therefore, the L / D defined by the quotient obtained by dividing the land length by the hole diameter is preferably 0.5 or more and 3.0 or less, more preferably 0.8 or more and 2.5 or less. Preferably, it is 1.0 or more and 2.0 or less. In order to maintain uniformity, the number of holes in one die is preferably 50 holes or less, more preferably 40 holes or less, and even more preferably 20 holes or less. In addition, it is preferable that the introduction hole located immediately above the die hole is a straight hole having a diameter of 5 times or more the diameter of the die hole in terms of not increasing pressure loss. It is preferable to taper the connection part between the introduction hole and the base hole in order to suppress abnormal stagnation. However, the length of the taper part should be less than twice the land length without increasing pressure loss and stabilizing the streamline. This is preferable.

口金孔より吐出されたポリマーは保温、冷却領域を通過させ固化させた後、一定速度で回転するローラー(ゴデットローラー)により引き取られる。保温領域は過度に長いと製糸性が悪くなるため口金面から200mmまでとすることが好ましく、100mmまでとすることがより好ましい。保温領域は加熱手段を用いて雰囲気温度を高めることも可能であり、その温度範囲は100℃以上500℃以下が好ましく、200℃以上400℃以下がより好ましい。冷却は不活性ガス、空気、水蒸気等を用いることができるが、平行あるいは環状に噴き出す空気流を用いることが環境負荷を低くする点から好ましい。   The polymer discharged from the base hole passes through a heat retaining and cooling region and solidifies, and is then taken up by a roller (godet roller) that rotates at a constant speed. If the heat-retaining region is excessively long, the yarn forming property is deteriorated, so that it is preferably up to 200 mm from the base surface, and more preferably up to 100 mm. In the heat retaining region, the atmospheric temperature can be increased by using a heating means, and the temperature range is preferably 100 ° C. or higher and 500 ° C. or lower, and more preferably 200 ° C. or higher and 400 ° C. or lower. For the cooling, an inert gas, air, water vapor, or the like can be used. However, it is preferable to use an air flow that is jetted in parallel or in an annular shape from the viewpoint of reducing the environmental load.

引き取り速度は生産性、単糸繊度の低減のため50m/分以上が好ましく、300m/分以上がより好ましく、500m/分以上がさらに好ましい。好ましい例として前記した5成分からなる液晶ポリエステルは紡糸温度において好適な曳糸性を有することから引き取り速度を高速にできる。上限は特に制限されないが、曳糸性の点から2000m/分程度となる。   The take-up speed is preferably 50 m / min or more, more preferably 300 m / min or more, and further preferably 500 m / min or more in order to reduce productivity and single yarn fineness. As a preferred example, the liquid crystal polyester composed of the five components described above has a suitable spinnability at the spinning temperature, so that the take-up speed can be increased. The upper limit is not particularly limited, but is about 2000 m / min from the viewpoint of spinnability.

引き取り速度を吐出線速度で除した商で定義される紡糸ドラフトは1以上500以下とすることが好ましく、5以上200以下とすることがより好ましく、12以上100以下とすることがさらに好ましい。なお、好ましい例として挙げた5成分からなる液晶ポリエステルは好適な曳糸性を有することからドラフトを高くでき、細繊度化に有利である。   The spinning draft defined by the quotient obtained by dividing the take-off speed by the discharge linear speed is preferably 1 or more and 500 or less, more preferably 5 or more and 200 or less, and even more preferably 12 or more and 100 or less. In addition, since the liquid crystalline polyester which consists of 5 components mentioned as a preferable example has a suitable spinnability, a draft can be made high and it is advantageous to refinement | definement.

溶融紡糸においてはポリマーの冷却固化から巻き取りまでの間に油剤を付与することが繊維の取り扱い性を向上させる上で好ましい。油剤は公知のものを使用できるが、高温での固相重合に耐え得るポリシロキサン系のシリコーンオイルなどを主体とした油剤を用いることがより好ましい。   In melt spinning, it is preferable to add an oil agent between the cooling and solidification of the polymer and the winding to improve the handleability of the fiber. As the oil agent, known oil agents can be used, but it is more preferable to use an oil agent mainly composed of polysiloxane-based silicone oil that can withstand solid-phase polymerization at high temperatures.

巻き取りは公知の巻き取り機を用いパーン、チーズ、コーンなどの形態のパッケージとすることができるが、巻き取り時にパッケージ表面にローラーが接触しないパーン巻きとすることが繊維に摩擦力を与えずフィブリル化させない点で好ましい。   Winding can be carried out using a known winder to form a package such as pirn, cheese, corn, etc. However, it is not necessary to make the wrapping so that the roller does not come into contact with the surface of the package during winding. It is preferable in that it is not fibrillated.

次に、溶融紡糸で得られた繊維は固相重合されるが、本発明においては固相重合の前に、繊維表面に融着防止剤を付着させる。融着防止剤の付着は溶融紡糸から巻き取りまでの間に行っても良いが、付着効率を高めるためには巻き返しの際に行う、あるいは溶融紡糸で少量を付着させ、巻き返しの際にさらに追加することが好ましい。   Next, the fiber obtained by melt spinning is subjected to solid phase polymerization. In the present invention, an anti-fusing agent is attached to the fiber surface before solid phase polymerization. The adhesion of the anti-fusing agent may be carried out between melt spinning and winding, but in order to increase the adhesion efficiency, it is performed at the time of rewinding, or a small amount is adhered by melt spinning and further added at the time of rewinding. It is preferable to do.

本発明で言う融着防止剤とは、その剤を液晶ポリエステル繊維に付着させ固相重合させた際に繊維間の融着を抑制する剤であり、公知のものが使用できるが、固相重合での高温熱処理で揮発させないため耐熱性が高い方が好ましく、例えば硫酸バリウムやチタン酸バリウムなどの無機塩、タルクやシリカ、スメクタイト、合成雲母などの無機物、フッ素化合物や芳香族ポリアミド、ポリイミド、ポリエーテルケトンなどの高耐熱有機物、ジメチルポリシロキサン、ジフェニルポリシロキサン、メチルフェニルポリシロキサンおよびその変性物などのポリシロキサン系化合物、ならびにこれらの混合物が好ましい。中でもポリシロキサン系化合物は固相重合での融着防止効果に加え、易滑性にも効果を示すため特に好ましい。なおポリシロキサン系化合物は易滑性を示す油剤として良く知られているが、固相重合での融着防止にも高い効果を持つことは新しい事実である。   The anti-fusing agent referred to in the present invention is an agent that suppresses fusion between fibers when the agent is attached to a liquid crystal polyester fiber and solid-phase polymerized, and publicly known ones can be used. High heat resistance is preferable because it does not volatilize at high temperature heat treatment in, for example, inorganic salts such as barium sulfate and barium titanate, inorganic substances such as talc, silica, smectite, synthetic mica, fluorine compounds, aromatic polyamides, polyimides, poly High heat resistant organic substances such as ether ketone, polysiloxane compounds such as dimethylpolysiloxane, diphenylpolysiloxane, methylphenylpolysiloxane and modified products thereof, and mixtures thereof are preferred. Of these, polysiloxane compounds are particularly preferred because they exhibit an effect on slipperiness in addition to the effect of preventing fusion in solid phase polymerization. Polysiloxane compounds are well known as oil agents exhibiting slipperiness, but it is a new fact that they are highly effective in preventing fusion in solid phase polymerization.

これらの成分は固体付着、液状物の直接塗布でも構わないが付着量を適正化しつつ均一塗布するためには溶液あるいはエマルジョンでの塗布が好ましく、可燃物を用いた際の引火を防ぎ、環境負荷を低減する点から水を用いた水溶液、水エマルジョンが特に好ましい。したがって融着防止剤としては水溶性あるいは水エマルジョンを形成しやすいことが望ましく、ジメチルポリシロキサンの水エマルジョンを主体とし、これに水溶性の塩や水膨潤性のスメクタイトを添加した混合物が最も好ましい。溶液あるいはエマルジョンの塗布はオイリングガイドなど公知の手法を採用できるが、長手方向の均一性を高めるためには金属やセラミック製のキスロール(オイリングロール)を用いて付着させる方法が好ましい。   These components may be applied directly to solid or liquid substances, but in order to apply uniformly while optimizing the amount of adhesion, application with a solution or emulsion is preferred, preventing flammability when combustible materials are used, and environmental impact From the viewpoint of reducing water, an aqueous solution and water emulsion using water are particularly preferred. Therefore, it is desirable that the anti-fusing agent be water-soluble or easily form a water emulsion, and most preferably a mixture composed mainly of a water emulsion of dimethylpolysiloxane and added with a water-soluble salt or water-swellable smectite. A known method such as an oiling guide can be employed for applying the solution or emulsion, but a method of attaching using a kiss roll (oiling roll) made of metal or ceramic is preferable in order to improve the uniformity in the longitudinal direction.

繊維への融着防止剤の付着量は融着抑制のためには多い方が好ましく、0.5重量%以上が好ましく、1.0重量%以上がより好ましい。一方、多すぎると繊維がべたつきハンドリングを悪化させる他、付着物を除去した後も残分が多くなり工程通過性を悪化させるため10.0重量%以下が好ましく、8.0重量%以下がより好ましく、6.0重量%以下が特に好ましい。なお繊維への融着防止剤の付着量は実施例に記載した手法により求められる値を指す。この場合、融着防止剤の付着量を測定する際に、溶融紡糸において付与した油剤等の付着量も合算されるが、溶融紡糸で付与する油剤も種類によっては融着防止効果を示し、また付着量が多い場合にはハンドリングの悪化など融着防止剤と同様の問題が生じるため、本発明においては溶融紡糸において付与した油剤等の付着量も融着防止剤との合計量として算出する。   The amount of adhesion of the anti-fusing agent to the fiber is preferably large in order to suppress the fusion, preferably 0.5% by weight or more, and more preferably 1.0% by weight or more. On the other hand, if the amount is too large, the fiber tends to deteriorate sticky handling, and the amount of residue increases after removal of deposits and deteriorates processability, so 10.0% by weight or less is preferable, and 8.0% by weight or less is more preferable. It is preferably 6.0% by weight or less. In addition, the adhesion amount of the anti-fusing agent to the fiber indicates a value obtained by the method described in the examples. In this case, when measuring the adhesion amount of the anti-fusing agent, the adhesion amount of the oil agent or the like applied in the melt spinning is also added, but depending on the type of the oil agent applied by the melt spinning, an anti-fusing effect is exhibited. When the adhesion amount is large, problems similar to those of the anti-fusing agent such as deterioration in handling occur. Therefore, in the present invention, the adhesion amount of the oil agent or the like applied in melt spinning is also calculated as a total amount with the anti-fusion agent.

固相重合はパッケージ状、カセ状、トウ状(例えば、金属網等にのせて行う)、あるいはローラー間で連続的に糸条として処理することも可能であるが、設備が簡素化でき、生産性も向上できる点からパッケージ状で行うことが好ましい。   Solid-phase polymerization can be processed in the form of a package, cake, tow (for example, on a metal net), or as a continuous thread between rollers, but the equipment can be simplified and produced. It is preferable to carry out in the form of a package from the viewpoint of improving the properties.

パッケージ状で固相重合を行う場合、単繊維繊度を細くした際に顕著となる融着を防止する技術も重要となる。融着防止のためには固相重合を行う際の繊維パッケージの巻密度が重要であり、巻き密度が0.01g/cc以上、0.30g/cc未満の繊維パッケージとしてボビン上に形成し、これを固相重合することが好ましい。ここで巻密度とは、パッケージ外寸法と心材となるボビンの寸法から求められるパッケージの占有体積Vf(cc)と繊維の重量Wf(g)からWf/Vfにより計算される値である。なお占有体積Vfはパッケージの外形寸法を実測するか、写真を撮影し写真上で外形寸法を測定し、パッケージが回転対称であることを仮定し計算することで求められる値であり、Wfは繊度と巻取長から計算される値、もしくは巻取前後での重量差により実測される値である。巻密度が小さいほどパッケージにおける繊維間の密着力が弱まり融着が抑制できるため、0.15g/cc以下が好ましく、巻密度は過度に小さいとパッケージが巻き崩れるため0.03g/cc以上とすることが好ましい。したがって好ましい範囲は、0.03g/cc以上、0.15g/cc以下である。また取扱いの可能な総繊度1dtex以上、融着による悪影響の大きい総繊度500dtex以下の繊維を用いることが好ましい。   When solid-phase polymerization is performed in a package form, a technique for preventing fusion that becomes noticeable when the single fiber fineness is reduced is also important. In order to prevent fusion, the winding density of the fiber package at the time of solid-phase polymerization is important, and the winding density is formed on the bobbin as a fiber package having a winding density of 0.01 g / cc or more and less than 0.30 g / cc, This is preferably solid phase polymerized. Here, the winding density is a value calculated by Wf / Vf from the occupied volume Vf (cc) of the package and the weight Wf (g) of the fiber obtained from the outside dimensions of the package and the dimensions of the bobbin that is the core material. The occupied volume Vf is a value obtained by actually measuring the outer dimension of the package or by taking a photograph and measuring the outer dimension on the photograph and assuming that the package is rotationally symmetric. Wf is the fineness And a value calculated from the winding length, or a value measured by a weight difference before and after winding. The lower the winding density, the weaker the adhesion between the fibers in the package and the suppression of fusion, so 0.15 g / cc or less is preferable, and if the winding density is too small, the package collapses and is 0.03 g / cc or more. It is preferable. Therefore, a preferable range is 0.03 g / cc or more and 0.15 g / cc or less. Further, it is preferable to use fibers having a total fineness of 1 dtex or more that can be handled and a total fineness of 500 dtex or less that has a large adverse effect due to fusion.

このような巻密度が小さいパッケージは溶融紡糸における巻き取りで形成する場合には、設備生産性、生産効率化が向上するために望ましく、一方、溶融紡糸で巻き取ったパッケージを巻き返して形成する場合には、巻き張力を小さくすることができ、巻密度をより小さくできるため好ましい。巻き返しにおいては巻き張力を小さくするほど巻き密度は小さくできるので、巻き張力は0.15cN/dtex以下が好ましく、0.10cN/dtex以下がより好ましく、0.05cN/dtex以下がさらに好ましい。巻き密度を低くするためにはパッケージ形状を整え巻き取り張力を安定化させるために通常用いられるコンタクトローラ等を用いず、繊維パッケージ表面を非接触の状態で巻き取ることや、溶融紡糸で巻き取られたパッケージから調速ローラーを介せず直接、速度制御された巻取機で巻き取ることも有効である。これらの場合、パッケージ形状を整えるためにはトラバースガイドと繊維の接点から繊維パッケージまでの距離(フリーレングス)を10mm以内とする方法が好ましく用いられる。さらに、巻き返し速度を500m/分以下、特に300m/分以下とすることも巻き密度を低くするために有効である。一方、巻き返し速度は生産性のためには高い方が有利であり、50m/分以上、特に100m/分以上とすることが好ましい。   When such a low winding density package is formed by winding in melt spinning, it is desirable to improve facility productivity and production efficiency. On the other hand, a package wound by melt spinning is formed by rewinding. Is preferable because the winding tension can be reduced and the winding density can be further reduced. In the rewinding, the winding density can be reduced as the winding tension is reduced. Therefore, the winding tension is preferably 0.15 cN / dtex or less, more preferably 0.10 cN / dtex or less, and further preferably 0.05 cN / dtex or less. In order to reduce the winding density, the surface of the fiber package is wound in a non-contact state or wound by melt spinning without using a contact roller or the like normally used to adjust the package shape and stabilize the winding tension. It is also effective to wind the package directly with a winder controlled in speed without using a speed control roller. In these cases, in order to adjust the package shape, a method in which the distance (free length) from the contact point between the traverse guide and the fiber to the fiber package is within 10 mm is preferably used. Furthermore, it is also effective to reduce the winding density by setting the winding speed to 500 m / min or less, particularly 300 m / min or less. On the other hand, a higher rewinding speed is advantageous for productivity, and it is preferably 50 m / min or more, particularly preferably 100 m / min or more.

また低張力巻き取りにおいても安定したパッケージを形成するため、ならびに端面部の融着を回避し安定したパッケージを形成するためには巻き形態は両端にテーパーがついたテーパーエンド巻取とすることが好ましい。この際、テーパー角は60°以下が好ましく、45°以下がより好ましい。またテーパー角が小さい場合、繊維パッケージを大きくすることができず長尺の繊維が必要な場合には1°以上が好ましく、5°以上がより好ましい。なお本発明で言うテーパー角とは以下の式で定義される。さらに巻き取りにおいてはトラバース幅を時間に対し周期的に揺動させることで、取り扱い、解舒性に優れるパッケージが得られる。   In addition, in order to form a stable package even in low tension winding, and in order to avoid fusion of the end face and form a stable package, the winding form should be tapered end winding with both ends tapered. preferable. At this time, the taper angle is preferably 60 ° or less, and more preferably 45 ° or less. When the taper angle is small, the fiber package cannot be enlarged, and when long fibers are required, it is preferably 1 ° or more, and more preferably 5 ° or more. The taper angle referred to in the present invention is defined by the following equation. Furthermore, in winding, the traverse width is periodically swung with respect to time, whereby a package having excellent handling and unwinding properties can be obtained.

