JP6040549B2 - Liquid crystal polyester fiber and method for producing the same - Google Patents

Liquid crystal polyester fiber and method for producing the same Download PDF

Info

Publication number
JP6040549B2
JP6040549B2 JP2012073779A JP2012073779A JP6040549B2 JP 6040549 B2 JP6040549 B2 JP 6040549B2 JP 2012073779 A JP2012073779 A JP 2012073779A JP 2012073779 A JP2012073779 A JP 2012073779A JP 6040549 B2 JP6040549 B2 JP 6040549B2
Authority
JP
Japan
Prior art keywords
fiber
liquid crystal
crystal polyester
phase polymerization
polyester fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012073779A
Other languages
Japanese (ja)
Other versions
JP2013136860A (en
Inventor
義嗣 船津
義嗣 船津
千絵子 川俣
千絵子 川俣
勇将 小野
勇将 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48912783&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6040549(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2012073779A priority Critical patent/JP6040549B2/en
Publication of JP2013136860A publication Critical patent/JP2013136860A/en
Application granted granted Critical
Publication of JP6040549B2 publication Critical patent/JP6040549B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は高強度、高弾性率であり、かつ、工程通過性に優れる液晶ポリエステル繊維およびその製造方法に関するものである。   The present invention relates to a liquid crystal polyester fiber having a high strength and a high elastic modulus and excellent in process passability and a method for producing the same.

液晶ポリエステルは剛直な分子鎖からなるポリマーであり、溶融紡糸においてはその分子鎖を繊維軸方向に高度に配向させ、さらに熱処理(固相重合)を施すことにより溶融紡糸で得られる繊維の中では最も高い強度、弾性率が得られることが知られている。また液晶ポリエステルは固相重合により分子量が増加し、融点が上昇するため耐熱性、寸法安定性が向上することも知られている(例えば、非特許文献1参照)。このように液晶ポリエステル繊維においては固相重合を施すことにより高強度、高弾性率、優れた耐熱性、熱寸法安定性が発現する。ここで、固相重合反応は一般に融点近傍の高温下で行われており、このため糸同士の融着が起こりやすく、融着に起因した糸の物性低下およびフィブリル化を防ぐ目的で固相重合油剤を付与することが液晶ポリエステル繊維の製造において重要な技術のポイントである。   Liquid crystalline polyester is a polymer composed of rigid molecular chains. In melt spinning, the molecular chains are highly oriented in the fiber axis direction, and further subjected to heat treatment (solid phase polymerization). It is known that the highest strength and elastic modulus can be obtained. It is also known that liquid crystalline polyesters have increased molecular weight due to solid phase polymerization and increased melting point, so that heat resistance and dimensional stability are improved (for example, see Non-Patent Document 1). Thus, liquid crystal polyester fibers exhibit high strength, high elastic modulus, excellent heat resistance, and thermal dimensional stability by solid phase polymerization. Here, the solid-phase polymerization reaction is generally performed at a high temperature near the melting point, and therefore, the yarns tend to be fused with each other, and solid-phase polymerization is performed for the purpose of preventing deterioration of the physical properties of the yarn due to the fusion and fibrillation. Giving an oil is an important technical point in the production of liquid crystal polyester fibers.

一方で、固相重合油剤は固相重合後に繊維表面に残存することで繊維の後加工工程、たとえば製織工程において、ガイドやローラー、張力付与装置へ堆積し、スカムと呼ばれる屑が発生し、このスカムが製品へ混入することで製品不良の原因、あるいは張力変動の増大による糸切れ原因となるため、固相重合後に固相重合油剤を洗浄除去することも液晶ポリエステル繊維の製造において重要な技術のポイントである。   On the other hand, the solid-phase polymerization oil agent remains on the fiber surface after the solid-phase polymerization, so that it accumulates on a guide, a roller, and a tension applying device in a post-processing step of the fiber, for example, a weaving step, and scraps called scum are generated. Mixing scum into the product may cause product defects or cause thread breakage due to increased tension fluctuations, so washing and removing solid-phase polymerized oil after solid-phase polymerization is also an important technology in the production of liquid crystal polyester fibers. It is a point.

この固相重合油剤としては、これまでにフッ素系やシリコーン系の耐熱性の有機化合物が適用されており、例えば水エマルジョン化が容易で繊維表面に塗布しやすく、かつ高温下での耐熱性を有するポリジメチルシロキサンの利用が提案されている(特許文献1、2)。すなわち、特許文献1、2によれば、液晶ポリエステル繊維の固相重合油剤としては耐熱性の高いポリジメチルシロキサンを付与し、固相重合後に洗浄−熱処理を行い、油分付着量の極めて低い液晶ポリエステル繊維を得ている。   As the solid-phase polymerization oil agent, a fluorine-based or silicone-based heat-resistant organic compound has been applied so far. For example, it can be easily formed into a water emulsion, easily applied to the fiber surface, and has high heat resistance at high temperatures. The use of polydimethylsiloxane has been proposed (Patent Documents 1 and 2). That is, according to Patent Documents 1 and 2, as a solid phase polymerization oil agent for liquid crystal polyester fiber, polydimethylsiloxane having high heat resistance is given, and after washing and heat treatment after solid phase polymerization, a liquid crystal polyester having a very low oil adhesion amount. I'm getting fiber.

また、固相重合油剤として有機化合物を使用せず、耐熱性の無機粒子を利用する技術も知られている(特許文献3、4)。   In addition, a technique using heat-resistant inorganic particles without using an organic compound as a solid-phase polymerization oil agent is also known (Patent Documents 3 and 4).

特開2010−209495号公報(第6、7頁)JP 2010-209495 A (pages 6 and 7) 特開2010−248681号公報(第11頁)JP 2010-248681 A (page 11) 特開2006−336147号公報(第6頁)JP 2006-336147 A (page 6) 特開2011−168930号公報(第2、8頁)JP2011-168930A (pages 2 and 8)

技術情報協会編、「液晶ポリマーの改質と最新応用技術」(2006)(第235頁〜第256頁)Edited by Technical Information Association, “Modification of liquid crystal polymer and latest applied technology” (2006) (pages 235-256)

上記特許文献1、2記載の製法において使用されているポリジメチルシロキサンは固相重合条件下でポリジメチルシロキサン同士の架橋反応によりゲル化を起すことでゲル化物が繊維表面に強固に付着するため、界面活性剤による洗浄の他、超音波洗浄などの力学的洗浄を加えたとしても繊維上に残存することが明らかになった。すなわち、上記文献中での油分付着量は洗浄前の糸重量(W)および超音波洗浄後の糸重量(W)から、次式により算出しているが、超音波洗浄時にゲル化物は完全には脱落しないため、固相重合油剤の付着量は計算上低い値であるものの、油分付着量として測定できない固相重合油剤のゲル化物が繊維上に固着して残存していることがわかった。 Since the polydimethylsiloxane used in the production methods described in Patent Documents 1 and 2 is gelated by the cross-linking reaction between polydimethylsiloxanes under solid-state polymerization conditions, the gelled product adheres firmly to the fiber surface. It became clear that even if mechanical cleaning such as ultrasonic cleaning was added in addition to cleaning with a surfactant, it remained on the fiber. That is, the oil adhesion amount in the above document is calculated from the weight of the yarn before washing (W 0 ) and the weight of the yarn after ultrasonic washing (W 1 ) by the following formula. Although it does not fall off completely, the amount of solid-phase polymerized oil attached is low in the calculation, but it can be seen that the gelled solid-phase polymerized oil that cannot be measured as the amount of oil adhered remains on the fiber. It was.

油分付着量(wt%)=(W−W)×100/W
このため、特許文献1、2の製法によれば固相重合後の洗浄工程で洗浄を強化することで油分付着量としては極めて低い糸が得られており、実施例において液晶ポリエステル繊維を緯糸として打ち込む少量製織工程ではスカムの発生や製品混入の抑制効果が確認されてはいるもののスカムは微量発生しており、拡大評価を行った際にガイド、張力付与装置などへのゲル化物の堆積による経時の張力変動の増大が発生し、糸切れやスカムの製品混入が発生することが明らかになった。
Oil adhesion amount (wt%) = (W 0 −W 1 ) × 100 / W 1
For this reason, according to the production methods of Patent Documents 1 and 2, a yarn having an extremely low oil adhesion amount is obtained by strengthening washing in the washing step after solid phase polymerization. In the examples, liquid crystal polyester fibers are used as weft yarns. Although a small amount of weaving process has been confirmed to suppress the generation of scum and product contamination, a small amount of scum has been generated. It became clear that the tension fluctuation increased and yarn breakage and scum product mixing occurred.

また、特許文献3、4は水中で膨潤、分散する性質を持つ膨潤性粘土鉱物を塗布し固相重合することで固相重合後に繊維を水中に浸漬処理することで固相重合油剤を脱落させることを可能としたものである。しかしながら、このような無機粒子を単独あるいは通常の紡糸油剤などに分散させて繊維に塗布した際には固相重合工程を経た後に無機粒子が繊維表面に固着することで、上記ポリジメチルシロキサンの例と同様に洗浄後の付着率としては非常に低い値であるものの、製織工程においてガイドや張力付与装置で擦過されることで無機粒子が脱落し、張力変動の発生原因や製品混入による製品不良の原因となっていた。   Patent Documents 3 and 4 apply a swellable clay mineral that swells and disperses in water and solid-phase polymerizes, so that the solid-phase polymerized oil is removed by immersing the fiber in water after solid-phase polymerization. It is possible to do that. However, when such inorganic particles are dispersed alone or in a normal spinning oil or the like and applied to the fiber, the inorganic particles adhere to the fiber surface after the solid-phase polymerization step, so that the above polydimethylsiloxane example Although the adhesion rate after cleaning is very low, as in the case of, the inorganic particles fall off by rubbing with a guide or tension applying device in the weaving process, causing the occurrence of tension fluctuations and product defects due to product contamination. It was the cause.

上述のように、液晶ポリエステル繊維の固相重合油剤として、融着抑制効果および優れた洗浄性を両立する固相重合油剤はこれまで開発されていなかった。このため、工業的に利用可能であり、製織工程におけるスカム発生、張力変動が抑制され工程通過性および製品収率に優れる液晶ポリエステル繊維、およびその製造技術はこれまで提案されておらず、その開発が望まれていた。   As described above, as a solid phase polymerization oil agent for liquid crystal polyester fiber, a solid phase polymerization oil agent that has both an anti-fusing effect and excellent detergency has not been developed so far. For this reason, liquid crystal polyester fibers that can be used industrially, have excellent scum generation and tension fluctuation in the weaving process, and have excellent process passability and product yield, and their production technologies have not been proposed so far, and their development Was desired.

本発明の課題は製織工程における堆積物(スカム)が少なく、かつ走行張力の変動が小さく製織工程における工程通過性および製品収率が優れる液晶ポリエステル繊維、および、その製造方法、メッシュ織物を提供することにある。   An object of the present invention is to provide a liquid crystal polyester fiber having a small amount of deposits (scum) in the weaving process, small fluctuation in running tension, and excellent process passability and product yield in the weaving process, and a method for producing the same, and a mesh fabric. There is.

上記課題を解決するため、本発明の液晶ポリエステル繊維は次の構成を有する。すなわち、走行張力変動幅(R)が5cN以下で、かつ、油分付着率が3.0wt%以下である液晶ポリエステル繊維である。   In order to solve the above problems, the liquid crystal polyester fiber of the present invention has the following configuration. That is, the liquid crystal polyester fiber has a running tension fluctuation range (R) of 5 cN or less and an oil adhesion rate of 3.0 wt% or less.