Figure 2009235633
Figure 2009235633

さらにパッケージ形成にはワインド数も重要である。ここで言うワインド数とはトラバースが半往復する間にスピンドルが回転する回転数であり、トラバース半往復の時間(分)とスピンドル回転数(rpm)の積で定義され、ワインド数が高いことは綾角が小さいことを示す。ワインド数は小さい方が繊維間の接触面積が小さく融着回避には有利であるが、本発明で好適な巻取条件となる低張力、コンタクトロールなしなどの条件下においてはワインド数が高いほど端面での綾落ち、パッケージの膨らみが軽減でき、パッケージ形状が良好となる。これらの点からワインド数は2.0以上20.0以下が好ましく、5.0以上15.0以下がより好ましい。   Furthermore, the number of winds is also important for package formation. The number of winds referred to here is the number of revolutions that the spindle rotates while the traverse makes a half-reciprocation. It is defined as the product of the time (minutes) of the traverse half-reciprocation and the spindle number of revolutions (rpm). Indicates that the twill angle is small. The smaller the number of winds, the smaller the contact area between the fibers, which is advantageous for avoiding fusion. However, the higher the number of winds under the conditions such as low tension and no contact roll, which are preferable winding conditions in the present invention. Twill fall off at the end face and the swelling of the package can be reduced, and the package shape is improved. From these points, the wind number is preferably 2.0 or more and 20.0 or less, and more preferably 5.0 or more and 15.0 or less.

該繊維パッケージを形成するために用いられるボビンは円筒形状のものであればいかなるものでも良く、繊維パッケージとして巻き取る際に巻取機に取り付けこれを回転させることで繊維を巻き取り、パッケージを形成する。固相重合に際しては繊維パッケージをボビンと一体で処理することもできるが、繊維パッケージからボビンのみを抜き取って処理することもできる。ボビンに巻いたまま処理する場合、該ボビンは固相重合温度に耐える必要があり、アルミや真鍮、鉄、ステンレスなどの金属製であることが好ましい。またこの場合、ボビンには多数の穴の空いていることが、重合反応副生物を速やかに除去でき固相重合を効率的に行えるため好ましい。また繊維パッケージからボビンを抜き取って処理する場合には、ボビン外層に外皮を装着しておくことが好ましい。また、いずれの場合にもボビンの外層にはクッション材を巻き付け、その上に液晶ポリエステル溶融紡糸繊維を巻き取っていくことが好ましい。クッション材の材質は、有機繊維または金属繊維からなるフェルトが好ましく、厚みは0.1mm以上、20mm以下が好ましい。前述の外皮を該クッション材で代用することもできる。   The bobbin used to form the fiber package may be of any cylindrical shape, and when wound as a fiber package, it is attached to a winder and rotated to wind the fiber and form a package. To do. In the solid-phase polymerization, the fiber package can be processed integrally with the bobbin, but the bobbin alone can be extracted from the fiber package for processing. When the treatment is carried out while being wound around the bobbin, the bobbin needs to withstand the solid phase polymerization temperature, and is preferably made of a metal such as aluminum, brass, iron or stainless steel. Further, in this case, it is preferable that the bobbin has a large number of holes because the polymerization reaction by-products can be removed quickly and solid phase polymerization can be performed efficiently. Further, when the bobbin is extracted from the fiber package and processed, it is preferable to attach an outer skin to the bobbin outer layer. In any case, it is preferable that a cushion material is wound around the outer layer of the bobbin, and the liquid crystalline polyester melt-spun fiber is wound thereon. The cushion material is preferably felt made of organic fiber or metal fiber, and the thickness is preferably 0.1 mm or more and 20 mm or less. The aforementioned outer skin can be substituted with the cushion material.

該繊維パッケージの繊維重量は、生産性を考慮すると0.01kg以上、10kg以下が好ましい範囲である。なお、糸長としては1万m以上200万m以下が好ましい範囲である。   The fiber weight of the fiber package is preferably 0.01 kg or more and 10 kg or less in consideration of productivity. The yarn length is preferably in the range of 10,000 m to 2 million m.

固相重合は窒素等の不活性ガス雰囲気中や、空気のような酸素含有の活性ガス雰囲気中または減圧下で行うことが可能であるが、設備の簡素化および繊維あるいは付着物の酸化防止のため窒素雰囲気下で行うことが好ましい。この際、固相重合の雰囲気は露点が−40℃以下の低湿気体が好ましい。   Solid-phase polymerization can be carried out in an inert gas atmosphere such as nitrogen, an oxygen-containing active gas atmosphere such as air, or under reduced pressure, but it can simplify equipment and prevent oxidation of fibers or deposits. Therefore, it is preferable to carry out in a nitrogen atmosphere. At this time, the atmosphere of the solid phase polymerization is preferably a low-humidity gas having a dew point of −40 ° C. or less.

固相重合温度は、固相重合に供する液晶ポリエステル繊維の吸熱ピーク(融点)をTm1(℃)とした場合、最高到達温度がTm1−60℃以上であることが好ましい。このような融点近傍の高温とすることで固相重合が速やかに進行し、繊維の強度を向上させることができる。なお、ここで言うTm1は実施例記載の測定方法により求められた値を指す。なお最高到達温度はTm1(℃)未満とすることが融着防止のために好ましい。また固相重合の進行と共に液晶ポリエステル繊維の融点は上昇するため、固相重合温度は、固相重合に供する液晶ポリエステル繊維の融点+100℃程度まで高めることができる。なお固相重合温度を時間に対し段階的にあるいは連続的に高めることは、融着を防ぐと共に固相重合の時間効率を高めることができ、より好ましい。ただしこの場合においても固相重合での最高到達温度は熱処理後の繊維のTm1−60(℃)以上Tm1(℃)未満とすることが固相重合速度を高めかつ融着を防止できる点から好ましい。   As for the solid phase polymerization temperature, when the endothermic peak (melting point) of the liquid crystal polyester fiber to be subjected to solid phase polymerization is defined as Tm1 (° C.), it is preferable that the maximum reached temperature is Tm 1-60 ° C. or higher. By setting the temperature close to the melting point, solid phase polymerization can proceed rapidly and the strength of the fiber can be improved. In addition, Tm1 said here points out the value calculated | required by the measuring method of an Example description. It is preferable that the maximum temperature is less than Tm1 (° C.) in order to prevent fusion. Moreover, since the melting point of the liquid crystal polyester fiber increases with the progress of the solid phase polymerization, the solid phase polymerization temperature can be increased to the melting point of the liquid crystal polyester fiber subjected to the solid phase polymerization + about 100 ° C. Increasing the solid-phase polymerization temperature stepwise or continuously with respect to time is more preferable because it can prevent fusion and increase the time efficiency of solid-phase polymerization. However, also in this case, it is preferable that the maximum temperature achieved in the solid phase polymerization is Tm1-60 (° C.) or higher and less than Tm1 (° C.) of the fiber after heat treatment from the viewpoint of increasing the solid phase polymerization rate and preventing fusion. .

固相重合時間は、繊維の強度、弾性率、融点を十分に高くするためには最高到達温度で5時間以上とすることが好ましく、10時間以上がより好ましい。上限は特に制限されないが強度、弾性率、融点増加の効果は経過時間と共に飽和するため100時間程度で十分であり、生産性を高めるためには短時間が好ましく、50時間程度で十分である。   The solid phase polymerization time is preferably 5 hours or more at the maximum temperature, and more preferably 10 hours or more in order to sufficiently increase the strength, elastic modulus and melting point of the fiber. The upper limit is not particularly limited, but the effect of increasing strength, elastic modulus, and melting point is saturated with the passage of time, so about 100 hours is sufficient, and in order to increase productivity, a short time is preferable, and about 50 hours is sufficient.

固相重合後のパッケージは運搬効率を高めるために固相重合後のパッケージを再度巻き返して巻き密度を高めることが好ましい。このとき、繊維を固相重合パッケージから解舒する際には解舒による固相重合パッケージの崩れを防ぎ、さらに軽微な融着を剥がす際のフィブリル化を抑制するために固相重合パッケージを回転させながら、回転軸と垂直方向(繊維周回方向)に糸を解舒する、いわゆる横取りにより解舒することが好ましく、さらに固相重合パッケージの回転は自由回転ではなく積極駆動により回転させることがパッケージからの糸離れ張力を低減させフィブリル化をより抑制できる点で好ましい。   The package after the solid phase polymerization is preferably rewound again to increase the winding density in order to increase the transport efficiency. At this time, when unwinding the fiber from the solid-phase polymerization package, the solid-phase polymerization package is rotated to prevent collapse of the solid-phase polymerization package due to unraveling and to suppress fibrillation when peeling a slight fusion. It is preferable that the yarn is unwound by so-called pre-winding, in which the yarn is unwound in the direction perpendicular to the rotation axis (fiber wrapping direction), and the solid-phase polymerization package is not freely rotated but is rotated by positive drive. This is preferable in that the yarn separation tension from the fiber can be reduced and fibrillation can be further suppressed.

次に本発明においては固相重合を行った繊維から融着防止剤を除去する。固相重合での融着抑制に対しては融着防止剤の付着量が多いほど効果が高いものの、固相重合以降の工程や製織工程では融着防止剤が多すぎるとガイド、筬への堆積による工程通過性の悪化、堆積物の製品への混入による欠点生成などを招くため融着防止剤の付着量は必要最低限まで低下させた方が好ましい。このため固相重合前に付着させた融着防止剤を固相重合後に除去することで融着抑制、長手方向の均一性向上と工程通過性向上を両立できる。   Next, in the present invention, the anti-fusing agent is removed from the fiber subjected to solid phase polymerization. The greater the amount of adhesion of the anti-fusing agent, the higher the effect on the suppression of fusion in solid-phase polymerization, but if there is too much anti-fusing agent in the processes after solid-phase polymerization or weaving process, It is preferable to reduce the adhesion amount of the anti-fusing agent to the minimum necessary because it causes deterioration of process passability due to deposition and generation of defects due to inclusion of the deposit into the product. For this reason, it is possible to achieve both suppression of fusion, improvement of uniformity in the longitudinal direction and improvement of process passability by removing the anti-fusing agent adhered before solid-phase polymerization after solid-phase polymerization.

本発明においては固相重合を行った繊維を走行させつつ融着防止剤を除去する。走行させつつ除去することにより大量の繊維を連続かつ均一に処理できるため、繊維長手方向の除去効率が均一化できる他、前記した解舒工程と連続して処理ができるなど設備が簡素化できる。   In the present invention, the anti-fusing agent is removed while running the fiber subjected to solid phase polymerization. By removing while running, a large amount of fibers can be processed continuously and uniformly, so that the removal efficiency in the longitudinal direction of the fibers can be made uniform, and the equipment can be simplified such that it can be processed continuously with the above-described unwinding step.

本発明で言う除去とは繊維に付着している融着防止剤の付着量を減少せしめ、かつ除去した融着防止剤を再び繊維表面に堆積させないことを指す。高次・製品での融着防止剤付着量を抑制するとともに堆積させないことで、融着防止剤が繊維に再び不均一に付着して偏在的に付着量が増える欠点となることを抑制できる。   The term “removal” as used in the present invention means that the adhesion amount of the anti-fusing agent adhering to the fiber is decreased and the removed anti-fusing agent is not deposited again on the fiber surface. By suppressing the amount of adhesion of the anti-fusing agent in the higher order / product and not depositing it, it is possible to suppress the problem that the anti-fusing agent adheres to the fiber again non-uniformly and becomes a disadvantage of increasing the amount of adhesion unevenly.

除去に供する繊維は、パッケージで固相重合を行った場合には、固相重合後のパッケージをそのまま用いても良いし、固相重合後のパッケージを再度巻き返して用いても良い。固相重合後のパッケージをそのまま用いる場合には再巻き返し工程が不要なため設備が簡素化でき好適である。また再度巻き返して用いる場合には、解舒と除去工程の工程速度を調節することで除去程度の調整が容易となり設備生産性に優れる。   When the solid phase polymerization is performed with a package, the fiber to be removed may be used as it is after the solid phase polymerization, or may be used after rewinding the package after the solid phase polymerization. When the package after the solid-phase polymerization is used as it is, the rewinding step is unnecessary, which is preferable because the equipment can be simplified. In the case of rewinding and using, the removal degree can be easily adjusted by adjusting the process speed of the unwinding and removing process, and the equipment productivity is excellent.

除去方法は走行する繊維に布、紙、多孔質体などを押し当て拭き取る方法なども採用できるが、繊維に力学的な負荷を与えず除去効率を高められる点で融着防止剤が溶解または分散できる液体に繊維を接触させることが好ましい。液体との接触方法は繊維に連続的に液体を吹きかける、キスロールを用いて液体と接触させるなどの方法でも良いが、液体で満たされた浴内に繊維を走行させる方法が使用する液体量を低減でき、液体の周囲への飛散を防ぎ、かつ液体との接触時間を長くできる点で好ましい。このとき繊維は浴内を1回通過させるのみでも良いが、フリーローラー、ターンローラー、ネルソンローラーなどを用いて繊維が浴内を複数回通過できるようにすることが浴サイズを小さくでき、使用する液体量が低減できると共に接触時間を長くできる点で好ましい。また液体への界面活性剤の添加、液体の気泡あるいは超音波振動、液流の付与、液体中に浸されている繊維への振動の付与、液体中での繊維と他の物体との接触などは融着防止剤の液体への溶解あるいは分散速度を高める上で特に好ましい。なお、走行させつつ融着防止剤を除去する前に、パッケージの状態で液体を作用させる、すなわちパッケージに液体をかける、パッケージを液体が入った浴に浸漬させるなどの手法は融着防止剤の除去効率を高められる点で好ましく、さらにパッケージを液体が入った浴に浸漬させ超音波洗浄する手法は、融着防止剤の除去効率をより高められる点でさらに好ましい。   As the removal method, cloth, paper, porous material, etc. can be applied to the running fiber and wiped off. However, the anti-fusing agent dissolves or disperses in that the removal efficiency can be improved without applying a mechanical load to the fiber. It is preferred to bring the fibers into contact with the liquid that can be produced. The method of contacting the liquid may be a method of continuously spraying the liquid on the fiber or contacting the liquid using a kiss roll, but the method of running the fiber in a bath filled with liquid reduces the amount of liquid used. This is preferable in that the liquid can be prevented from being scattered and the contact time with the liquid can be increased. At this time, the fiber may be passed through the bath only once. However, using a free roller, a turn roller, a Nelson roller, etc., allowing the fiber to pass through the bath a plurality of times can reduce the bath size. This is preferable in that the amount of liquid can be reduced and the contact time can be increased. Addition of surfactant to liquid, bubble or ultrasonic vibration of liquid, application of liquid flow, application of vibration to fiber immersed in liquid, contact of fiber with other objects in liquid, etc. Is particularly preferable for increasing the dissolution or dispersion rate of the anti-fusing agent in the liquid. Before removing the anti-fusing agent while running, a method such as applying a liquid in the state of the package, that is, applying a liquid to the package or immersing the package in a bath containing the liquid is a method of the anti-fusing agent. The method of improving the removal efficiency is preferable, and the method of ultrasonic cleaning by immersing the package in a bath containing a liquid is more preferable in terms of further improving the removal efficiency of the anti-fusing agent.