上記課題を解決するため、本発明の液晶ポリエステル繊維の製造方法は次の構成を有する。すなわち、液晶ポリエステルを溶融紡糸して得た糸条に、無機粒子(A)とリン酸系化合物(B)を塗布した後に固相重合し、次いで洗浄する液晶ポリエステル繊維の製造方法である。   In order to solve the above problems, the method for producing a liquid crystal polyester fiber of the present invention has the following configuration. That is, it is a method for producing liquid crystal polyester fibers in which inorganic particles (A) and a phosphoric acid compound (B) are applied to a yarn obtained by melt spinning a liquid crystal polyester, followed by solid phase polymerization and then washing.

上記課題を解決するため、本発明のメッシュ織物は次の構成を有する。すなわち、上記液晶ポリエステル繊維からなるメッシュ織物である。   In order to solve the above problems, the mesh fabric of the present invention has the following configuration. That is, it is a mesh fabric made of the above liquid crystal polyester fiber.

本発明の液晶ポリエステル繊維は、スカム発生量が0.01g以下であることが好ましい。   The liquid crystalline polyester fiber of the present invention preferably has a scum generation amount of 0.01 g or less.

本発明の液晶ポリエステル繊維は、強度が12.0cN/dtex以上であることが好ましい。   The liquid crystal polyester fiber of the present invention preferably has a strength of 12.0 cN / dtex or more.

本発明の液晶ポリエステル繊維は、示差熱量測定において、50℃から20℃/分の昇温条件で測定した際に観測される吸熱ピーク(Tm)におけるピーク半値幅が15℃以上であることが好ましい。 The liquid crystal polyester fiber of the present invention has a peak half-value width of 15 ° C. or more in an endothermic peak (Tm 1 ) observed when measured under a temperature rising condition of 50 ° C. to 20 ° C./min in differential calorimetry. preferable.

本発明の液晶ポリエステル繊維は、モノフィラメントであることが好ましい。   The liquid crystal polyester fiber of the present invention is preferably a monofilament.

本発明の液晶ポリエステル繊維は、単一のポリマー成分からなることが好ましい。   The liquid crystal polyester fiber of the present invention is preferably composed of a single polymer component.

本発明の液晶ポリエステル繊維は、液晶ポリエステルが下記構造単位(I)、(II)、(III)、(IV)、(V)からなることが好ましい。   In the liquid crystal polyester fiber of the present invention, the liquid crystal polyester is preferably composed of the following structural units (I), (II), (III), (IV), and (V).

Figure 0006040549
Figure 0006040549

本発明の液晶ポリエステル繊維の製造方法は、洗浄後の液晶ポリエステル繊維の吸熱ピーク温度(Tm)+10℃以上の温度で、洗浄に次いで高温熱処理を施すことが好ましい。 In the method for producing a liquid crystal polyester fiber of the present invention, it is preferable to perform a high-temperature heat treatment after the cleaning at a temperature of the endothermic peak temperature (Tm 1 ) + 10 ° C. of the liquid crystal polyester fiber after the cleaning.

本発明の液晶ポリエステル繊維の製造方法は、無機粒子(A)がシリカ、ケイ酸塩から選択される一種以上であることが好ましい。   In the method for producing a liquid crystal polyester fiber of the present invention, the inorganic particles (A) are preferably one or more selected from silica and silicate.

本発明の液晶ポリエステル繊維の製造方法は、リン酸系化合物(B)が下記化学式(1)〜(3)で示される化合物から選択される一種以上であることが好ましい。   In the method for producing a liquid crystal polyester fiber of the present invention, the phosphoric acid compound (B) is preferably at least one selected from compounds represented by the following chemical formulas (1) to (3).

Figure 0006040549
Figure 0006040549

本発明の液晶ポリエステル繊維は走行張力の変動が小さいことから、織編みなどの繊維の高次加工での張力変動に起因した糸切れが抑制されることで工程通過性に優れ、織密度の高密度化、製織性を向上できる。また、製品の引き攣れ、スカム混入などによる製品欠点が抑制可能となり製品収率が向上する。特にハイメッシュ織物が必要とされるフィルター、スクリーン紗用途に対しては、性能向上のため織密度の高密度化(高メッシュ化)、開口部(オープニング)の大面積化、開口部の欠点減少、製織性向上が達成できる。   Since the liquid crystalline polyester fiber of the present invention has a small variation in running tension, the yarn breakage caused by the tension variation in higher-order processing of fibers such as knitting and knitting is suppressed, so that the processability is excellent and the weaving density is high. Densification and weaving can be improved. In addition, product defects due to product twitching and scum mixing can be suppressed, and the product yield is improved. Especially for filters and screens that require high mesh fabrics, weaving density is increased (higher mesh), opening area is increased, opening defects are reduced to improve performance. Improved weaving can be achieved.

本発明に係る液晶ポリエステル繊維の製造方法により、高強度、高弾性率であり、製織工程における堆積物(スカム)が少なく、かつ走行張力の変動が小さく工程通過性に優れることで織物の製品収率が大幅に改善された液晶ポリエステル繊維を与えうる繊維を製造できる。かかる製造方法において、固相重合後の液晶ポリエステル繊維を洗浄することにより、固相重合油剤が容易に除去可能である。このように洗浄を施すことで上述のように製織工程における工程安定性および製品収率が大幅に改善された液晶ポリエステル繊維を得ることが出来る。   The production method of the liquid crystalline polyester fiber according to the present invention has high strength and high elastic modulus, less deposits (scum) in the weaving process, small fluctuation in running tension, and excellent processability. Fibers can be produced that can give liquid crystal polyester fibers with significantly improved rates. In such a production method, the solid phase polymerization oil agent can be easily removed by washing the liquid crystal polyester fiber after the solid phase polymerization. By washing in this way, liquid crystal polyester fibers having significantly improved process stability and product yield in the weaving process as described above can be obtained.

以下、本発明の液晶ポリエステル繊維について詳細に説明する。   Hereinafter, the liquid crystal polyester fiber of the present invention will be described in detail.