除去に用いる液体は水の他、各種有機溶剤が使用でき、例としてクロロホルム、四塩化炭素、1,2−ジクロルエタン、1,2−ジクロルエチレン、1,1,2,2−テトラクロルエタン、トリクロルエチレン、二硫化炭素、アセトン、イソブチルアルコール、イソプロピルアルコール、イソペンチルアルコール、エチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテル、オルト-ジクロルベンゼン、キシレン(オルト)、キシレン(メタ)、キシレン(パラ)、クレゾール(オルト)、クレゾール(メタ)、クレゾール(パラ)、クロルベンゼン、酢酸イソブチル、酢酸イソプロピル、酢酸イソペンチル、酢酸エチル、酢酸ブチル、酢酸プロピル、酢酸ペンチル、酢酸メチル、シクロヘキサノール、シクロヘキサノン、1,4−ジオキサン、ジクロルメタン、N,N−ジメチルホルムアミド、スチレン、テトラクロルエチレン、テトラヒドロフラン、1,1,1−トリクロルエタン、トルエン、ノルマルヘキサン、1−ブタノール、2−ブタノール、プロパノール、エタノール、メタノール、メチルイソブチルケトン、メチルエチルケトン、メチルシクロヘキサノール、メチルシクロヘキサノン、メチルブチルケトン、工業ガソリン1〜5号、コールタールナフサ(ソルベントナフサ)1〜3号、石油エーテル、石油ナフサ(軽質、重質)、石油ベンジン(試薬)、テレビン油、ミネラルスピリットおよびこれらの混合物が挙げられるが、引火の可能性を無くし、環境負荷を低減するために水とすることが好ましい。   As the liquid used for removal, various organic solvents can be used in addition to water. Examples include chloroform, carbon tetrachloride, 1,2-dichloroethane, 1,2-dichloroethylene, 1,1,2,2-tetrachloroethane, Trichloroethylene, carbon disulfide, acetone, isobutyl alcohol, isopropyl alcohol, isopentyl alcohol, ethyl ether, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether, ethylene glycol monomethyl ether, ortho-dichlorobenzene , Xylene (ortho), xylene (meth), xylene (para), cresol (ortho), cresol (meth), cresol (para), chlorobenzene, isobutyl acetate, isopropyl acetate, isopentyl acetate , Ethyl acetate, butyl acetate, propyl acetate, pentyl acetate, methyl acetate, cyclohexanol, cyclohexanone, 1,4-dioxane, dichloromethane, N, N-dimethylformamide, styrene, tetrachloroethylene, tetrahydrofuran, 1,1,1 -Trichloroethane, toluene, normal hexane, 1-butanol, 2-butanol, propanol, ethanol, methanol, methyl isobutyl ketone, methyl ethyl ketone, methyl cyclohexanol, methyl cyclohexanone, methyl butyl ketone, industrial gasoline 1-5, coal tar naphtha (Solvent naphtha) Nos. 1 to 3, petroleum ether, petroleum naphtha (light and heavy), petroleum benzine (reagent), turpentine oil, mineral spirits and mixtures thereof. Eliminate the possibility of, it is preferable that the water in order to reduce the environmental impact.

また、界面活性剤は融着防止剤の種類に応じて適宜使用でき、例えばアニオン系界面活性剤として脂肪酸塩、アルファスルホ脂肪酸エステル塩、アルキルベンゼンスルホン酸塩、直鎖アルキルベンゼンスルホン酸塩、アルキル硫酸塩、アルキルエーテル硫酸エステル塩、アルキル硫酸トリエタノールアミン、アルキルリン酸エステル、ノニオン系界面活性剤として脂肪酸ジエタノールアミド、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルフェニルエーテル、ソルビタンアルキルエステル、カチオン系界面活性剤として高級アミンハロゲン酸塩、アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウムクロリド、アルキルピリジニウムクロリド、両性イオン系界面活性剤としてアルキルカルボキシベタインおよびこれらの混合体が好適に使用できる。   The surfactant can be appropriately used depending on the type of anti-fusing agent. For example, as an anionic surfactant, a fatty acid salt, an alpha sulfo fatty acid ester salt, an alkyl benzene sulfonate, a linear alkyl benzene sulfonate, an alkyl sulfate. , Alkyl ether sulfate ester salt, alkyl sulfate triethanolamine, alkyl phosphate ester, fatty acid diethanolamide as nonionic surfactant, polyoxyethylene alkyl ether, polyoxyethylene alkyl ester, polyoxyethylene alkylamine, polyoxyethylene alkyl Phenyl ethers, sorbitan alkyl esters, higher amine halogenates, alkyltrimethylammonium salts, dialkyldimethylammonium chlorides, alkylpyridines as cationic surfactants Niumukurorido, alkyl carboxy betaine and a mixture thereof can be preferably used as a zwitterionic surfactant.

液体の温度は高い方が除去効率を高められるため、液体の沸点−80℃以上が好ましく、液体の沸点−60℃以上がより好ましく、液体の沸点−40℃以上がさらに好ましい。ただし温度が高すぎる場合には液体の蒸発が著しくなるため液体の沸点−10℃以下が好ましく、沸点−20℃以下がより好ましい。   Since the higher the temperature of the liquid, the higher the removal efficiency, the boiling point of the liquid is preferably −80 ° C. or higher, the liquid boiling point −60 ° C. or higher is more preferable, and the liquid boiling point −40 ° C. or higher is more preferable. However, if the temperature is too high, the evaporation of the liquid becomes remarkable, so the boiling point of the liquid is preferably −10 ° C. or lower, more preferably the boiling point of −20 ° C. or lower.

液体との接触時間は長い方が除去効率を高められるため、0.01秒以上が好ましく、0.1秒以上がより好ましく、0.5秒以上がさらに好ましい。上限は定められるものではないが、設備を小さくするためには30秒以下程度となる。   The longer the contact time with the liquid, the higher the removal efficiency, so 0.01 seconds or more is preferable, 0.1 seconds or more is more preferable, and 0.5 seconds or more is even more preferable. Although the upper limit is not determined, it is about 30 seconds or less in order to reduce the equipment.

液体との接触長は、速度にもよるが前記した処理時間が確保できる長さとするべきであり、30cm以上が好ましく、50cm以上がより好ましく、1m以上がさらに好ましい。上限は定められるものではないが、設備を小さくするためには20m以下程度となる。   The contact length with the liquid should depend on the speed, but should be long enough to ensure the above processing time, preferably 30 cm or more, more preferably 50 cm or more, and even more preferably 1 m or more. Although the upper limit is not determined, it is about 20 m or less in order to reduce the equipment.

繊維の走行速度は単位時間当たりの処理量を高めるためには高速である方が好ましく、10m/分以上が好ましく、50m/分以上がより好ましく、100m/分以上がさらに好ましい。ただし過度に高速とした場合には繊維による随伴流で液体が飛散したり、液体との抵抗が高まり、糸切れが発生することがあるため500m/分以下が好ましい。なお繊維の走行速度が速い場合には、液体と接触させた後繊維走行方向と逆方向に空気を吹き当てる、回転ガイドなどを押し当てるなどの方法により繊維から液体を除去することが、繊維による液体の持ち出しを抑制できる点で好ましい。   The fiber traveling speed is preferably higher in order to increase the throughput per unit time, preferably 10 m / min or more, more preferably 50 m / min or more, and even more preferably 100 m / min or more. However, when the speed is excessively high, the liquid is scattered by an accompanying flow due to the fibers, resistance to the liquid is increased, and thread breakage may occur. In addition, when the running speed of the fiber is high, it is possible to remove the liquid from the fiber by a method such as blowing air in a direction opposite to the running direction of the fiber after contacting with the liquid or pressing a rotation guide. It is preferable at the point which can suppress taking out of a liquid.

除去される融着防止剤の好ましい成分は、前記した固相重合前に付着させる融着防止剤の成分と同様であり、ジメチルポリシロキサンを主体とし、これに水溶性の塩や水膨潤性のスメクタイトを添加した混合物が最も好ましい。また除去に用いる液体は水が好ましいが、ジメチルポリシロキサンは元来親油性であるにも関わらず、固相重合後の除去においては水に良く分散することは驚くべきことである。この理由は定かでないが、固相重合での高温、長時間の加熱によりジメチルポリシロキサンが分解し、低分子となることで分散性が向上したものと推測される。   Preferred components of the anti-fusing agent to be removed are the same as those of the anti-fusing agent attached before the solid phase polymerization described above, mainly composed of dimethylpolysiloxane, which contains a water-soluble salt and water-swellable. Most preferred is a mixture to which smectite is added. The liquid used for removal is preferably water, but it is surprising that dimethylpolysiloxane disperses well in water upon removal after solid-phase polymerization, despite its inherent lipophilicity. The reason for this is not clear, but it is presumed that dispersibility has been improved by decomposing dimethylpolysiloxane by low temperature heating by high temperature and long time heating in solid phase polymerization.

本発明で融着防止剤を除去した後の繊維の融着防止剤付着量は4.0重量%以下である。なお繊維への融着防止剤の付着量は実施例に記載した手法により求められる値を指す。4.0重量%以下とすることで高次加工工程での融着防止剤の堆積を軽減でき、工程通過性が向上できる。付着量は低いほどその効果は高まるため、3.0重量%以下がより好ましく、2.0重量%以下がさらに好ましい。またポリシロキサン系化合物など易滑性が高い成分を融着防止剤として用いた場合には、そのまま油剤として使用できるため、付着量はある程度多い方が好ましく、付着量は0.1重量%以上が好ましく、0.5重量%以上がより好ましい。   The amount of adhesion of the anti-fusing agent after removal of the anti-fusing agent in the present invention is 4.0% by weight or less. In addition, the adhesion amount of the anti-fusing agent to the fiber indicates a value obtained by the method described in the examples. By setting the content to 4.0% by weight or less, it is possible to reduce deposition of the anti-fusing agent in the high-order processing step, and to improve the process passability. Since the effect increases as the adhesion amount decreases, it is more preferably 3.0% by weight or less, and further preferably 2.0% by weight or less. In addition, when a highly slippery component such as a polysiloxane compound is used as an anti-fusing agent, it can be used as an oil agent as it is, so it is preferable that the amount of adhesion is large to some extent, and the amount of adhesion is 0.1% by weight or more. Preferably, 0.5% by weight or more is more preferable.

融着防止剤を除去した後に、易滑性の向上のため油剤等を塗布することは好ましい実施形態である。油剤種としては公知の成分が使用でき、例えば炭素数1〜20の一価もしくは多価アルコールのアルキレンオキサイドのブロックまたはランダム付加共重合体であるポリエーテル化合物もしくはその末端水酸基をアルキル基、脂肪酸等で封鎖したポリエーテル化合物やオレイルラウレート、オレイルオレート等の一価アルコールと一塩基性脂肪族カルボン酸のエステル、ジオクチルセバケート、ジオレイルアジペート等の一価アルコールと多価塩基性脂肪族カルボン酸のエステル、ジラウリルフタレート、トリオレイルトリメリテート等の一価アルコールと芳香族カルボン酸のエステル、エチレングリコールジオレート、トリメチロールプロパントリカプリレート、グリセリントリオレート、ビスフェノールジオレート等の多価アルコールと一塩基性脂肪族カルボン酸のエステル、またはこれらのエステルの誘導体としてラウリル(EO)nオクタノエート等のアルキレンオキサイド付加エステル、30℃で測定した粘度がレッドウッド秒で30秒以上の鉱物油例えばパラフィン類などの単独、あるいは混合使用を挙げることができる。   After removing the anti-fusing agent, it is a preferred embodiment to apply an oil or the like for improving the slipperiness. Known components can be used as the oil agent species. For example, a monohydric or polyhydric alcohol alkylene oxide block or random addition copolymer of a C1-C20 polyether compound or a terminal hydroxyl group of an alkyl group, a fatty acid, etc. Monohydric alcohol and monobasic aliphatic carboxylic acid esters such as polyether compounds, oleyl laurate, and oleyl oleate, monovalent alcohols such as dioctyl sebacate, dioleyl adipate, and polybasic aliphatic carboxylic acids Monohydric alcohols such as esters, dilauryl phthalate, trioleyl trimellitate and esters of aromatic carboxylic acids, polyhydric alcohols such as ethylene glycol diolate, trimethylolpropane tricaprylate, glycerin trioleate, bisphenol diolate Esters of basic aliphatic carboxylic acids, or alkylene oxide addition esters such as lauryl (EO) n octanoate as derivatives of these esters, mineral oils having a viscosity measured at 30 ° C. of 30 seconds or more in Redwood seconds, such as paraffins Can be used alone or in combination.

この場合、除去後の繊維の融着防止剤の付着量を測定する際に、追加した油剤等の付着量も合算されるが、最終的に繊維に付着している全てのものは、高次工程で脱落する可能性があり、同じように工程通過性を悪化させる可能性があるため、本発明においては融着防止剤の除去後に追加した油剤等の付着量も融着防止剤との合計量として算出する。すなわち本発明で言う「繊維への融着防止剤の付着量を繊維重量に対して4.0重量%以下とする」とは除去後の融着防止剤の付着量と追加した油剤等の付着量の合計を繊維重量に対して4.0重量%以下とすることを指す。なお除去後の融着防止剤の付着量と追加した油剤等の付着量の合計も実施例に記載した手法により求められる値とする。   In this case, when measuring the adhesion amount of the anti-fusing agent on the fiber after removal, the adhesion amount of the added oil or the like is also summed up, but everything that is finally adhered to the fiber is higher order. Since there is a possibility of dropping out in the process, and in the same way the process passability may be deteriorated, in the present invention, the amount of oil added after the removal of the anti-fusing agent is also the sum of the anti-fusing agent. Calculate as a quantity. That is, in the present invention, “the amount of adhesion of the anti-fusing agent to the fiber is 4.0% by weight or less” means that the amount of adhesion of the anti-fusing agent after removal and the adhesion of the added oil agent, etc. The total amount is 4.0% by weight or less based on the fiber weight. The total of the adhesion amount of the anti-fusing agent after removal and the adhesion amount of the added oil or the like is also determined by the method described in the examples.

除去工程における融着防止剤の除去率は高いほうが固相重合での融着防止と高次加工工程通過性の向上が両立できるため10%以上が好ましく、20%以上がより好ましく、30%以上がさらに好ましい。なお本発明でいう除去率とは実施例記載の方法により求められる値とする。除去率の上限は特に定められないが、ポリシロキサン系化合物など易滑性が高い成分を融着防止剤として用いた場合には、そのまま油剤として使用できるため、過度に除去する必要はなく90%程度で十分である。   The removal rate of the anti-fusing agent in the removal step is preferably 10% or more, more preferably 20% or more, more preferably 30% or more, since higher fusion removal can achieve both prevention of fusion in solid-phase polymerization and improvement in passage through higher processing steps. Is more preferable. The removal rate in the present invention is a value determined by the method described in the examples. The upper limit of the removal rate is not particularly defined, but when a highly slippery component such as a polysiloxane compound is used as an anti-fusing agent, it can be used as it is as an oil agent, so it is not necessary to remove it excessively. The degree is sufficient.

本発明で得られる液晶ポリエステル繊維のポリスチレン換算の重量平均分子量(以下、分子量と記載する)は25.0万以上150.0万以下が好ましい。25.0万以上の高い分子量を有することで固相重合は十分進行し高い強度、伸度、弾性率を有し織物性能が向上する他、特に細繊度化した際には衝撃吸収性が高まり高次工程での糸切れを抑制でき、耐摩耗性も向上する。また融点も高いため優れた耐熱性を有する。分子量は高いほどこれらの特性は向上するため、30.0万以上が好ましく、35.0万以上がより好ましい。分子量の上限は特に限定されないが、本発明で達し得る上限としては150.0万程度である。なお本発明で言う分子量とは実施例記載の方法により求められた値とする。   The polystyrene-equivalent weight average molecular weight (hereinafter referred to as molecular weight) of the liquid crystalline polyester fiber obtained in the present invention is preferably from 25 million to 1550,000. Having a high molecular weight of 255,000 or more, solid-phase polymerization is sufficiently advanced and has high strength, elongation, and elastic modulus to improve fabric performance. Thread breakage in higher-order processes can be suppressed, and wear resistance is improved. Moreover, since it has a high melting point, it has excellent heat resistance. Since these characteristics improve as the molecular weight increases, it is preferably 30 million or more, more preferably 350,000 or more. The upper limit of the molecular weight is not particularly limited, but the upper limit that can be reached in the present invention is about 1550,000. The molecular weight referred to in the present invention is a value determined by the method described in the examples.

本発明で得られる繊維は、示差熱量測定において50℃から20℃/分の昇温条件で測定した際に観測される吸熱ピーク(Tm1)における融解熱量(ΔHm1)が、Tm1の観測後、Tm1+20℃の温度で5分間保持した後、20℃/分の降温条件で50℃まで一旦冷却し、再度20℃/分の昇温条件で測定した際に観測される吸熱ピーク(Tm2)における融解熱量(ΔHm2)に対して3.0倍以上であることが好ましく、4.0倍以上がより好ましく、6.0倍以上がさらに好ましい。   In the fiber obtained by the present invention, the heat of fusion (ΔHm1) at the endothermic peak (Tm1) observed when the differential calorimetry is measured at a temperature rising condition of 50 ° C. to 20 ° C./min is Tm1 + 20 after the observation of Tm1. After holding at a temperature of 5 ° C. for 5 minutes, the mixture is once cooled to 50 ° C. under a temperature drop condition of 20 ° C./min, and then the heat of fusion at the endothermic peak (Tm2) observed when measured again under a temperature rise condition of 20 ° C./min. It is preferably 3.0 times or more with respect to (ΔHm2), more preferably 4.0 times or more, and even more preferably 6.0 times or more.