本発明で用いられる液晶ポリエステルとは、溶融時に異方性溶融相(液晶性)を形成し得るポリエステルである。この特性は例えば、液晶ポリエステルからなる試料をホットステージにのせ、窒素雰囲気下で昇温加熱し、試料の透過光を偏光下で観察することにより確認できる。   The liquid crystal polyester used in the present invention is a polyester capable of forming an anisotropic melt phase (liquid crystallinity) upon melting. This characteristic can be confirmed, for example, by placing a sample made of liquid crystal polyester on a hot stage, heating and heating in a nitrogen atmosphere, and observing the transmitted light of the sample under polarized light.

本発明に用いられる液晶ポリエステルとしては、例えば(i)芳香族オキシカルボン酸の重合物、(ii)芳香族ジカルボン酸と芳香族ジオール、脂肪族ジオールの重合物、(iii)芳香族オキシカルボン酸、芳香族ジカルボン酸と芳香族ジオール、脂肪族ジオールからなる重合物等が挙げられ、中でも芳香族のみで構成された重合物が好ましい。芳香族のみで構成された重合物は、繊維にした際に優れた強度および弾性率を発現する。また、液晶ポリエステルの重合処方は従来公知の方法を用いることができる。   Examples of the liquid crystal polyester used in the present invention include (i) a polymer of aromatic oxycarboxylic acid, (ii) a polymer of aromatic dicarboxylic acid and aromatic diol, aliphatic diol, and (iii) aromatic oxycarboxylic acid. , A polymer composed of an aromatic dicarboxylic acid, an aromatic diol, and an aliphatic diol, and the like. Among these, a polymer composed only of an aromatic is preferable. Polymers composed only of aromatics exhibit excellent strength and elastic modulus when made into fibers. Moreover, conventionally well-known method can be used for the polymerization prescription of liquid crystalline polyester.

ここで、芳香族オキシカルボン酸としては、例としてヒドロキシ安息香酸、ヒドロキシナフトエ酸等、またはこれらのアルキル、アルコキシ、ハロゲン置換体等が挙げられる。   Here, examples of the aromatic oxycarboxylic acid include hydroxybenzoic acid, hydroxynaphthoic acid and the like, or alkyl, alkoxy and halogen substituted products thereof.

また、芳香族ジカルボン酸としては、例としてテレフタル酸、イソフタル酸、ジフェニルジカルボン酸、ナフタレンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルエタンジカルボン酸等、またはこれらのアルキル、アルコキシ、ハロゲン置換体等が挙げられる。   Examples of aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, diphenyldicarboxylic acid, naphthalene dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenoxyethanedicarboxylic acid, diphenylethanedicarboxylic acid, and the like, or alkyl, alkoxy, and halogen substitution thereof. Examples include the body.

更に、芳香族ジオールとしては、例としてヒドロキノン、レゾルシン、ジヒドロキシビフェニル、ナフタレンジオール等、またはこれらのアルキル、アルコキシ、ハロゲン置換体等が挙げられ、脂肪族ジオールとしては、エチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコール等が挙げられる。   Furthermore, examples of the aromatic diol include hydroquinone, resorcin, dihydroxybiphenyl, naphthalene diol, and the like, or alkyl, alkoxy, and halogen-substituted products thereof. Examples of the aliphatic diol include ethylene glycol, propylene glycol, and butanediol. And neopentyl glycol.

本発明に用いる液晶ポリエステルの好ましい例としては、p−ヒドロキシ安息香酸成分と6−ヒドロキシ−2−ナフトエ酸成分が共重合された液晶ポリエステル、p−ヒドロキシ安息香酸成分と4,4´−ジヒドロキシビフェニル成分とイソフタル酸成分および/またはテレフタル酸成分が共重合された液晶ポリエステル等が挙げられ、特に好ましくはp−ヒドロキシ安息香酸成分と4,4´−ジヒドロキシビフェニル成分とイソフタル酸成分とテレフタル酸成分とヒドロキノン成分が共重合された液晶ポリエステルが挙げられる。   Preferred examples of the liquid crystal polyester used in the present invention include a liquid crystal polyester obtained by copolymerizing a p-hydroxybenzoic acid component and a 6-hydroxy-2-naphthoic acid component, a p-hydroxybenzoic acid component and 4,4′-dihydroxybiphenyl. Examples thereof include liquid crystal polyester in which a component, an isophthalic acid component and / or a terephthalic acid component are copolymerized, and a p-hydroxybenzoic acid component, a 4,4′-dihydroxybiphenyl component, an isophthalic acid component, and a terephthalic acid component are particularly preferable. Examples thereof include liquid crystal polyester in which a hydroquinone component is copolymerized.

上記に示すような組み合わせにより、分子鎖の対称性が低下することで液晶ポリエステルの融点が分解点以下に低下し、溶融紡糸可能な融点を有するようになる。したがって、ポリマーの融点と熱分解温度の間で設定される紡糸温度において良好な製糸性を有するようになり長手方向に均一な繊維が得られ、かつ適度な結晶性を有するため繊維の強度、弾性率を高めることができる。本発明では下記化学式に示す構造単位(I)、(II)、(III)、(IV)および(V)からなる液晶ポリエステルであることが好ましい。   With the combination as described above, the symmetry of the molecular chain is lowered, so that the melting point of the liquid crystal polyester is lowered below the decomposition point and has a melting point capable of melt spinning. Therefore, the fiber has a good spinning property at the spinning temperature set between the melting point of the polymer and the thermal decomposition temperature, and a uniform fiber is obtained in the longitudinal direction. The rate can be increased. In the present invention, a liquid crystal polyester composed of structural units (I), (II), (III), (IV) and (V) represented by the following chemical formula is preferable.

Figure 0006040549
Figure 0006040549

なお、本発明において構造単位とはポリマーの主鎖における繰り返し構造を構成し得る単位を示す。上記(I)〜(V)の組み合わせは直線性が高いため、弾性率を高めることができ、好ましい。   In the present invention, the structural unit refers to a unit that can constitute a repeating structure in the main chain of the polymer. The combination of the above (I) to (V) is preferable because it has high linearity and can increase the elastic modulus.

構造単位(II)、(III)のような嵩高くなく、直線性の高いジオールからなる成分を組み合わせることで分子鎖は秩序だった乱れの少ない構造を取ると共に、結晶性が過度に高まらず繊維軸垂直方向の相互作用も維持できる。これにより高い強度、弾性率が得られることに加えて、固相重合後に高温熱処理を施すことで特に優れた耐摩耗性も得られる。   Combining components made of diols that are not bulky and highly linear, such as structural units (II) and (III), the molecular chain has an ordered and less disturbed structure, and the crystallinity is not excessively high. Interaction in the direction perpendicular to the axis can be maintained. Thereby, in addition to obtaining high strength and elastic modulus, particularly excellent wear resistance can be obtained by performing high-temperature heat treatment after solid-phase polymerization.

また、上記した構造単位(I)は構造単位(I)、(II)および(III)の合計に対して40〜85mol%が好ましく、より好ましくは65〜80mol%、さらに好ましくは68〜75mol%である。このような範囲とすることで結晶性を適切な範囲とすることができ高い強度、弾性率が得られ、かつ融点も溶融紡糸可能な範囲となる。   The structural unit (I) is preferably 40 to 85 mol%, more preferably 65 to 80 mol%, still more preferably 68 to 75 mol% with respect to the total of the structural units (I), (II) and (III). It is. By setting it as such a range, crystallinity can be made into an appropriate range, high intensity | strength and an elasticity modulus are obtained, and melting | fusing point also becomes the range which can be melt-spun.

構造単位(II)は構造単位(II)および(III)の合計に対して60〜90mol%が好ましく、より好ましくは60〜80mol%、さらに好ましくは65〜75mol%である。このような範囲とすることで結晶性が過度に高まらず繊維軸垂直方向の相互作用も維持できるため、固相重合後に高温熱処理を施すことで耐摩耗性を高めることができる。   The structural unit (II) is preferably 60 to 90 mol%, more preferably 60 to 80 mol%, still more preferably 65 to 75 mol% with respect to the total of the structural units (II) and (III). By setting it as such a range, since crystallinity does not become high excessively and the interaction of a fiber axis perpendicular | vertical direction can be maintained, wear resistance can be improved by performing high temperature heat processing after solid-phase polymerization.

構造単位(IV)は構造単位(IV)および(V)の合計に対して40〜95mol%が好ましく、より好ましくは50〜90mol%、さらに好ましくは60〜85mol%である。このような範囲とすることでポリマーの融点が適切な範囲となり、ポリマーの融点と熱分解温度の間で設定される紡糸温度において良好な紡糸性を有するため長手方向に均一な繊維が得られる他、ポリマーの直線性が適度に乱れるため、固相重合後の高温熱処理によりフィブリル構造が乱れやすくなり繊維軸垂直方向の相互作用が高まり耐摩耗性を向上させることができる。   The structural unit (IV) is preferably 40 to 95 mol%, more preferably 50 to 90 mol%, still more preferably 60 to 85 mol% with respect to the total of the structural units (IV) and (V). By setting such a range, the melting point of the polymer becomes an appropriate range, and it has good spinnability at a spinning temperature set between the melting point of the polymer and the thermal decomposition temperature, so that a uniform fiber can be obtained in the longitudinal direction. Since the linearity of the polymer is moderately disturbed, the fibril structure is easily disturbed by the high-temperature heat treatment after the solid phase polymerization, and the interaction in the direction perpendicular to the fiber axis is increased, thereby improving the wear resistance.

なお、上記本発明で好ましく用いる液晶ポリエステルの各構造単位の好ましい範囲は以下のとおりである。なお、下記構造単位(I)〜(V)の合計を100mol%とする。この範囲の中で組成を調整することで本発明の液晶ポリエステル繊維が好適に得られる。   In addition, the preferable range of each structural unit of liquid crystalline polyester preferably used by the said invention is as follows. The total of the following structural units (I) to (V) is 100 mol%. The liquid crystal polyester fiber of the present invention can be suitably obtained by adjusting the composition within this range.

構造単位(I):45〜65mol%
構造単位(II):12〜18mol%
構造単位(III):3〜10mol%
構造単位(IV):5〜20mol%
構造単位(V):2〜15mol%
さらに、構造単位(IV)と構造単位(V)の合計量と構造単位(II)と構造単位(III)の合計量は、実質的に等モルであることが好ましい。
Structural unit (I): 45 to 65 mol%
Structural unit (II): 12-18 mol%
Structural unit (III): 3 to 10 mol%
Structural unit (IV): 5 to 20 mol%
Structural unit (V): 2 to 15 mol%
Furthermore, the total amount of the structural unit (IV) and the structural unit (V) and the total amount of the structural unit (II) and the structural unit (III) are preferably substantially equimolar.

なお、本発明に用いる液晶ポリエステルは、上記モノマー以外に、液晶性を損なわない程度の範囲で更に他のモノマーを共重合させることができ、例としてアジピン酸、アゼライン酸、セバシン酸、ドデカンジオン酸等の脂肪族ジカルボン酸、1,4−シクロヘキサンジカルボン酸等の脂環式ジカルボン酸、ポリエチレングリコール等のポリエーテル、ポリシロキサン、芳香族イミノカルボン酸、芳香族ジイミン、および芳香族ヒドロキシイミン等が挙げられる。   In addition, the liquid crystal polyester used in the present invention can be copolymerized with other monomers in addition to the above monomers as long as the liquid crystallinity is not impaired. For example, adipic acid, azelaic acid, sebacic acid, dodecanedioic acid Aliphatic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid and the like, polyethers such as polyethylene glycol, polysiloxane, aromatic iminocarboxylic acid, aromatic diimine, and aromatic hydroxyimine It is done.