この測定法においてΔHm1は繊維の結晶化の程度(結晶化度)を表し、ΔHm2は繊維を構成する液晶ポリエステルが一度溶融し、冷却固化した後の再昇温過程で結晶化する程度を表す。ΔHm1がΔHm2に対し3.0倍以上あることで繊維の結晶化度は十分に高くなっており、高い強度、弾性率が得られる。ただし過度に結晶化度が高いと繊維の靭性が損なわれ加工性を悪化させるため、ΔHm1はΔHm2に対し15.0倍以下が好ましい。なお、本発明の液晶ポリエステル繊維においては上記した測定条件における昇温時および再昇温時の吸熱ピークは1つであるが、固相重合条件などによる構造変化によっては2つ以上のピークが観測されることがある。この場合のΔHm1は昇温過程での全ての吸熱ピークの融解熱量を合計した値とし、△Hm2は再昇温過程での全ての吸熱ピークの融解熱量を合計した値とする。   In this measurement method, ΔHm1 represents the degree of crystallization of the fiber (crystallinity), and ΔHm2 represents the degree to which the liquid crystal polyester constituting the fiber is crystallized in the process of re-heating after being once melted and cooled and solidified. When ΔHm1 is 3.0 times or more than ΔHm2, the degree of crystallinity of the fiber is sufficiently high, and high strength and elastic modulus can be obtained. However, if the crystallinity is excessively high, the toughness of the fiber is impaired and the workability is deteriorated. Therefore, ΔHm1 is preferably 15.0 times or less than ΔHm2. In the liquid crystalline polyester fiber of the present invention, there is one endothermic peak at the time of temperature increase and re-temperature increase under the above-described measurement conditions, but two or more peaks are observed depending on the structural change due to the solid phase polymerization conditions and the like. May be. In this case, ΔHm1 is a value obtained by summing the heat of fusion of all endothermic peaks in the temperature raising process, and ΔHm2 is a value obtained by summing the heat of fusion of all endothermic peaks in the reheating temperature process.

またΔHm1の絶対値は液晶ポリエステルの構成単位の組成により変化するが5.0J/g以上が好ましく、6.0J/g以上がより好ましく、7.0J/g以上がさらに好ましい。ΔHm1が大きいほど結晶化度が高く、繊維の強度、弾性率が増加、耐熱性が向上するため、織物など製品とした場合の力学特性、耐熱性を高めることができ、特に細繊度化した際の工程通過性を向上できる。ΔHm1の上限は特に限定されないが、本発明で達し得る上限としては20J/g程度である。   The absolute value of ΔHm1 varies depending on the composition of the structural unit of the liquid crystal polyester, but is preferably 5.0 J / g or more, more preferably 6.0 J / g or more, and even more preferably 7.0 J / g or more. The larger ΔHm1, the higher the degree of crystallinity, the greater the strength and elastic modulus of the fiber, and the better the heat resistance. Therefore, the mechanical properties and heat resistance of products such as textiles can be improved, especially when the fineness is reduced. The process passability can be improved. The upper limit of ΔHm1 is not particularly limited, but the upper limit that can be achieved in the present invention is about 20 J / g.

また本発明で得られる繊維はTm1におけるピーク半値幅が15℃未満であり、好ましくは13℃未満である。この測定法におけるピーク半値幅は結晶の完全性を表し、半値幅が小さいほど結晶の完全性は高いと言える。結晶の完全性が高いことで繊維の強度、弾性率が増加、耐熱性が向上し、織物など製品とした場合の力学特性、耐熱性を高めることができ、特に細繊度化した際の工程通過性を向上できる。ピーク半値幅の下限も特に限定されないが、本発明で達し得る下限としては3℃程度である。   The fiber obtained by the present invention has a peak half width at Tm1 of less than 15 ° C, preferably less than 13 ° C. The peak half width in this measurement method represents the completeness of the crystal, and it can be said that the smaller the full width at half maximum, the higher the completeness of the crystal. High crystal integrity increases fiber strength and elastic modulus, improves heat resistance, and improves mechanical properties and heat resistance when made into textiles and other products, especially through finer process steps Can be improved. The lower limit of the peak half-value width is not particularly limited, but the lower limit that can be achieved in the present invention is about 3 ° C.

また本発明で得られる繊維の融点(Tm1)は300℃以上が好ましく、310℃以上がより好ましく、320℃以上がさらに好ましい。このような高い融点を有することで耐熱性、熱寸法安定性が優れる。本発明においては溶融紡糸した繊維を固相重合することでこのような高い融点が得られる。またTm2は繊維を構成する液晶ポリエステルポリマーの融点が強く反映される。したがってTm2が高いほどポリマーの耐熱性は高く、本発明の繊維においてTm2は290℃以上が好ましく、より好ましくは310℃以上である。なお、Tm1、Tm2の上限は特に限定されないが、本発明で達し得る上限としては400℃程度である。   Further, the melting point (Tm1) of the fiber obtained in the present invention is preferably 300 ° C. or higher, more preferably 310 ° C. or higher, and further preferably 320 ° C. or higher. By having such a high melting point, heat resistance and thermal dimensional stability are excellent. In the present invention, such a high melting point can be obtained by solid-phase polymerization of melt-spun fibers. Tm2 strongly reflects the melting point of the liquid crystal polyester polymer constituting the fiber. Therefore, the higher the Tm2, the higher the heat resistance of the polymer. In the fiber of the present invention, Tm2 is preferably 290 ° C or higher, more preferably 310 ° C or higher. The upper limits of Tm1 and Tm2 are not particularly limited, but the upper limit that can be reached in the present invention is about 400 ° C.

本発明で得られる繊維の単繊維繊度は18.0dtex以下が好ましい。単繊維繊度を18.0dtex以下と細くすることで、繊維のしなやかさが向上し繊維の加工性が向上する、表面積が増加するため接着剤などの薬液との密着性が高まると言った特性を有することに加え、モノフィラメントからなる紗とする場合は厚みを薄くできる、織密度を高くできる、オープニング(開口部の面積)を広くできるという利点を持つ。単繊維繊度はより好ましくは10.0dtex以下であり、さらに好ましくは7.0dtex以下である。なお、単繊維繊度の下限は特に限定されないが、本発明で達し得る下限としては1.0dtex程度である。   The single fiber fineness of the fiber obtained in the present invention is preferably 18.0 dtex or less. By reducing the single fiber fineness to 18.0 dtex or less, the flexibility of the fiber is improved, the processability of the fiber is improved, and the surface area is increased, so that the adhesiveness with a chemical such as an adhesive is increased. In addition to having a monofilament made of monofilaments, there are advantages that the thickness can be reduced, the woven density can be increased, and the opening (area of the opening) can be widened. The single fiber fineness is more preferably 10.0 dtex or less, and even more preferably 7.0 dtex or less. The lower limit of the single fiber fineness is not particularly limited, but the lower limit that can be achieved in the present invention is about 1.0 dtex.

また本発明で得られる繊維の繊度変動率は30%以下が好ましく、より好ましくは20%以下、さらに好ましくは10%以下である。本発明で言う繊度変動率とは実施例記載の手法により測定された値を指す。繊度変動率が30%以下であることで長手方向の均一性が高まり、繊維の強力(強度と繊度の積)変動も小さくなるため、繊維製品の欠陥が減少する他、モノフィラメントの場合には直径変動が小さくなるため、紗とした際のオープニング(開口部の面積)の均一性が高まり紗の性能が向上できる。   Moreover, the fineness variation rate of the fiber obtained by the present invention is preferably 30% or less, more preferably 20% or less, and still more preferably 10% or less. The fineness fluctuation rate referred to in the present invention refers to a value measured by the method described in the examples. When the fineness variation rate is 30% or less, the uniformity in the longitudinal direction is increased, and the variation in fiber strength (product of strength and fineness) is also reduced. Since the variation is small, the uniformity of the opening (area of the opening) when the cocoon is made increases and the cocoon performance can be improved.

本発明で得られる繊維の強度は14.0cN/dtex以上が好ましく、18.0cN/dtex以上がより好ましく、20.0cN/dtex以上がさらに好ましい。また弾性率は600cN/dtex以上が好ましく、700cN/dtex以上がより好ましく、800cN/dtex以上がさらに好ましい。強度、弾性率の上限は特に限定されないが、本発明で達しえる上限としては強度30cN/dtex、弾性率1500cN/dtex程度である。なお本発明で言う強度とはJISL1013:1999記載の引張強さを指し、弾性率とは初期引張抵抗度のことを指す。強度、弾性率が高いことにより細繊度とした場合でも高い強力を発現させ得るため、繊維材料の軽量化、薄物化が達成できるほか、製織など高次加工工程での糸切れも抑制できる。   The strength of the fiber obtained by the present invention is preferably 14.0 cN / dtex or more, more preferably 18.0 cN / dtex or more, and further preferably 20.0 cN / dtex or more. The elastic modulus is preferably 600 cN / dtex or more, more preferably 700 cN / dtex or more, and still more preferably 800 cN / dtex or more. The upper limits of the strength and elastic modulus are not particularly limited, but the upper limits that can be achieved in the present invention are a strength of about 30 cN / dtex and an elastic modulus of about 1500 cN / dtex. The strength referred to in the present invention refers to the tensile strength described in JIS L1013: 1999, and the elastic modulus refers to the initial tensile resistance. High strength can be expressed even when the fineness is set due to the high strength and elastic modulus, so that the weight and thickness of the fiber material can be reduced, and yarn breakage in higher processing steps such as weaving can be suppressed.

また本発明で得られる繊維の強力変動率は20%以下が好ましく、15%以下がより好ましい。なお本発明で言う強力とはJISL1013:1999記載の引張強さの測定における切断時の強さを指し、強力変動率とは実施例記載の手法により測定された値を指す。強力変動率が20%以下であることで長手方向の均一性が高まり、繊維の強力(強度と繊度の積)変動も小さくなるため、繊維製品の欠陥が減少する他、低強度部分に起因する高次加工工程での糸切れも抑制できる。   The strength fluctuation rate of the fiber obtained in the present invention is preferably 20% or less, more preferably 15% or less. The strength referred to in the present invention refers to the strength at the time of cutting in the measurement of tensile strength described in JIS L1013: 1999, and the strength fluctuation rate refers to a value measured by the method described in the examples. When the strength variation rate is 20% or less, the uniformity in the longitudinal direction is increased, and the variation in fiber strength (the product of strength and fineness) is also reduced. It is also possible to suppress yarn breakage in the high-order processing step.

本発明で得られる繊維の伸度は2.0%以上が好ましい。伸度が2.0%以上あることで繊維の衝撃吸収性が高まり、高次加工工程での工程通過性、取り扱い性に優れる。なお、伸度の上限は特に限定されないが、本発明で達し得る上限としては10%程度である。   The elongation of the fiber obtained in the present invention is preferably 2.0% or more. When the elongation is 2.0% or more, the impact absorbability of the fiber is increased, and the process passability and the handleability in the high-order processing step are excellent. The upper limit of elongation is not particularly limited, but the upper limit that can be reached in the present invention is about 10%.

本発明で得られる繊維の繊維軸垂直方向の圧縮弾性率(以下、圧縮弾性率と記載する)は1.00GPa以下が好ましく、0.50GPa以下がより好ましく、0.35GPa以下がさらに好ましい。圧縮弾性率が低いことで高次加工工程、あるいは織機で繊維がガイドや筬に押し付けられた際にその接触面積を広げ、荷重を分散する効果が発現する。この効果により繊維への押しつけ応力は低下し耐摩耗性は向上する。圧縮弾性率の下限は特に限定されないが、0.10GPa以上であれば繊維が押しつぶされて変形することはなく製品の品位を損ねない。なお本発明で言う圧縮弾性率とは実施例記載の手法により求められた値を指す。   The compression elastic modulus in the direction perpendicular to the fiber axis (hereinafter referred to as compression elastic modulus) of the fiber obtained in the present invention is preferably 1.00 GPa or less, more preferably 0.50 GPa or less, and further preferably 0.35 GPa or less. The low compressive elastic modulus provides an effect of spreading the load by spreading the contact area when the fiber is pressed against the guide or ridge by a high-order processing step or a loom. Due to this effect, the pressing stress on the fiber is lowered and the wear resistance is improved. The lower limit of the compression modulus is not particularly limited, but if it is 0.10 GPa or more, the fiber is not crushed and deformed, and the quality of the product is not impaired. In addition, the compression elastic modulus said by this invention points out the value calculated | required by the method of an Example description.

本発明で得られる繊維は熱膨張係数が好ましくは−20〜0ppm/℃、より好ましくは−10〜0ppm/℃である。本発明で言う熱膨張係数とは実施例記載の手法により測定された値を指す。本発明の繊維は熱膨張係数が負であり、かつ−20〜0ppm/℃という低い値を取ることから熱寸法安定性が高く、回路基板用基布、回路印刷用スクリーン紗など高い位置精度が要求される用途に好適に使用できる。   The fiber obtained by the present invention preferably has a thermal expansion coefficient of -20 to 0 ppm / ° C, more preferably -10 to 0 ppm / ° C. The thermal expansion coefficient referred to in the present invention refers to a value measured by the method described in the examples. Since the fiber of the present invention has a negative coefficient of thermal expansion and takes a low value of -20 to 0 ppm / ° C., the thermal dimensional stability is high, and high positional accuracy such as a circuit board base fabric and a circuit printing screen wrinkle is obtained. It can be suitably used for required applications.

本発明で得られる繊維の複屈折率(△n)は0.250以上0.450以下が好ましく、0.300以上0.400以下がより好ましい。△nがこの範囲であれば繊維軸方向の分子配向は十分に高く、高い強度、弾性率が得られる。   The birefringence (Δn) of the fiber obtained in the present invention is preferably from 0.250 to 0.450, more preferably from 0.300 to 0.400. If Δn is within this range, the molecular orientation in the fiber axis direction is sufficiently high, and high strength and elastic modulus can be obtained.

本発明で得られる繊維は広角X線回折において繊維軸に対し赤道線方向の2θ=18〜22°に観測されるピークの半値幅(Δ2θ)が1.8°未満であることが好ましく、1.6°以下がより好ましい。Δ2θが1.8°未満と小さいことで結晶の完全性は高く、強度、弾性率が高いため工程通過性が高まる。Δ2θの下限は特に限定されないが、下限としては0.8°程度である。なお本発明で言うΔ2θとは実施例記載の手法により求められた値を指す。   The fiber obtained by the present invention preferably has a half width (Δ2θ) of a peak observed at 2θ = 18 to 22 ° in the equator direction with respect to the fiber axis in wide-angle X-ray diffraction is less than 1.8 °. More preferably, it is 6 ° or less. When Δ2θ is as small as less than 1.8 °, the completeness of the crystal is high, and the strength and elastic modulus are high, so that the process passability is enhanced. The lower limit of Δ2θ is not particularly limited, but the lower limit is about 0.8 °. In the present invention, Δ2θ refers to a value obtained by the method described in the examples.

本発明で得られる繊維の耐摩耗性は5秒以上が好ましく、10秒以上がより好ましい。本発明で言う耐摩耗性とは実施例記載の手法により測定された値を指す。耐摩耗性が5秒以上であることで液晶ポリエステル繊維の高次加工工程での擦過によるフィブリル発生が抑制でき長手方向の均一性、工程通過性が向上する。またモノフィラメントからなる紗においてはフィブリルが紗に織り込まれることによる開口部の目詰まりが抑制できる。   The abrasion resistance of the fiber obtained in the present invention is preferably 5 seconds or more, and more preferably 10 seconds or more. The abrasion resistance referred to in the present invention refers to a value measured by the method described in the examples. When the wear resistance is 5 seconds or more, the generation of fibrils due to rubbing in the high-order processing step of the liquid crystal polyester fiber can be suppressed, and the uniformity in the longitudinal direction and the process passability are improved. Moreover, in the cocoon made of monofilament, clogging of the opening due to the fibrils being woven into the cocoon can be suppressed.

本発明で得られる繊維は幅広いフィラメント数とすることができる。フィラメント数の上限は特にないが、繊維製品の薄物化、軽量化のためにはフィラメント数50以下が好ましく、20以下がより好ましい。本発明が特に適しているのはフィラメント数が1であるモノフィラメントである。モノフィラメントからなるフィルターや印刷用スクリーン紗の高性能化には織密度増加、オープニングエリアの増加が特に求められており、このためには細繊度化ならびに製織性確保のための高強度化が特に強く求められている。しかし細繊度化、高強度化だけであれば細繊度化した液晶ポリエステル繊維を固相重合すれば得ることができるが、従来技術では細繊度化に伴う固重での融着増加により欠陥が発生するため長手方向の均一性、工程通過性に劣るものであった。本発明に得られる繊維は融着防止剤により融着による欠陥を軽減すると共に、その後の除去により工程通過性も向上できるのである。   The fibers obtained in the present invention can have a wide number of filaments. The upper limit of the number of filaments is not particularly limited, but the number of filaments is preferably 50 or less, and more preferably 20 or less, in order to make the fiber product thinner and lighter. The present invention is particularly suitable for monofilaments having one filament. To improve the performance of monofilament filters and printing screens, it is particularly required to increase the weaving density and the opening area. For this purpose, the fineness and the strengthening to ensure weaving are particularly strong. It has been demanded. However, if only finer and higher strength can be obtained, it can be obtained by solid-phase polymerization of finer liquid crystalline polyester fiber. However, in the conventional technology, defects occur due to increased fusion due to solid weight accompanying finer fineness. Therefore, the uniformity in the longitudinal direction and the process passability were poor. The fibers obtained in the present invention can reduce defects due to fusion with an anti-fusing agent and can also improve process passability by subsequent removal.

本発明で得られる液晶ポリエステル繊維は、固相重合された液晶ポリエステル繊維の特徴である高強度、高弾性率、高耐熱性、高熱寸法安定性を有し、かつ長手方向の均一性、工程通過性が向上されたものであり、一般産業用資材、土木・建築資材、スポーツ用途、防護衣、ゴム補強資材、電気材料(特に、テンションメンバーとして)、音響材料、一般衣料等の分野で広く用いられる。有効な用途としては、スクリーン紗、フィルター、ロープ、ネット、魚網、コンピューターリボン、プリント基板用基布、抄紙用のカンバス、エアーバッグ、飛行船、ドーム用等の基布、ライダースーツ、釣糸、各種ライン(ヨット、パラグライダー、気球、凧糸)、ブラインドコード、網戸用支持コード、自動車や航空機内各種コード、電気製品やロボットの力伝達コード等が挙げられ、特に有効な用途として工業資材用織物等に用いるモノフィラメント、中でもフィルター用メッシュ織物や印刷用スクリーン紗が挙げられる。   The liquid crystal polyester fiber obtained in the present invention has the characteristics of solid phase polymerized liquid crystal polyester fiber, such as high strength, high elastic modulus, high heat resistance, high thermal dimensional stability, and uniformity in the longitudinal direction. Widely used in the fields of general industrial materials, civil engineering / building materials, sports applications, protective clothing, rubber reinforcement materials, electrical materials (especially as tension members), acoustic materials, general clothing, etc. It is done. Effective applications include screen kites, filters, ropes, nets, fishnets, computer ribbons, printed circuit board base fabrics, paper canvases, air bags, airships, dome base fabrics, rider suits, fishing lines, various lines (Yachts, paragliders, balloons, kites), blind cords, support cords for screen doors, various cords for automobiles and aircraft, power transmission cords for electrical products and robots, etc. Examples of the monofilament used include a mesh fabric for a filter and a screen for printing.

以下、実施例により本発明を詳細に説明するが、本発明はこれにより何ら限定されるものではない。なお、本発明の各種特性の評価は次の方法で行った。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by this. The various characteristics of the present invention were evaluated by the following methods.

(1)ポリスチレン換算の重量平均分子量(分子量)
溶媒としてペンタフルオロフェノール/クロロホルム=35/65(重量比)の混合溶媒を用い、液晶ポリエステルの濃度が0.04〜0.08重量/体積%となるように溶解させGPC測定用試料とした。なお、室温24時間の放置でも不溶物がある場合は、さらに24時間静置し、上澄み液を試料とした。これを、Waters社製GPC測定装置を用いて測定し、ポリスチレン換算により重量平均分子量(Mw)を求めた。
カラム:ShodexK−806M 2本、K−802 1本
検出器:示差屈折率検出器RI(2414型)
温度 :23±2℃
流速 :0.8mL/分
注入量:200μL
(2)液晶ポリエステル繊維のTm1、Tm1におけるピーク半値幅、ΔHm1、Tc、ΔHc、Tm2、ΔHm2、液晶ポリエステルポリマーの融点
繊維の熱分析はTA instruments社製DSC2920により示差熱量測定を行い、50℃から20℃/分の昇温条件で測定した際に観測される吸熱ピークの温度をTm1(℃)とし、Tm1におけるピーク半値幅(℃)、融解熱量(ΔHm1)(J/g)を測定した。
(1) Weight average molecular weight in terms of polystyrene (molecular weight)
A mixed solvent of pentafluorophenol / chloroform = 35/65 (weight ratio) was used as the solvent, and the solution was dissolved so that the concentration of the liquid crystal polyester was 0.04 to 0.08 weight / volume% to obtain a sample for GPC measurement. In addition, when there was an insoluble matter even after standing at room temperature for 24 hours, the mixture was left still for 24 hours, and the supernatant was used as a sample. This was measured using a GPC measuring apparatus manufactured by Waters, and the weight average molecular weight (Mw) was determined in terms of polystyrene.
Column: Two Shodex K-806M, one K-802 Detector: Differential refractive index detector RI (type 2414)
Temperature: 23 ± 2 ° C
Flow rate: 0.8 mL / min Injection volume: 200 μL
(2) Peak half-width at Tm1, Tm1 of liquid crystal polyester fiber, ΔHm1, Tc, ΔHc, Tm2, ΔHm2, melting point of liquid crystal polyester polymer Thermal analysis of the fiber was carried out by differential calorimetry with DSC2920 manufactured by TA instruments, and from 50 ° C. The temperature of the endothermic peak observed when measured under a temperature rising condition of 20 ° C./min was Tm1 (° C.), and the peak half-value width (° C.) and heat of fusion (ΔHm1) (J / g) at Tm1 were measured.

続いて、Tm1の観測後、Tm1+20℃の温度で5分間保持した後、20℃/分の降温条件で測定した際に観測される発熱ピークの温度をTc(℃)とし、Tcにおける結晶化熱量(ΔHc)(J/g)を測定した。続けて50℃まで冷却し、再度20℃/分の昇温条件で測定した際に観測される吸熱ピークをTm2とし、Tm2における融解熱量(ΔHm2)(J/g)を測定した。   Subsequently, after observing Tm1, the temperature of Tm1 + 20 ° C. is maintained for 5 minutes, and the temperature of the exothermic peak observed when measured under a temperature drop condition of 20 ° C./min is defined as Tc (° C.). (ΔHc) (J / g) was measured. Subsequently, the mixture was cooled to 50 ° C., and the endothermic peak observed when the temperature was again measured at 20 ° C./min was defined as Tm2, and the heat of fusion (ΔHm2) (J / g) at Tm2 was measured.

なお、参考例に示した液晶ポリエステルポリマーについてはTm1の観測後、Tm1+20℃の温度で5分間保持した後、20℃/分の降温条件で50℃まで一旦冷却し、再度20℃/分の昇温条件で測定した際に観測される吸熱ピークをTm2とし、Tm2をもってポリマーの融点とした。   In addition, about the liquid crystalline polyester polymer shown in the reference example, after observing Tm1, it was held at a temperature of Tm1 + 20 ° C. for 5 minutes, then cooled to 50 ° C. under a temperature decreasing condition of 20 ° C./minute, and again increased to 20 ° C./minute. The endothermic peak observed when measured under temperature conditions was defined as Tm2, and Tm2 was defined as the melting point of the polymer.

(3)単繊維繊度および繊度変動率
検尺機にて繊維を100mカセ取りし、その重量(g)を100倍し、1水準当たり10回の測定を行い平均値を繊度(dtex)とした。これをフィラメント数で除した商を単繊維繊度(dtex)とした。繊度変動率は繊度の10回の平均値からの最大もしくは最小値の差の絶対値のうち、いずれか大きい方の値を用いて下式により算出した。
繊度変動率(%)=((|最大値もしくは最小値−平均値|/平均値)×100)
(4)強度、伸度、弾性率および強力変動率
JIS L1013:1999記載の方法に準じて、試料長100mm、引張速度50mm/分の条件で、オリエンテック社製テンシロンUCT−100を用い1水準当たり10回の測定を行い、平均値を強力(cN)、強度(cN/dtex)、伸度(%)、弾性率(cN/dtex)とした。強力変動率は強力の10回の平均値からの最大もしくは最小値の差の絶対値のうち、いずれか大きい方の値を用いて下式により算出した。
強力変動率(%)=((|最大値もしくは最小値−平均値|/平均値)×100)
(5)熱膨張係数
島津製作所社製TMA−50を用い、処理加重0.03cN/dtexを繊維軸方向に与え40℃から250℃まで5℃/分の速度で昇温した際の50℃での試料長L0と100℃での試料長L1を用いて下式で計算した。
熱膨張係数(ppm/℃)=((L1−L0)/(L0×50))×10
(6)繊維軸垂直方向の圧縮弾性率(圧縮弾性率)
単繊維1本をセラミックス製等の剛性の高いステージに静置し、圧子の辺を繊維とほぼ平行とした状態で、下記条件において直径方向に圧子を用いて圧縮負荷を一定の試験速度で加え、荷重−変位曲線を得た後、次式から繊維軸垂直方向の圧縮弾性率を算出した。
(3) Single fiber fineness and fineness variation rate 100 m of fiber was removed with a measuring machine, the weight (g) was multiplied by 100, and 10 measurements per level were performed, and the average value was defined as fineness (dtex). . The quotient obtained by dividing this by the number of filaments was defined as the single fiber fineness (dtex). The fineness variation rate was calculated by the following equation using the larger one of the absolute values of the difference between the maximum value and the minimum value from the average value of 10 finenesses.
Fineness fluctuation rate (%) = ((| maximum value or minimum value−average value | / average value) × 100)
(4) Strength, elongation, elastic modulus, and strength fluctuation rate According to the method described in JIS L1013: 1999, using Tensilon UCT-100 manufactured by Orientec Co., Ltd. under the conditions of a sample length of 100 mm and a tensile speed of 50 mm / min. The measurement was performed 10 times per average, and the average value was defined as strength (cN), strength (cN / dtex), elongation (%), and elastic modulus (cN / dtex). The strength fluctuation rate was calculated by the following formula using the larger one of the absolute values of the differences between the maximum and minimum values from the average value of 10 strengths.
Strong fluctuation rate (%) = ((| maximum or minimum value−average value | / average value) × 100)
(5) Thermal expansion coefficient At 50 ° C when TMA-50 manufactured by Shimadzu Corporation was used and a processing load of 0.03 cN / dtex was applied in the fiber axis direction and the temperature was increased from 40 ° C to 250 ° C at a rate of 5 ° C / min. The sample length L0 and the sample length L1 at 100 ° C. were used for calculation according to the following formula.
Thermal expansion coefficient (ppm / ° C.) = ((L1-L0) / (L0 × 50)) × 10 6
(6) Compression modulus in the direction perpendicular to the fiber axis (compression modulus)
Place a single fiber on a highly rigid stage such as ceramic, and apply a compression load at a constant test speed using the indenter in the diameter direction under the following conditions with the side of the indenter approximately parallel to the fiber. After obtaining the load-displacement curve, the compression elastic modulus in the direction perpendicular to the fiber axis was calculated from the following equation.

なお測定に当たっては、装置系の変形量の補正を行うため試料を置かない状態で荷重−変位曲線を得て、これを直線近似して荷重に対する装置の変形量を算出し、試料を置いて荷重−変位曲線を測定した際の各々のデータ点の変位から、その荷重に対する装置の変形量を減じて試料そのものの変位を求め、これを以下の算出に用いた。   In the measurement, in order to correct the deformation amount of the device system, a load-displacement curve is obtained without placing the sample, and this is approximated by a straight line to calculate the deformation amount of the device with respect to the load. -From the displacement of each data point when the displacement curve was measured, the amount of deformation of the apparatus with respect to the load was subtracted to obtain the displacement of the sample itself, which was used for the following calculation.

算出に当たっては、荷重−変位曲線で線形性が成立する2点での荷重と変位を用いて圧縮弾性率を算出した。その低荷重側の点は荷重をかけた初期では圧子がサンプル全面にあたっていない可能性があるため、荷重約30mNの点とした。ただしここで定めた低荷重点が非線形領域内の場合には、降伏点を通過するように荷重−変位曲線に沿って低荷重側に直線を引き、その直線と変位のずれが0.1μm以内となる最小荷重の点とした。また高荷重側は荷重約100mNの点とした。なお高荷重側の点が降伏点荷重を超える場合には、低荷重側の点を通過するように荷重−変位曲線に沿って高荷重側に直線を引き、その直線との変位のずれが0.1μm以内となる最大荷重の点を高荷重側の点とした。なお下式中のlは500μmとして計算を行い、単繊維半径は試験前に光学顕微鏡を用いて試料の直径を10回測定し、これを平均して求めた平均直径を1/2にした値を用いた。また荷重−変位曲線は試料1水準について5回測定し、圧縮弾性率も5回算出し、これを平均したものを圧縮弾性率とした。   In the calculation, the compression elastic modulus was calculated using the load and displacement at two points where linearity is established in the load-displacement curve. The point on the low load side is a point where the load is about 30 mN because there is a possibility that the indenter does not hit the entire surface of the sample at the initial stage when the load is applied. However, when the low load point determined here is in the non-linear region, a straight line is drawn on the low load side along the load-displacement curve so as to pass the yield point, and the deviation between the straight line and the displacement is within 0.1 μm. The minimum load point is The high load side was a point with a load of about 100 mN. When the point on the high load side exceeds the yield point load, a straight line is drawn on the high load side along the load-displacement curve so as to pass the point on the low load side, and the displacement deviation from that line is zero. The point of maximum load within 1 μm was taken as the point on the high load side. In addition, l in the following formula is calculated as 500 μm, and the single fiber radius is a value obtained by measuring the diameter of the sample 10 times using an optical microscope before the test and halving the average diameter obtained by averaging this. Was used. Further, the load-displacement curve was measured 5 times for the sample 1 level, the compression elastic modulus was also calculated 5 times, and the average of these was taken as the compression elastic modulus.

Figure 2009235633
Figure 2009235633

装置 :Instron社製超精密材料試験機Model5848
圧子 :ダイヤモンド製平面圧子(1辺500μmの正方形)
試験速度 :50μm/分
サンプリング速度 :0.1秒
データ処理システム:Instron社製“Merlin”
測定雰囲気 :室温大気中(23±2℃、50±5%RH)
(7)広角X線回折でのピーク半値幅(Δ2θ)
繊維を4cmに切り出し、その20mgを秤量し試料とした。測定は繊維軸方向に対し赤道線方向に行い、その条件は下記とした。このとき2θ=18〜22°に観測されるピークの半値幅(Δ2θ)を測定した。
X線発生装置 :理学電気社製4036A2型
X線源 :CuKα線(Niフィルター使用)
出力 :40kV−20mA
ゴニオメーター:理学電気社製2155D型
スリット :2mmφ−1°−1°
検出器 :シンチレーションカウンター
計数記録装置 :理学電気社製RAD−C型
測定範囲 :2θ=5〜60°
ステップ :0.05°
積算時間 :2秒
(8)耐摩耗性
2.45cN/dtex(2.5g重/dtex)の荷重をかけた繊維を垂直に垂らし、繊維に対して垂直になるように直径3.8mmの硬質クロム梨地加工金属棒ガイド(湯浅糸道工業(株)製棒ガイド)を接触角2.7°で押し付け、ストローク長30mm、ストローク速度600回/分でガイドを繊維軸方向に擦過させ、実体顕微鏡観察を行い、棒ガイド上もしくは繊維表面上に白粉またはフィブリルの発生が確認されるまでの秒数を測定し、7回の測定のうち最大値および最小値を除いた5回の平均値を求め耐摩耗性とした。なお耐摩耗性評価はマルチフィラメントでも同様の試験法で行った。
Apparatus: Instron super precision material testing machine Model 5848
Indenter: Diamond flat indenter (square with a side of 500 μm)
Test speed: 50 μm / min Sampling speed: 0.1 second Data processing system: “Merlin” manufactured by Instron
Measurement atmosphere: At room temperature in air (23 ± 2 ° C., 50 ± 5% RH)
(7) Peak half-width (Δ2θ) in wide-angle X-ray diffraction
The fiber was cut into 4 cm, 20 mg of the fiber was weighed and used as a sample. The measurement was performed in the equator direction with respect to the fiber axis direction, and the conditions were as follows. At this time, the half width (Δ2θ) of the peak observed at 2θ = 18 to 22 ° was measured.
X-ray generator: Rigaku Denki 4036A2 type X-ray source: CuKα ray (using Ni filter)
Output: 40kV-20mA
Goniometer: Rigaku Denki 2155D type slit: 2mmφ-1 ° -1 °
Detector: Scintillation counter counting recording device: RAD-C type measurement range manufactured by Rigaku Corporation: 2θ = 5-60 °
Step: 0.05 °
Integration time: 2 seconds (8) Abrasion resistance A fiber loaded with a load of 2.45 cN / dtex (2.5 g weight / dtex) is hung vertically and is hard with a diameter of 3.8 mm so as to be perpendicular to the fiber. A chrome-satin-finished metal rod guide (bar guide manufactured by Yuasa Yindo Kogyo Co., Ltd.) was pressed at a contact angle of 2.7 °, and the guide was rubbed in the fiber axis direction at a stroke length of 30 mm and a stroke speed of 600 times / min. Observe and measure the number of seconds until the occurrence of white powder or fibrils is confirmed on the rod guide or on the fiber surface, and obtain the average value of 5 times excluding the maximum and minimum values from the 7 measurements. Wear resistance. The abrasion resistance was evaluated by the same test method for multifilaments.