また、本発明に用いる液晶ポリエステルには、本発明の効果を損なわない範囲で他のポリマーを添加・併用することができる。添加・併用とは、ポリマー同士を混合する場合や、2成分以上の複合紡糸において一方の成分、乃至は複数の成分に他のポリマーを部分的に混合使用すること、あるいは全面的に使用することをいう。他のポリマーとしては、例としてポリエステル、ポリオレフィンやポリスチレン等のビニル系重合体、ポリカーボネート、ポリアミド、ポリイミド、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリスルホン、芳香族ポリケトン、脂肪族ポリケトン、半芳香族ポリエステルアミド、ポリエーテルエーテルケトン、フッ素樹脂等のポリマーを添加しても良く、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ナイロン6、ナイロン66、ナイロン46、ナイロン6T、ナイロン9T、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリシクロヘキサンジメタノールテレフタレート、ポリエステル99M等が好適な例として挙げられる。なお、これらのポリマーを添加・併用する場合、その融点は液晶ポリエステルの融点±30℃以内にすることが製糸性を損なわないために好ましい。なお、得られる繊維の強度、弾性率を向上させるため、またポリマー界面での剥がれによる毛羽発生や糸切れを抑制するためには添加・併用する量は50wt%以下が好ましく、5wt%以下がより好ましく、実質的に他のポリマーを添加・併用しないことが最も好ましい。   In addition, other polymers can be added to and used in combination with the liquid crystalline polyester used in the present invention as long as the effects of the present invention are not impaired. Addition / combination means mixing two or more polymers, using one component or two or more components partially mixed in a composite spinning of two or more components, or using all of them. Say. Examples of other polymers include polyester, vinyl polymers such as polyolefin and polystyrene, polycarbonate, polyamide, polyimide, polyphenylene sulfide, polyphenylene oxide, polysulfone, aromatic polyketone, aliphatic polyketone, semi-aromatic polyesteramide, and polyether. Polymers such as ether ketone and fluororesin may be added. Polyphenylene sulfide, polyether ether ketone, nylon 6, nylon 66, nylon 46, nylon 6T, nylon 9T, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene naphthalate Preferred examples include phthalate, polycyclohexanedimethanol terephthalate, and polyester 99M. In addition, when these polymers are added and used in combination, the melting point thereof is preferably within the melting point of liquid crystal polyester ± 30 ° C. in order not to impair the yarn-forming property. In addition, in order to improve the strength and elastic modulus of the obtained fiber, and in order to suppress fluff generation and yarn breakage due to peeling at the polymer interface, the amount added and used together is preferably 50 wt% or less, more preferably 5 wt% or less. Preferably, it is most preferable that no other polymer is added or used in combination.

本発明に用いられる液晶ポリエステルには、本発明の効果を損なわない範囲内で、各種金属酸化物、カオリン、シリカ等の無機物、着色剤、艶消剤、難燃剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤、結晶核剤、蛍光増白剤、末端基封止剤、相溶化剤等の添加剤を少量含有していても良い。   The liquid crystalline polyester used in the present invention includes various metal oxides, inorganic substances such as kaolin and silica, colorants, matting agents, flame retardants, antioxidants and ultraviolet absorbers within the range not impairing the effects of the present invention. In addition, additives such as infrared absorbers, crystal nucleating agents, fluorescent brighteners, end group capping agents, and compatibilizers may be contained in small amounts.

本発明における繊維とは、通常の溶融紡糸法で紡糸された糸をいう。   The fiber in the present invention refers to a yarn spun by a normal melt spinning method.

本発明の液晶ポリエステル繊維は走行張力の変動幅(R)が5cN以下であり、好ましくは4cN以下であることを特徴とする。ここでいう、走行張力の変動幅(R)とは実施例における、A.項記載の方法で得られる値をいう。本発明者らは、液晶ポリエステル繊維の製織等の高次工程における工程通過性および製品収率に大きな影響を与える因子として張力変動に注目し、鋭意検討を行った結果、実施例におけるA.項記載の方法で得られる走行張力の変動幅(R)と製織等の高次加工工程における工程通過性および製品収率との間に良好な相関があることを見出したのである。すなわち、走行張力の変動幅(R)が5cN以下を満たすことで、特に織物を製造する際の張力変動が抑えられ、製織工程における工程通過性が格段に向上するのである。   The liquid crystalline polyester fiber of the present invention is characterized in that the fluctuation range (R) of running tension is 5 cN or less, preferably 4 cN or less. The fluctuation range (R) of the running tension referred to here is A. The value obtained by the method described in the item. The inventors of the present invention focused on fluctuations in tension as a factor that greatly affects process passability and product yield in high-order processes such as weaving of liquid crystal polyester fibers, and as a result of intensive studies, A. It has been found that there is a good correlation between the fluctuation range (R) of the running tension obtained by the method described in the item, the process passability in the high-order processing step such as weaving and the product yield. That is, when the fluctuation range (R) of the running tension satisfies 5 cN or less, fluctuations in tension particularly when a woven fabric is manufactured can be suppressed, and process passability in the weaving process can be significantly improved.

走行張力の変動幅(R)が5cNを越えると走行張力の変動が大きいため、製織時の製経工程や緯打込み工程での液晶ポリエステル繊維の張力斑による弛みを誘発することから、工程通過性の悪化や、得られる織物の製品欠点となり製品収率の低下を引き起こす。   When the fluctuation range (R) of the running tension exceeds 5 cN, the fluctuation of the running tension is large. Therefore, the looseness due to the tension spots of the liquid crystal polyester fiber in the warping process and the weft driving process during weaving is induced. Deterioration and product defects of the resulting fabric, resulting in a decrease in product yield.