(9)複屈折率(△n)
偏光顕微鏡(OLYMPUS社製BH−2)を用いコンペンセーター法により試料1水準当たり5回の測定を行い、平均値として求めた。
(9) Birefringence (Δn)
Using a polarizing microscope (BLY-2 manufactured by OLYMPUS), measurement was performed 5 times per one sample level by the compensator method, and the average value was obtained.

(10)融着防止剤の付着量、除去率
100mg以上の繊維を採取し、60℃にて10分間乾燥させた後の重量を測定し(W0)、繊維重量に対し100倍以上の溶媒または分散媒に繊維を浸漬させ、室温にて20分超音波洗浄し、洗浄後の繊維を水洗し、60℃にて10分間乾燥させた後の重量を測定し(W1)、次式により融着防止剤付着量を算出した。溶媒または分散媒は融着防止剤を溶液またはエマルジョンとして塗布した場合にはその溶媒または分散媒とし、それ以外の場合は水とした。また水を分散媒として用いる場合には界面活性剤としてドデシルベンゼンスルホン酸ナトリウムを繊維重量に対し2.0重量%水に添加した。
(融着防止剤付着量(重量%))=(W0−W1)×100/W1
また除去率は固相重合後、除去工程前の繊維の融着防止剤付着量(A0)ならびに除去後(油剤等を追加した場合にはその後)の繊維の融着防止剤付着量(A1)を測定し、時式より算出した。
(除去率(%))=(A0−A1)×100/A0
(11)工程通過性
直径4mmのセラミック棒ガイド(湯浅糸道工業(株)製棒ガイド:材質YM−99C、硬度1800)に接触角90°で繊維を当てながら5万mの繊維を200m/分で走行させ、ガイドへの付着物の堆積状況から工程通過性を評価した。評価基準を下記する。
(10) Adhesion amount of anti-fusing agent, removal rate 100 mg or more of fibers were collected, and the weight after drying for 10 minutes at 60 ° C. was measured (W0). Immerse the fibers in the dispersion medium, ultrasonically wash at room temperature for 20 minutes, wash the washed fibers with water, measure the weight after drying at 60 ° C. for 10 minutes (W1), and fuse according to the following formula The amount of inhibitor adhesion was calculated. The solvent or dispersion medium was the solvent or dispersion medium when the anti-fusing agent was applied as a solution or emulsion, and water otherwise. When water was used as a dispersion medium, sodium dodecylbenzenesulfonate as a surfactant was added to 2.0% by weight of water based on the fiber weight.
(Amount of adhesion preventive agent (% by weight)) = (W0−W1) × 100 / W1
Also, the removal rate is the amount of adhesion of the anti-fusing agent to the fiber (A0) before the removal step after solid-phase polymerization and the amount of adhesion of the anti-fusing agent to the fiber after removal (after adding an oil or the like) (A1). Was calculated from the time equation.
(Removal rate (%)) = (A0−A1) × 100 / A0
(11) Process passability A 50,000-meter fiber is applied to a ceramic rod guide having a diameter of 4 mm (bar guide manufactured by Yuasa Yido Michi Kogyo Co., Ltd .: material YM-99C, hardness 1800) at a contact angle of 90 ° while applying a fiber of 200,000 m / m. It was run in minutes and the process passability was evaluated from the state of deposits deposited on the guide. The evaluation criteria are as follows.

目視にてフィブリル、スカムの堆積が認められない;優良(◎)
フィブリル、スカムは認められるが繊維走行には支障なし;良好(○)
フィブリル、スカムが認められ、糸揺れや糸道変動が起こる;不合格(△)
フィブリル、スカムが堆積し、評価を中止した;不良(×)
参考例1
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸870重量部、4,4’−ジヒドロキシビフェニル327重量部、ハイドロキノン89重量部、テレフタル酸292重量部、イソフタル酸157重量部および無水酢酸1433重量部(フェノール性水酸基合計の1.08当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、330℃まで4時間で昇温した。
No fibril or scum accumulation is observed visually; Excellent (◎)
Fibrils and scum are observed, but there is no hindrance to fiber running; good (○)
Fibrils and scum are observed, causing yarn swings and yarn path fluctuations; Fail (△)
Fibrils and scum accumulated, evaluation stopped; Poor (×)
Reference example 1
In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 870 parts by weight of p-hydroxybenzoic acid, 327 parts by weight of 4,4′-dihydroxybiphenyl, 89 parts by weight of hydroquinone, 292 parts by weight of terephthalic acid, 157 parts by weight of isophthalic acid Then, 1433 parts by weight of acetic anhydride (1.08 equivalent of the total phenolic hydroxyl groups) was added, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, followed by reaction at 145 ° C. for 2 hours. Then, it heated up to 330 degreeC in 4 hours.

重合温度を330℃に保持し、1.5時間で133Paに減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。   The polymerization temperature was maintained at 330 ° C., the pressure was reduced to 133 Pa in 1.5 hours, and the reaction was continued for another 20 minutes. When the torque reached 15 kgcm, the polycondensation was completed. Next, the inside of the reaction vessel was pressurized to 0.1 MPa, the polymer was discharged to a strand through a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.

参考例2
攪拌翼、留出管を備えた5Lの反応容器に p−ヒドロキシ安息香酸907重量部と6−ヒドロキシ−2−ナフトエ酸457重量部及び無水酢酸946重量部(フェノール性水酸基合計の1.03モル当量)を攪拌翼、留出管を備えた反応容器に仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、325℃まで4時間で昇温した。
Reference example 2
In a 5 L reaction vessel equipped with a stirring blade and a distillation tube, 907 parts by weight of p-hydroxybenzoic acid, 457 parts by weight of 6-hydroxy-2-naphthoic acid, and 946 parts by weight of acetic anhydride (1.03 mol of the total phenolic hydroxyl group) Equivalent) was charged into a reaction vessel equipped with a stirring blade and a distillation tube, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, and then the reaction was carried out at 145 ° C. for 2 hours. Then, it heated up to 325 degreeC in 4 hours.

重合温度を325℃に保持し、1.5時間で133Paに減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。   The polymerization temperature was maintained at 325 ° C., the pressure was reduced to 133 Pa in 1.5 hours, and the reaction was continued for another 20 minutes. When the torque reached 15 kgcm, the polycondensation was completed. Next, the inside of the reaction vessel was pressurized to 0.1 MPa, the polymer was discharged to a strand through a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.

参考例3
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸808重量部、4,4’−ジヒドロキシビフェニル411重量部、ハイドロキノン104重量部、テレフタル酸314重量部、イソフタル酸209重量部および無水酢酸1364重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、300℃まで4時間で昇温した。
Reference example 3
In a 5 L reaction vessel equipped with a stirring blade and a distillation tube, 808 parts by weight of p-hydroxybenzoic acid, 411 parts by weight of 4,4′-dihydroxybiphenyl, 104 parts by weight of hydroquinone, 314 parts by weight of terephthalic acid, 209 parts by weight of isophthalic acid Then, 1364 parts by weight of acetic anhydride (1.10 equivalents of the total phenolic hydroxyl groups) was charged, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, followed by reaction at 145 ° C. for 2 hours. Then, it heated up to 300 degreeC in 4 hours.

重合温度を300℃に保持し、1.5時間で133Paに減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。   The polymerization temperature was maintained at 300 ° C., the pressure was reduced to 133 Pa in 1.5 hours, and the reaction was continued for another 20 minutes. When the torque reached 15 kgcm, the polycondensation was completed. Next, the inside of the reaction vessel was pressurized to 0.1 MPa, the polymer was discharged to a strand through a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.

参考例4
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸323重量部、4,4’−ジヒドロキシビフェニル436重量部、ハイドロキノン109重量部、テレフタル酸359重量部、イソフタル酸194重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、325℃まで4時間で昇温した。
Reference example 4
In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 323 parts by weight of p-hydroxybenzoic acid, 436 parts by weight of 4,4′-dihydroxybiphenyl, 109 parts by weight of hydroquinone, 359 parts by weight of terephthalic acid, 194 parts by weight of isophthalic acid Then, 1011 parts by weight of acetic anhydride (1.10 equivalents of total phenolic hydroxyl groups) was added, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, followed by reaction at 145 ° C. for 2 hours. Then, it heated up to 325 degreeC in 4 hours.

重合温度を325℃に保持し、1.5時間で133Paに減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。   The polymerization temperature was maintained at 325 ° C., the pressure was reduced to 133 Pa in 1.5 hours, and the reaction was continued for another 20 minutes. When the torque reached 15 kgcm, the polycondensation was completed. Next, the inside of the reaction vessel was pressurized to 0.1 MPa, the polymer was discharged to a strand through a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.

参考例5
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸895重量部、4,4’−ジヒドロキシビフェニル168重量部、ハイドロキノン40重量部、テレフタル酸135重量部、イソフタル酸75重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、365℃まで4時間で昇温した。
Reference Example 5
895 parts by weight of p-hydroxybenzoic acid, 168 parts by weight of 4,4′-dihydroxybiphenyl, 40 parts by weight of hydroquinone, 135 parts by weight of terephthalic acid, 75 parts by weight of isophthalic acid in a 5 L reaction vessel equipped with a stirring blade and a distillation tube Then, 1011 parts by weight of acetic anhydride (1.10 equivalents of total phenolic hydroxyl groups) was added, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, followed by reaction at 145 ° C. for 2 hours. Then, it heated up to 365 degreeC in 4 hours.

重合温度を365℃に保持し、1.5時間で133Paに減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。   The polymerization temperature was maintained at 365 ° C., the pressure was reduced to 133 Pa in 1.5 hours, the reaction was continued for another 20 minutes, and the polycondensation was completed when the torque reached 15 kgcm. Next, the inside of the reaction vessel was pressurized to 0.1 MPa, the polymer was discharged to a strand through a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.

参考例6
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸671重量部、4,4’−ジヒドロキシビフェニル235重量部、ハイドロキノン89重量部、テレフタル酸224重量部、イソフタル酸120重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、340℃まで4時間で昇温した。
Reference Example 6
In a 5 L reaction vessel equipped with a stirring blade and a distillation tube, 671 parts by weight of p-hydroxybenzoic acid, 235 parts by weight of 4,4′-dihydroxybiphenyl, 89 parts by weight of hydroquinone, 224 parts by weight of terephthalic acid, 120 parts by weight of isophthalic acid Then, 1011 parts by weight of acetic anhydride (1.10 equivalents of total phenolic hydroxyl groups) was added, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, followed by reaction at 145 ° C. for 2 hours. Then, it heated up to 340 degreeC in 4 hours.

重合温度を340℃に保持し、1.5時間で133Paに減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。   The polymerization temperature was maintained at 340 ° C., the pressure was reduced to 133 Pa in 1.5 hours, and the reaction was continued for another 20 minutes. When the torque reached 15 kgcm, the polycondensation was completed. Next, the inside of the reaction vessel was pressurized to 0.1 MPa, the polymer was discharged to a strand through a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.

参考例7
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸671重量部、4,4’−ジヒドロキシビフェニル335重量部、ハイドロキノン30重量部、テレフタル酸224重量部、イソフタル酸120重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、305℃まで4時間で昇温した。
Reference Example 7
In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 671 parts by weight of p-hydroxybenzoic acid, 335 parts by weight of 4,4′-dihydroxybiphenyl, 30 parts by weight of hydroquinone, 224 parts by weight of terephthalic acid, 120 parts by weight of isophthalic acid Then, 1011 parts by weight of acetic anhydride (1.10 equivalents of total phenolic hydroxyl groups) was added, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, followed by reaction at 145 ° C. for 2 hours. Then, it heated up to 305 degreeC in 4 hours.

重合温度を305℃に保持し、1.5時間で133Paに減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。   The polymerization temperature was maintained at 305 ° C., the pressure was reduced to 133 Pa in 1.5 hours, and the reaction was continued for another 20 minutes. When the torque reached 15 kgcm, the polycondensation was completed. Next, the inside of the reaction vessel was pressurized to 0.1 MPa, the polymer was discharged to a strand through a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.

参考例8
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸671重量部、4,4’−ジヒドロキシビフェニル268重量部、ハイドロキノン69重量部、テレフタル酸314重量部、イソフタル酸30重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、355℃まで4時間で昇温した。
Reference Example 8
In a 5 L reaction vessel equipped with a stirring blade and a distillation tube, 671 parts by weight of p-hydroxybenzoic acid, 268 parts by weight of 4,4′-dihydroxybiphenyl, 69 parts by weight of hydroquinone, 314 parts by weight of terephthalic acid, 30 parts by weight of isophthalic acid Then, 1011 parts by weight of acetic anhydride (1.10 equivalents of total phenolic hydroxyl groups) was added, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, followed by reaction at 145 ° C. for 2 hours. Then, it heated up to 355 degreeC in 4 hours.

重合温度を355℃に保持し、1.5時間で133Paに減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。   The polymerization temperature was maintained at 355 ° C., the pressure was reduced to 133 Pa in 1.5 hours, and the reaction was continued for another 20 minutes. When the torque reached 15 kgcm, the polycondensation was completed. Next, the inside of the reaction vessel was pressurized to 0.1 MPa, the polymer was discharged to a strand through a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.

参考例9
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸671重量部、4,4’−ジヒドロキシビフェニル268重量部、ハイドロキノン69重量部、テレフタル酸150重量部、イソフタル酸194重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、310℃まで4時間で昇温した。
Reference Example 9
In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 671 parts by weight of p-hydroxybenzoic acid, 268 parts by weight of 4,4′-dihydroxybiphenyl, 69 parts by weight of hydroquinone, 150 parts by weight of terephthalic acid, 194 parts by weight of isophthalic acid Then, 1011 parts by weight of acetic anhydride (1.10 equivalents of total phenolic hydroxyl groups) was added, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, followed by reaction at 145 ° C. for 2 hours. Then, it heated up to 310 degreeC in 4 hours.

重合温度を310℃に保持し、1.5時間で133Paに減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。   The polymerization temperature was maintained at 310 ° C., the pressure was reduced to 133 Pa in 1.5 hours, and the reaction was continued for another 20 minutes. When the torque reached 15 kgcm, the polycondensation was completed. Next, the inside of the reaction vessel was pressurized to 0.1 MPa, the polymer was discharged to a strand through a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.

参考例1〜9で得られた液晶性ポリエステルの特性を表1に示す。いずれの樹脂もホットステージにて窒素雰囲気下で昇温加熱し、試料の透過光を偏光下で観察したところ光学的異方性(液晶性)が確認された。なお、溶融粘度は高化式フローテスターを用い、温度を融点+10℃、剪断速度を1000/sとして測定した。   The characteristics of the liquid crystalline polyester obtained in Reference Examples 1 to 9 are shown in Table 1. Each resin was heated and heated in a nitrogen atmosphere on a hot stage, and the transmitted light of the sample was observed under polarized light. As a result, optical anisotropy (liquid crystallinity) was confirmed. The melt viscosity was measured using a Koka flow tester at a temperature of melting point + 10 ° C. and a shear rate of 1000 / s.

Figure 2009235633
Figure 2009235633

実施例1
参考例1の液晶ポリエステルを用い、160℃、12時間の真空乾燥を行った後、大阪精機工作株式会社製φ15mm単軸エクストルーダーにて(ヒーター温度290〜340℃)溶融押し出しし、ギアーポンプで計量しつつ紡糸パックにポリマーを供給した。このときのエクストルーダー出から紡糸パックまでの紡糸温度は345℃とした。紡糸パックでは金属不織布フィルター(渡辺義一製作所社製WLF−10)を用いてポリマーを濾過し、孔径0.13mm、ランド長0.26mmの孔を5個有する口金より吐出量3.0g/分(単孔あたり0.6g/分)でポリマーを吐出した。
Example 1
After vacuum drying at 160 ° C. for 12 hours using the liquid crystalline polyester of Reference Example 1, it was melt extruded with a φ15 mm single-screw extruder (heater temperature 290 to 340 ° C.) manufactured by Osaka Seiki Co., Ltd. and measured with a gear pump. However, the polymer was supplied to the spinning pack. The spinning temperature from the extruder to the spinning pack at this time was 345 ° C. In the spinning pack, the polymer is filtered using a metal nonwoven fabric filter (WLF-10 manufactured by Watanabe Yoshikazu Co., Ltd.), and the discharge rate is 3.0 g / min from a die having five holes with a hole diameter of 0.13 mm and a land length of 0.26 mm ( The polymer was discharged at a rate of 0.6 g / min per single hole.