本発明の繊維は油分付着率が3.0wt%以下である。ここでいう油分付着率とは、洗浄後に繊維上に残る残存固相重合油剤および仕上げ油剤の総付着率であり、実施例における、D.項記載の手法により求められる値をいう。油分付着率を3.0wt%以下とすることで後加工工程において繊維同士が寄付き、擬似接着することに由来する糸切れや、油剤汚れの洗浄のための停台回数が低減でき製織性が向上する。油分付着率が3.0wt%を超えると過剰に付いた油剤に起因した糸同士の寄付きが頻発し、また、工程中での擦過により余剰の油剤が脱落し工程を汚すため好ましくない。また、油剤起因の糸切れや工程汚れを防ぎ製織性を向上させる観点から油分付着率は2.0wt%以下とすることがより好ましく、最も好ましくは1.5wt%以下である。なお、特に下限値の制限はないが、製織における潤滑性などの効果発揮のため繊維には通常仕上げ油剤が付与されており、製織における繊維の削れを防ぐ観点から残存固相重合油剤および仕上げ油剤の総付着率である油分付着率の下限は油剤種にもよるが通常0.5wt%程度であり、より好ましくは0.8wt%以上が好ましい。   The fiber of the present invention has an oil adhesion rate of 3.0 wt% or less. The oil adhesion rate here is the total adhesion rate of the remaining solid-phase polymerization oil and finishing oil remaining on the fiber after washing. The value obtained by the method described in the section. By adjusting the oil adhesion rate to 3.0 wt% or less, the fibers are brought together in the post-processing step, and the number of stops for cleaning of the yarn breakage and oil stains resulting from pseudo-adhesion can be reduced and weaving is improved. To do. When the oil adhesion rate exceeds 3.0 wt%, the yarns caused by excessively attached oil agent frequently come into contact with each other, and the excess oil agent falls off due to rubbing in the process, which is not preferable. Further, from the viewpoint of preventing thread breakage and process contamination caused by the oil agent and improving the weaving property, the oil adhesion rate is more preferably 2.0 wt% or less, and most preferably 1.5 wt% or less. Although there is no particular lower limit, the fiber is usually given a finishing oil for the purpose of exhibiting effects such as lubricity in weaving. From the viewpoint of preventing fiber scraping during weaving, the residual solid-phase polymerization oil and finishing oil are used. The lower limit of the oil adhesion rate, which is the total adhesion rate, is usually about 0.5 wt%, more preferably 0.8 wt% or more, although it depends on the type of oil agent.

本発明の液晶ポリエステル繊維のスカム発生量は0.01g以下であることが製織工程におけるスカム発生を抑制し工程安定性を保つ観点、また製品へのスカム混入を抑制し製品収率を向上する観点から好ましい。より好ましくは0.002g以下である。ここでいうスカム発生量とは、実施例における、H.項記載の方法で得られる値をいう。スカム発生量の下限値としては特に限定されないが、洗浄における手間と効果のバランスの観点から現実的には0.0001g程度である。   The viewpoint that the scum generation amount of the liquid crystal polyester fiber of the present invention is 0.01 g or less suppresses the generation of scum in the weaving process and maintains the process stability, and also suppresses the mixing of scum into the product and improves the product yield. To preferred. More preferably, it is 0.002 g or less. The amount of scum generated here is H. The value obtained by the method described in the item. The lower limit value of the scum generation amount is not particularly limited, but is practically about 0.0001 g from the viewpoint of the balance between labor and effect in cleaning.

なお、スカム発生量を0.01g以下とする方法は特に限定されないが、例えば、後述の製造方法に記載のように液晶ポリエステル繊維に無機粒子(A)とリン酸系化合物(B)とを塗布した後に固相重合を行い、さらに得られた繊維を洗浄することで実現できる。   In addition, although the method of making scum generation amount 0.01 g or less is not specifically limited, For example, an inorganic particle (A) and a phosphate compound (B) are apply | coated to liquid crystal polyester fiber as described in the below-mentioned manufacturing method. Thereafter, solid phase polymerization is performed, and the obtained fiber is washed.

本発明の繊維のフィラメント数は、繊維製品の薄物化、軽量化のためにはフィラメント数50以下が好ましく、20以下がより好ましい。特にフィラメント数が1であるモノフィラメントは製織時のスカム発生抑制および走行張力安定性が強く望まれる分野であるため本発明の繊維は特に好適に用いることができる。   The number of filaments of the fiber of the present invention is preferably 50 or less, more preferably 20 or less, in order to make the fiber product thinner and lighter. In particular, since the monofilament having 1 filament is a field where suppression of scum generation during weaving and running tension stability are strongly desired, the fiber of the present invention can be used particularly preferably.

本発明の繊維の単繊維繊度は18.0dtex以下が好ましい。ここでいう単繊維繊度とは実施例における、B.項記載の手法により求める値である。単繊維繊度を18.0dtex以下と細くすることで、繊維状態で固相重合した際に繊維を構成する高分子の分子量が増加しやすく、強度、伸度、弾性率が向上する。さらに繊維のしなやかさが向上し繊維の加工性が向上する、表面積が増加するため接着剤などの薬液との密着性が高まると言った特性を有することに加え、モノフィラメントからなる紗とする場合は厚みを薄くできる、織密度を高くできる、オープニング(開口部の面積)を広くできるという利点も有する。単繊維繊度はより好ましくは10.0dtex以下、さらに好ましくは7.0dtex以下である。なお、単繊維繊度の下限は特に限定されないが、後述の製造方法により達し得る下限としては1.0dtex程度である。   The single fiber fineness of the fiber of the present invention is preferably 18.0 dtex or less. The single fiber fineness referred to here means B. This is the value obtained by the method described in the section. By reducing the single fiber fineness to 18.0 dtex or less, the molecular weight of the polymer constituting the fiber is easily increased when solid-phase polymerization is performed in the fiber state, and the strength, elongation, and elastic modulus are improved. In addition to having the properties of improving the flexibility of the fiber and improving the processability of the fiber, increasing the surface area and improving the adhesion with chemicals such as adhesives, in addition to the case of a cocoon made of monofilament There are also advantages that the thickness can be reduced, the weave density can be increased, and the opening (area of the opening) can be widened. The single fiber fineness is more preferably 10.0 dtex or less, and even more preferably 7.0 dtex or less. The lower limit of the single fiber fineness is not particularly limited, but the lower limit that can be achieved by the manufacturing method described later is about 1.0 dtex.

本発明の繊維の強度は織物や編み物など最終製品の強度を高めるため12.0cN/dtex以上が好ましく、14.0cN/dtex以上がより好ましく、15.0cN/dtex以上がさらに好ましい。強度の上限は特に限定されないが、後述の製造方法により達し得る上限としては30.0cN/dtex程度である。なおここで言う強度とは実施例における、C.項記載の手法により求める値である。   The strength of the fiber of the present invention is preferably 12.0 cN / dtex or more, more preferably 14.0 cN / dtex or more, and further preferably 15.0 cN / dtex or more in order to increase the strength of the final product such as woven fabric or knitted fabric. The upper limit of strength is not particularly limited, but the upper limit that can be reached by the manufacturing method described later is about 30.0 cN / dtex. In addition, the intensity | strength said here is C. in an Example. This is the value obtained by the method described in the section.

本発明の繊維の伸度は1.0%以上が好ましく2.0%以上がより好ましい。伸度が1.0%以上あることで繊維の衝撃吸収性が高まり、高次加工工程での工程通過性、取り扱い性に優れる他、衝撃吸収性が高まるため耐摩耗性も高まる。なお、伸度の上限は特に限定されないが、後述の製造方法により達し得る上限としては10.0%程度である。なお、ここでいう伸度とは実施例における、C.項記載の手法により求める値である。   The elongation of the fiber of the present invention is preferably 1.0% or more, and more preferably 2.0% or more. When the elongation is 1.0% or more, the impact absorbability of the fibers is increased, the process passability and the handleability in the high-order processing step are excellent, and the impact absorbability is increased, so that the wear resistance is also increased. The upper limit of elongation is not particularly limited, but the upper limit that can be reached by the manufacturing method described later is about 10.0%. In addition, the term “elongation” used herein refers to C.I. This is the value obtained by the method described in the section.

また弾性率は織物の弾性率を高めるため500cN/dtex以上が好ましく、600cN/dtex以上がより好ましく、700cN/dtex以上がさらに好ましい。弾性率の上限は特に限定されないが、後述の製造方法により達し得る上限としては弾性率1500cN/dtex程度である。なお本発明でいう弾性率とは実施例における、C.項記載の手法により求める値である。   The elastic modulus is preferably 500 cN / dtex or more, more preferably 600 cN / dtex or more, and further preferably 700 cN / dtex or more in order to increase the elastic modulus of the fabric. The upper limit of the elastic modulus is not particularly limited, but the upper limit that can be achieved by the manufacturing method described later is about elastic modulus 1500 cN / dtex. The elastic modulus as used in the present invention means C.I. This is the value obtained by the method described in the section.

強度、弾性率が高いことによりロープ、テンションメンバー等の補強用繊維、印刷用スクリーン紗、フィルター用メッシュ等の用途に好適に使用できる他、細繊度でも高い強力を発現させ得るため繊維材料の軽量化、薄物化が達成でき、製織など高次加工工程での糸切れも抑制できる。   High strength and elastic modulus make it suitable for applications such as ropes, tension members and other reinforcing fibers, printing screens, filter meshes, etc. And thinning can be achieved, and yarn breakage in higher processing steps such as weaving can be suppressed.

本発明の液晶ポリエステル繊維は、示差熱量測定において、50℃から20℃/分の昇温条件で測定した際に観測される吸熱ピーク(Tm)におけるピーク半値幅が15℃以上であることが好ましい。この測定法におけるTmは繊維の融点を表し、ピーク形状はその面積が広いほど、即ち融解熱量ΔHmが大きいほど結晶化度が高く、またその半値幅が狭いほど結晶の完全性は高いと言える。液晶ポリエステルは紡糸した後固相重合を施すことでTmが上昇、ΔHmが増加、半値幅は減少し、結晶化度、結晶の完全性が高くなることで繊維の強度、伸度、弾性率が増加、耐熱性が向上する。一方で耐摩耗性が悪化するが、これは結晶の完全性が高まることにより、結晶部と非晶部の構造差が顕著となるため、その界面で破壊が起こるためと考えられる。そこで本発明の繊維では固相重合した繊維の特徴である高いTm、高い強度、伸度、弾性率を維持したまま、ピーク半値幅を、固相重合していない液晶ポリエステル繊維のような15℃以上という値に増加させることで、結晶性を低下させて破壊の起点となる結晶/非晶の構造差を減少させ、フィブリル構造を乱し、繊維全体を柔軟化させることで耐摩耗性を高めることが好ましい。Tmにおけるピーク半値幅は、高い方が耐摩耗性は高いため、より好ましくは20℃以上である。なお、上限は特に制限されないが、工業的に達し得る上限は80℃程度である。 The liquid crystal polyester fiber of the present invention has a peak half-value width of 15 ° C. or more in an endothermic peak (Tm 1 ) observed when measured under a temperature rising condition of 50 ° C. to 20 ° C./min in differential calorimetry. preferable. Tm 1 in this measurement method represents the melting point of the fiber, and the peak shape is higher in crystallinity as the area is larger, that is, as the heat of fusion ΔHm 1 is larger, and as the half value width is narrower, the completeness of the crystal is higher. I can say that. Liquid crystalline polyesters are spun and then subjected to solid-phase polymerization to increase Tm 1 , increase ΔHm 1 , decrease half-width, and increase crystallinity and crystal perfection to increase fiber strength, elongation, and elasticity. The rate is increased and the heat resistance is improved. On the other hand, the wear resistance deteriorates, but this is thought to be due to the fact that the structural difference between the crystal part and the amorphous part becomes remarkable due to the increase in crystal perfection, so that the interface breaks down. Therefore, in the fiber of the present invention, while maintaining the high Tm 1 , high strength, elongation, and elastic modulus, which are characteristics of the solid phase polymerized fiber, the peak half-value width is 15 like that of a liquid crystal polyester fiber not solid phase polymerized. By increasing to a value above ℃, the crystallinity is lowered, the crystal / amorphous structural difference that is the starting point of fracture is reduced, the fibril structure is disturbed, and the entire fiber is softened, thereby improving the wear resistance. It is preferable to increase. The peak half width at Tm 1 is more preferably 