吐出したポリマーは40mmの保温領域を通過させた後、環状冷却風により糸条の外側から冷却し固化させ、その後、ポリジメチルシロキサンを主成分とする油剤を付与し5フィラメントともに1200m/分の第1ゴデットロールに引き取った。このときの紡糸ドラフトは32である。これを同じ速度である第2ゴデットロールを介した後、5フィラメント中の4本はサクションガンにて吸引し、残り1本を、ダンサーアームを介しパーンワインダー(巻取パッケージに接触するコンタクトロール無し)を用いてパーンの形状に巻き取った。約100分の巻取時間中、糸切れは発生せず製糸性は良好であった。この紡糸繊維の物性を表2に示す。なお油分付着量は1.0重量%であった。紡糸条件、紡糸繊維物性を表2に示す。   The discharged polymer is allowed to pass through a 40 mm heat-retaining region, and then cooled and solidified from the outside of the yarn with an annular cooling air. Thereafter, an oil containing polydimethylsiloxane as a main component is applied, and all the 5 filaments are 1200 m / min. I took it to 1 godet roll. The spinning draft at this time is 32. After passing this through the second godet roll at the same speed, four of the five filaments are sucked with a suction gun, and the remaining one is a pirn winder through the dancer arm (no contact roll contacting the winding package). Was wound up into the shape of a pan. During the winding time of about 100 minutes, yarn breakage did not occur and the yarn making property was good. Table 2 shows the physical properties of the spun fiber. The oil adhesion amount was 1.0% by weight. Table 2 shows the spinning conditions and the physical properties of the spun fiber.

この紡糸繊維パッケージから繊維を縦方向(繊維周回方向に対し垂直方向)に解舒し、調速ローラーを介さず、速度を一定とした巻取機(神津製作所社製ET−68S調速巻取機)にて巻き返しを行った。なお、このときポリジメチルシロキサン(PDMS、東レ・ダウコーニング社製SH200)が5.0重量%の水エマルジョンを融着防止剤とし、巻取機前で梨地仕上げのステンレスロール(OR)を用い給油を行った。また巻き返しの心材にはステンレス製の穴あきボビンにケブラーフェルト(目付280g/m、厚み1.5mm)を巻いたものを用い、パッケージ形態はテーパー角30°のテーパーエンド巻きとし、コンタクトロールを用いず、またトラバースガイドと繊維の接点を繊維パッケージから5mmとし、ワインド数を9.0とし、テーパー幅調整機構の改造によりトラバース幅を常に揺動させるようにした。このときの巻張力、巻き返し速度、巻量、融着防止剤付着量、巻密度を表3に示す。 A winding machine (ET-68S controlled winding by Kozu Seisakusho Co., Ltd.) that unwinds fibers from the spun fiber package in the longitudinal direction (perpendicular to the fiber circulation direction) and keeps the speed constant without using a speed control roller. Machine). At this time, polydimethylsiloxane (PDMS, SH200 manufactured by Toray Dow Corning Co., Ltd.) uses 5.0% by weight water emulsion as an anti-fusing agent, and uses a stainless steel roll (OR) with a satin finish before the winder. Went. Also, the core material for rewinding is a stainless steel perforated bobbin wound with Kevlar felt (weight per unit: 280 g / m 2 , thickness 1.5 mm). The package form is a taper end winding with a taper angle of 30 °. Not used, the traverse guide and the fiber contact point were 5 mm from the fiber package, the wind number was 9.0, and the traverse width was always oscillated by modifying the taper width adjusting mechanism. Table 3 shows the winding tension, the rewinding speed, the winding amount, the adhesion amount of the anti-fusing agent, and the winding density.

これを、密閉型オーブンを用い、室温から240℃までは約30分で昇温し、240℃にて3時間保持した後、4℃/時間で最終到達温度である295℃まで昇温し、さらに295℃で15時間保持する条件にて固相重合を行った。なお雰囲気は除湿窒素を流量25NL/分にて供給し、庫内が加圧にならないよう排気口より排気させた。   Using a closed oven, the temperature was raised from room temperature to 240 ° C. in about 30 minutes, held at 240 ° C. for 3 hours, and then raised to 295 ° C., the final temperature reached at 4 ° C./hour, Furthermore, solid state polymerization was performed under the condition of maintaining at 295 ° C. for 15 hours. The atmosphere was supplied with dehumidified nitrogen at a flow rate of 25 NL / min, and exhausted from the exhaust port so that the interior was not pressurized.

得られた固相重合パッケージをインバーターモーターにより回転できる送り出し装置に取り付け、繊維を横方向(繊維周回方向)に給糸速度約200m/分で送り出しつつ、巻取機(神津製作所社製ET型調速巻取機)にて巻き取ったところ、糸切れなく全量の解舒が可能であった。この繊維をもう一度縦方向に解舒しつつ、浴長100cm(接触長100cm)の水槽に40℃の水を張り、かつ水槽内をバブリング装置(約2cmの間隔で直径約0.3mmの穴を開けた外径6mmのナイロンチューブを配し、このチューブに0.1MPaの空気を導入する)を用いてバブリングさせつつ固相重合した繊維を100m/分の速度で通過させ、ニップロールを通過させた後、連続してポリエーテル化合物を主体とする平滑剤とラウリルアルコールを主体とする乳化剤の水エマルジョン(エマルジョン濃度4重量%)を仕上げ油剤とし、巻取機前で梨地仕上げのステンレスロールを用い給油を行い、巻取機(神津製作所社製ET型調速巻取機)にて巻き取った。得られた繊維の特性(固重・解舒・洗浄後繊維物性)を表3に示すが、固相重合された液晶ポリエステル繊維の特徴である高分子量、高強度、高弾性率、高融点、高ΔHm1を持ち、繊度変動率、強力変動率がさらに小さく長手方向の均一性も優れていることが分かる。なお、この繊維のΔnは0.35であり高い配向を有しており、熱膨張係数は−7ppm/℃であり優れた熱寸法安定性を有していた。この繊維を用いて工程通過性の評価を行った結果も表3に合わせて示す。工程通過性は優良であることが分かる。   The obtained solid-state polymerization package is attached to a feeding device that can be rotated by an inverter motor, and the fiber is sent in the transverse direction (fiber circulation direction) at a yarn feeding speed of about 200 m / min. When it was wound up by a fast winder, the entire amount could be unwound without breaking the yarn. While this fiber is unwound in the longitudinal direction again, water of 40 ° C. is put in a water bath with a bath length of 100 cm (contact length of 100 cm), and a bubbling device (holes with a diameter of about 0.3 mm at intervals of about 2 cm is formed inside the water bath. An open nylon tube with an outer diameter of 6 mm was disposed, and 0.1 MPa of air was introduced into the tube, and the solid-phase polymerized fiber was allowed to pass at a speed of 100 m / min while passing through a nip roll. After that, a water emulsion (emulsion concentration: 4% by weight) of an emulsifier mainly composed of a polyether compound and an emulsifier composed mainly of a lauryl alcohol is used as a finishing oil, and lubrication is performed using a satin finish stainless steel roll before the winder. And wound up with a winder (ET type controlled winder manufactured by Kozu Seisakusho). The properties of the obtained fiber (solid weight, unraveling, fiber properties after washing) are shown in Table 3. The high molecular weight, high strength, high elastic modulus, high melting point, which are the characteristics of solid-phase polymerized liquid crystal polyester fiber, It can be seen that it has a high ΔHm1, has a fineness variation rate and a strong variation rate, and is excellent in longitudinal uniformity. In addition, Δn of this fiber was 0.35, and it had a high orientation, and its thermal expansion coefficient was −7 ppm / ° C., and it had excellent thermal dimensional stability. The results of evaluating the process passability using this fiber are also shown in Table 3. It can be seen that the process passability is excellent.

Figure 2009235633
Figure 2009235633

Figure 2009235633
Figure 2009235633

比較例1
実施例1と同様に紡糸、巻き返し、固相重合、解舒を行い、液晶ポリエステル繊維を得た。この繊維物性を表3に示す(固重・解舒・洗浄後繊維物性)。これを、洗浄を行わず工程通過性の評価を行った。結果を表3に示すが、評価中にガイドに融着防止剤に起因するスカムが堆積し約4万mの解舒を行った時点で糸切れが発生したため評価を中止した。
Comparative Example 1
Spinning, rewinding, solid phase polymerization, and unwinding were performed in the same manner as in Example 1 to obtain liquid crystal polyester fibers. The fiber properties are shown in Table 3 (solid, unraveled, washed fiber properties). This was evaluated for process passability without washing. The results are shown in Table 3, and the evaluation was stopped because yarn breakage occurred when scum caused by the anti-fusing agent was deposited on the guide during the evaluation and unwinding was performed for about 40,000 m.

このように融着防止剤の付着量が多い場合には、繊度変動率、強力変動率から分かるように繊維長手方向の均一性は高いものの、融着防止剤の堆積により工程通過性は悪いことが分かる。   In this way, when the adhesion amount of the anti-fusing agent is large, the uniformity in the longitudinal direction of the fiber is high as can be seen from the fineness fluctuation rate and the strong fluctuation rate, but the process passability is poor due to the deposition of the anti-fusing agent. I understand.

比較例2
実施例1と同様に紡糸、巻き返し、固相重合、解舒を行い、液晶ポリエステル繊維を得た。これをもう一度解舒しつつ、ナイロン製のフェルトロール(外径80mm)の下面を室温(25℃)の水が入った浴に接触させつつ、5.3rpmの回転数で回転させ表面が水で濡れるようにした洗浄ロールに接触長2cmとなるよう繊維を200m/分の速度で接触させ、ニップロールを通過させた後、実施例1と同様の手法で仕上げ油剤を付与し巻き取った。得られた繊維の特性(固重・解舒・洗浄後繊維物性)を表3に示す。この繊維を用いた工程通過性の評価結果を表3に示すが、糸切れは生じなかったものの、ガイドにはスカムが堆積し糸道は一定せず不合格であった。
Comparative Example 2
Spinning, rewinding, solid phase polymerization, and unwinding were performed in the same manner as in Example 1 to obtain liquid crystal polyester fibers. While unwinding this again, the bottom surface of the nylon felt roll (outer diameter 80 mm) is brought into contact with a bath containing water at room temperature (25 ° C.) and rotated at a rotational speed of 5.3 rpm to make the surface water. The fibers were brought into contact with the wet cleaning roll at a speed of 200 m / min so as to have a contact length of 2 cm, passed through the nip roll, and then finished oil was applied and wound up in the same manner as in Example 1. Table 3 shows the properties of the obtained fibers (solid weight, unraveling, and fiber properties after washing). Table 3 shows the evaluation results of the process passability using this fiber. Although thread breakage did not occur, scum was deposited on the guide, and the yarn path was not constant and was rejected.

このように洗浄を行った場合でも、繊維の融着防止剤付着量が多い場合には工程通過性が悪いことが分かる。   Even when washing is performed in this manner, it is understood that the process passability is poor when the adhesion amount of the fiber anti-fusing agent is large.

実施例2、3
実施例1と同様に紡糸、巻き返し、固相重合、解舒を行い、液晶ポリエステル繊維を得た。これを液温度、走行速度を表3記載の条件とすること以外は実施例1と同様の手法で洗浄、仕上げ油剤付与を行った。得られた繊維物性(固重・解舒・洗浄後繊維物性)を表3に示す。実施例1に比較して液温が高く、接触時間が長い方が除去率は高いことが分かる。これらの繊維の工程通過性評価結果も表3に記載しているが、工程通過性は優良であった。
Examples 2 and 3
Spinning, rewinding, solid phase polymerization, and unwinding were performed in the same manner as in Example 1 to obtain liquid crystal polyester fibers. Washing and finishing oil application were performed in the same manner as in Example 1 except that the liquid temperature and the traveling speed were set as described in Table 3. Table 3 shows the obtained fiber properties (solid weight, unraveling, and fiber properties after washing). It can be seen that the removal rate is higher when the liquid temperature is higher and the contact time is longer than in Example 1. Although the process passability evaluation results of these fibers are also described in Table 3, the process passability was excellent.

実施例4
実施例1と同様に紡糸、巻き返し、固相重合、解舒を行い、液晶ポリエステル繊維を得た。これを、液面に厚み2.27mm、目付215g/mのポリエステル不織布を設置し繊維を不織布の下側に通して不織布に接するようにしたこと以外は実施例1と同様の手法で洗浄、仕上げ油剤付与を行った。得られた繊維物性(固重・解舒・洗浄後繊維物性)を表3に示す。実施例1に比較して液浴内で繊維に接触する物体がある方が除去率は高いことが分かる。これらの繊維の工程通過性評価結果も表3に記載しているが、工程通過性は優良であった。
Example 4
Spinning, rewinding, solid phase polymerization, and unwinding were performed in the same manner as in Example 1 to obtain liquid crystal polyester fibers. This was washed in the same manner as in Example 1 except that a polyester non-woven fabric having a thickness of 2.27 mm and a basis weight of 215 g / m 2 was installed on the liquid surface, and the fibers were passed through the lower side of the non-woven fabric to come into contact with the non-woven fabric. A finishing oil was applied. Table 3 shows the obtained fiber properties (solid weight, unraveling, and fiber properties after washing). It can be seen that the removal rate is higher when there is an object in contact with the fiber in the liquid bath as compared with Example 1. Although the process passability evaluation results of these fibers are also described in Table 3, the process passability was excellent.

実施例5、6
実施例1と同様に紡糸、巻き返し、固相重合、解舒を行い、液晶ポリエステル繊維を得た。これを、バブリングを行わず、浴長を150cm(接触長150cm)とし、実施例4と同様に液面にポリエステル不織布を設置したこと以外は実施例1と同様に洗浄、仕上げ油剤の付与を行った。このとき実施例5では液体として水にアセトンを50体積%加えた混合体とし、実施例6では液体として水にポリオキシエチレンアルキルエーテル、脂肪酸アルカノールアミド、アルキルエーテル硫酸エステルナトリウムを含む界面活性剤(ライオン社製「ナテラ」(登録商標))を0.2体積%加えた混合体とした。また液温、走行速度はそれぞれ表3記載の条件とした。
Examples 5 and 6
Spinning, rewinding, solid phase polymerization, and unwinding were performed in the same manner as in Example 1 to obtain liquid crystal polyester fibers. This was performed without bubbling, with a bath length of 150 cm (contact length 150 cm), and in the same manner as in Example 4 except that a polyester nonwoven fabric was placed on the liquid surface, and washing and applying a finishing oil was performed. It was. At this time, in Example 5, a mixture of 50% by volume of acetone as water was added as a liquid, and in Example 6, a surfactant (polyoxyethylene alkyl ether, fatty acid alkanolamide, sodium alkyl ether sulfate ester in water as liquid) It was set as the mixture which added 0.2 volume% of "Natera" (trademark) made from Lion Corporation. The liquid temperature and running speed were the conditions shown in Table 3, respectively.

得られた繊維の物性を表3に記載しているが、走行速度を早くした場合でも洗浄条件を調整することで比較例2に比べて除去率は向上していることが分かる。これらの繊維の工程通過性評価結果も表3に記載しているが、実施例5では工程通過性は優良、実施例6ではスカムは発生するものの繊維走行には支障は見られず工程通過性は良好であった。   The physical properties of the obtained fibers are shown in Table 3. It can be seen that the removal rate is improved as compared with Comparative Example 2 by adjusting the washing conditions even when the traveling speed is increased. The process passability evaluation results of these fibers are also shown in Table 3. In Example 5, the process passability is excellent, and in Example 6, although scum is generated, there is no hindrance to the fiber running and the process passability is observed. Was good.

実施例7
実施例1と同様に紡糸、巻き返し、固相重合、解舒を行い、液晶ポリエステル繊維を得た。これを浴長100cmの水槽を用い水槽外に外径30mmのフリーローラーを配し、繊維がフリーローラーを経由し浴槽内を合計3回通過(接触長300cm)させるようにし、実施例6で用いた水と界面活性剤の混合体を用いて、液温、処理速度を表3記載の条件として洗浄を行った。また洗浄の後、引き続き実施例1と同様の手法で仕上げ油剤の付与を行った。
Example 7
Spinning, rewinding, solid phase polymerization, and unwinding were performed in the same manner as in Example 1 to obtain liquid crystal polyester fibers. Using a water tank with a bath length of 100 cm, a free roller with an outer diameter of 30 mm is arranged outside the water tank, and the fiber passes through the free roller through the bathtub three times in total (contact length 300 cm). Washing was performed using a mixture of water and a surfactant, with the liquid temperature and the treatment speed as shown in Table 3. Further, after the washing, the finishing oil was applied in the same manner as in Example 1.

得られた繊維の物性を表3に記載しているが、走行速度を早くした場合でも洗浄条件を調整することで比較例2に比べて除去率は大きく向上していることが分かる。これらの繊維の工程通過性評価結果も表3に記載しているが工程通過性は優良であった。   Although the physical properties of the obtained fiber are described in Table 3, it can be seen that the removal rate is greatly improved by adjusting the cleaning conditions even when the traveling speed is increased. The process passability evaluation results of these fibers are also shown in Table 3, but the process passability was excellent.

実施例8、9
吐出量、口金孔数を表2記載の条件とすること以外は実施例1と同様の条件で紡糸を行い、紡糸したフィラメントを全てまとめて巻き取りマルチフィラメントを得た。得られた繊維の物性を表2に示す。これを、巻量を6万mとしワインド数を12.1とすること以外は実施例1と同様の方法で巻き返しを行った。この際の巻張力、融着防止剤付着量、巻密度を表3に示す。これを実施例1と同様の方法で固相重合、解舒を行った。
Examples 8 and 9
Spinning was performed under the same conditions as in Example 1 except that the discharge amount and the number of nozzle holes were set as shown in Table 2, and all the spun filaments were collected to obtain a multifilament. Table 2 shows the physical properties of the obtained fiber. This was rewound by the same method as in Example 1 except that the winding amount was 60,000 m and the wind number was 12.1. Table 3 shows the winding tension, adhesion amount of the anti-fusing agent, and winding density. This was subjected to solid phase polymerization and unwinding in the same manner as in Example 1.

次に、解舒後のパッケージ全体を、40℃の温水に界面活性剤(ライオン社製「ナテラ」(登録商標))を0.05体積%加えた溶液で満たされた超音波洗浄機に浸し、15分の超音波洗浄を6回行った。その後、パッケージを乾燥させない状態で繊維を解舒しつつ、実施例1と同様の方法で洗浄、仕上げ油剤付与を行った。   Next, the entire package after unraveling is immersed in an ultrasonic cleaner filled with 0.05% by volume of a surfactant (“Natera” (registered trademark) manufactured by Lion Corporation) in 40 ° C. warm water. , Ultrasonic cleaning for 15 minutes was performed 6 times. Thereafter, the fibers were unwound in a state where the package was not dried, and washing and finishing oil application were performed in the same manner as in Example 1.

得られた繊維の物性、工程通過性評価結果を表3に記載しているが、マルチフィラメントの場合でも洗浄により融着防止剤は除去でき、工程通過性は優良であることが分かる。   Although the physical properties of the obtained fibers and the process passability evaluation results are listed in Table 3, it can be seen that the anti-fusing agent can be removed by washing even in the case of multifilaments and the process passability is excellent.

実施例10、11
吐出量、口金孔径、ランド長、紡糸速度を表2記載の条件とすること以外は実施例1と同様の条件で紡糸を行った。得られた繊維の物性を表2に示す。これを、巻量を6万mとすること以外は実施例1と同様の方法で巻き返しを行った。この際の巻張力、融着防止剤付着量、巻密度を表4に示す。これを実施例1と同様の方法で固重、解舒、洗浄、仕上げ油剤付与を行った。
Examples 10 and 11
Spinning was performed under the same conditions as in Example 1 except that the discharge amount, the nozzle hole diameter, the land length, and the spinning speed were set as shown in Table 2. Table 2 shows the physical properties of the obtained fiber. This was rewound by the same method as in Example 1 except that the winding amount was 60,000 m. Table 4 shows the winding tension, adhesion amount of the anti-fusing agent, and winding density at this time. This was subjected to solid weight, unraveling, washing, and finishing oil application in the same manner as in Example 1.

得られた繊維の物性、工程通過性評価結果を表4に記載しているが、単繊維繊度が異なっていても洗浄により融着防止剤は除去でき、工程通過性は優良であることが分かる。   Although the physical properties of the obtained fibers and the process passability evaluation results are listed in Table 4, it can be seen that the anti-fusing agent can be removed by washing even if the single fiber fineness is different, and the process passability is excellent. .

Figure 2009235633
Figure 2009235633

実施例12
吐出量、口金孔径、ランド長を表2記載の条件とすること以外は実施例1と同様の条件で紡糸を行った。このとき口金下に100mmの加熱筒(保温領域100mm)を設け、この温度を200℃とした。紡糸開始時に糸切れが発生したが、再度糸掛けを行ったところ約100分間の巻き取りが可能であった。得られた繊維の物性を表2に示す。これを、巻量を6万m、ワインド数を4.5とすること以外は実施例1と同様の方法で巻き返しを行った。この際の巻張力、融着防止剤付着量、巻密度を表4に示す。これを実施例1と同様の方法で固重、解舒、洗浄、仕上げ油剤付与を行った。なお解舒の際に糸切れが1度発生した。
Example 12
Spinning was performed under the same conditions as in Example 1 except that the discharge amount, the nozzle hole diameter, and the land length were set as shown in Table 2. At this time, a 100 mm heating cylinder (insulating region 100 mm) was provided under the base, and this temperature was set to 200 ° C. Although thread breakage occurred at the start of spinning, when threading was performed again, winding for about 100 minutes was possible. Table 2 shows the physical properties of the obtained fiber. This was rewound by the same method as in Example 1 except that the winding amount was 60,000 m and the wind number was 4.5. Table 4 shows the winding tension, adhesion amount of the anti-fusing agent, and winding density at this time. This was subjected to solid weight, unraveling, washing, and finishing oil application in the same manner as in Example 1. The yarn breakage occurred once during unwinding.

得られた繊維の物性、工程通過性評価結果を表4に記載しているが、単繊維繊度が小さくとも洗浄により融着防止剤は除去でき、工程通過性は優良であることが分かる。   Although the physical properties and process passability evaluation results of the obtained fibers are shown in Table 4, it can be seen that the anti-fusing agent can be removed by washing even if the single fiber fineness is small, and the process passability is excellent.

実施例13
吐出量、口金孔数、紡糸速度を表2記載の条件とすること以外は実施例12と同様の条件で紡糸を行った。紡糸開始時に糸切れが発生したが、再度糸掛けを行ったところ約100分間の巻き取りが可能であった。得られた繊維の物性を表2に示す。これを融着防止剤としてポリジメチルシロキサン(PDMS、東レ・ダウコーニング社製SH200)が4.0重量%、親水性スメクタイト(コープケミカル社製「ルーセンタイト(登録商標)SWN」)が0.2重量%の水エマルジョンを用いること以外は実施例12と同様の方法で巻き返しを行った。この際の巻張力、融着防止剤付着量、巻密度を表4に示す。これを実施例1と同様の方法で固重、解舒を行った。なお解舒の際に糸切れが1度発生したため、解舒速度を50m/分としたところ、その後糸切れは発生しなかった。その後、実施例8、9と同様の手法で洗浄、仕上げ油剤付与を行った。
Example 13
Spinning was performed under the same conditions as in Example 12 except that the discharge amount, the number of nozzle holes, and the spinning speed were set as shown in Table 2. Although thread breakage occurred at the start of spinning, when threading was performed again, winding for about 100 minutes was possible. Table 2 shows the physical properties of the obtained fiber. Using this as an anti-fusing agent, polydimethylsiloxane (PDMS, SH200 manufactured by Toray Dow Corning) is 4.0% by weight, and hydrophilic smectite (“Lucentite (registered trademark) SWN” manufactured by Co-op Chemical) is 0.2%. Rewinding was performed in the same manner as in Example 12 except that a water% water emulsion was used. Table 4 shows the winding tension, adhesion amount of the anti-fusing agent, and winding density at this time. This was solidified and unwound in the same manner as in Example 1. Since the yarn breakage occurred once during the unwinding, the yarn breakage did not occur after the unwinding speed of 50 m / min. Thereafter, washing and finishing oil application were performed in the same manner as in Examples 8 and 9.

得られた繊維の物性、工程通過性評価結果を表4に記載しているが、単糸繊度が2.5dtexの細繊度であっても洗浄により融着防止剤は除去でき、工程通過性は良好であることが分かる。   Although the physical properties of the obtained fibers and the process passability evaluation results are listed in Table 4, even when the single yarn fineness is 2.5 dtex, the anti-fusing agent can be removed by washing, and the process passability is It turns out that it is favorable.

実施例14〜21
参考例2〜9の樹脂を用い、紡糸温度を表5記載の条件とすること以外は実施例10と同様の方法で紡糸を行った。参考例5の樹脂を用いた実施例17では紡糸開始時に糸切れが発生したが、再度糸掛けを行ったところ約100分間の巻き取りが可能であった。得られた繊維の物性を表5に示す。これを実施例10と同様の方法で巻き返した。この際の巻張力、融着防止剤付着量、巻密度を表4に示す。これを固相重合の最終到達温度を表4記載の条件とすること以外は実施例1と同様の手法で固相重合を行った。これを実施例1と同様の手法で解舒、洗浄、仕上げ油剤付与を行った。
Examples 14-21
Spinning was carried out in the same manner as in Example 10 except that the resins of Reference Examples 2 to 9 were used and the spinning temperature was set as shown in Table 5. In Example 17 using the resin of Reference Example 5, yarn breakage occurred at the start of spinning, but when threading was performed again, winding for about 100 minutes was possible. Table 5 shows the physical properties of the obtained fiber. This was wound up in the same manner as in Example 10. Table 4 shows the winding tension, adhesion amount of the anti-fusing agent, and winding density at this time. Solid phase polymerization was carried out in the same manner as in Example 1 except that the final ultimate temperature of solid phase polymerization was set as described in Table 4. This was unwound, washed and applied with a finishing oil in the same manner as in Example 1.

得られた繊維の物性、工程通過性評価結果を表4に記載しているが、樹脂組成が異なっていても洗浄により融着防止剤は除去でき、工程通過性は優良もしくは良好であることが分かる。   Although the physical properties of the obtained fibers and the process passability evaluation results are described in Table 4, the anti-fusing agent can be removed by washing even if the resin composition is different, and the process passability is excellent or good. I understand.

Figure 2009235633
Figure 2009235633

Claims (5)

液晶ポリエステル繊維に融着防止剤を付着させて固相重合した後、固相重合された液晶ポリエステル繊維を走行させつつ融着防止剤を除去し、繊維への融着防止剤の付着量を繊維重量に対して4.0重量%以下とすることを特徴とする液晶ポリエステル繊維の製造方法。   After the solid phase polymerization is performed by attaching an anti-fusing agent to the liquid crystal polyester fiber, the anti-fusing agent is removed while the solid phase polymerized liquid crystal polyester fiber is running, and the amount of adhesion of the anti-fusing agent to the fiber is reduced. The manufacturing method of the liquid-crystal polyester fiber characterized by being 4.0 weight% or less with respect to a weight. 融着防止剤の除去率を10%以上としたことを特徴とする請求項1記載の液晶ポリエステル繊維の製造方法。   2. The method for producing a liquid crystal polyester fiber according to claim 1, wherein the removal rate of the anti-fusing agent is 10% or more. 融着防止剤を溶解または分散できる液体に繊維を接触させて融着防止剤を除去することを特徴とする請求項1または2記載の液晶ポリエステル繊維の製造方法。   3. The method for producing a liquid crystalline polyester fiber according to claim 1, wherein the fiber is brought into contact with a liquid capable of dissolving or dispersing the anti-fusing agent to remove the anti-fusing agent. 液体が水であることを特徴とする請求項3記載の液晶ポリエステル繊維の製造方法。   4. The method for producing a liquid crystal polyester fiber according to claim 3, wherein the liquid is water. 液晶ポリエステル繊維がモノフィラメントであることを特徴とする請求項1〜4のいずれか1項記載の液晶ポリエステル繊維の製造方法。   The method for producing a liquid crystal polyester fiber according to any one of claims 1 to 4, wherein the liquid crystal polyester fiber is a monofilament.
JP2008085269A 2008-03-28 2008-03-28 Method for producing liquid crystal polyester fiber Expired - Fee Related JP5298597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008085269A JP5298597B2 (en) 2008-03-28 2008-03-28 Method for producing liquid crystal polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008085269A JP5298597B2 (en) 2008-03-28 2008-03-28 Method for producing liquid crystal polyester fiber

Publications (2)

Publication Number Publication Date
JP2009235633A true JP2009235633A (en) 2009-10-15
JP5298597B2 JP5298597B2 (en) 2013-09-25

Family

ID=41249926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008085269A Expired - Fee Related JP5298597B2 (en) 2008-03-28 2008-03-28 Method for producing liquid crystal polyester fiber

Country Status (1)

Country Link
JP (1) JP5298597B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132851A1 (en) * 2011-03-29 2012-10-04 東レ株式会社 Liquid crystal polyester fibers and method for producing same
JP2012214949A (en) * 2011-03-29 2012-11-08 Toray Ind Inc Liquid crystal polyester fiber and method for producing the same
WO2013099863A1 (en) * 2011-12-27 2013-07-04 東レ株式会社 Liquid-crystalline polyester multifilament
JP2013136860A (en) * 2011-03-30 2013-07-11 Toray Ind Inc Liquid crystal polyester fiber and manufacturing method thereof
JP2016191179A (en) * 2015-03-31 2016-11-10 東レ株式会社 Liquid crystal polyester multifilament

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296185A (en) * 1985-06-20 1986-12-26 住友化学工業株式会社 Production of aromatic polyester fiber
JPS62149934A (en) * 1985-09-24 1987-07-03 帝人株式会社 Production of thermoplastic synthetic fiber
JP2005002517A (en) * 2003-06-13 2005-01-06 Teijin Techno Products Ltd Method for producing thermoplastic synthetic fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296185A (en) * 1985-06-20 1986-12-26 住友化学工業株式会社 Production of aromatic polyester fiber
JPS62149934A (en) * 1985-09-24 1987-07-03 帝人株式会社 Production of thermoplastic synthetic fiber
JP2005002517A (en) * 2003-06-13 2005-01-06 Teijin Techno Products Ltd Method for producing thermoplastic synthetic fiber

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132851A1 (en) * 2011-03-29 2012-10-04 東レ株式会社 Liquid crystal polyester fibers and method for producing same
JP2012214949A (en) * 2011-03-29 2012-11-08 Toray Ind Inc Liquid crystal polyester fiber and method for producing the same
CN103459684A (en) * 2011-03-29 2013-12-18 东丽株式会社 Liquid crystal polyester fibers and method for producing same
US10584429B2 (en) 2011-03-29 2020-03-10 Toray Industries, Inc. Method of producing liquid crystal polyester fibers
JP2013136860A (en) * 2011-03-30 2013-07-11 Toray Ind Inc Liquid crystal polyester fiber and manufacturing method thereof
WO2013099863A1 (en) * 2011-12-27 2013-07-04 東レ株式会社 Liquid-crystalline polyester multifilament
CN104024495A (en) * 2011-12-27 2014-09-03 东丽株式会社 Liquid-crystalline polyester multifilament
US20150004409A1 (en) * 2011-12-27 2015-01-01 Toray Industries, Inc. Liquid-crystalline polyester multifilament
JPWO2013099863A1 (en) * 2011-12-27 2015-05-07 東レ株式会社 Liquid crystalline polyester multifilament
JP2016191179A (en) * 2015-03-31 2016-11-10 東レ株式会社 Liquid crystal polyester multifilament

Also Published As

Publication number Publication date
JP5298597B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
KR101310008B1 (en) Liquid crystal polyester fibers and method for producing the same
TWI440748B (en) Liquid crystal polyester fiber and its manufacturing method
KR101647414B1 (en) Liquid crystal polyester fibers and method for producing same
JP5286827B2 (en) Liquid crystal polyester fiber
JP5098693B2 (en) Liquid crystal polyester fiber
JP5327109B2 (en) Liquid crystalline polyester fiber and winding package
JP6183210B2 (en) Liquid crystalline polyester multifilament
TWI655328B (en) Liquid crystal polyester fiber and manufacturing method thereof
JP5470930B2 (en) Method for producing liquid crystal polyester fiber
JP4983689B2 (en) Method for producing liquid crystal polyester fiber
JP5428271B2 (en) Method for producing liquid crystal polyester fiber
JP5298597B2 (en) Method for producing liquid crystal polyester fiber
JP2008214842A (en) Method for producing liquid crystal polyester fiber
JP5239439B2 (en) Liquid crystal polyester fiber and method for producing the same
JP6040549B2 (en) Liquid crystal polyester fiber and method for producing the same
JP5239454B2 (en) Liquid crystal polyester fiber and method for producing the same
JP2016089308A (en) Manufacturing method of liquid crystal polyester fiber
JP5115471B2 (en) Liquid crystalline polyester fiber and method for producing the same
JP2014167174A (en) Liquid crystal polyester fiber and production method thereof
JP5915227B2 (en) Liquid crystal polyester fiber and method for producing the same
JP2018003219A (en) Manufacturing method of liquid crystal polyester fiber
JP2019157331A (en) Manufacturing method of liquid crystalline polyester monofilament
JP2016089285A (en) Manufacturing method of liquid crystal polyester fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R151 Written notification of patent or utility model registration

Ref document number: 5298597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees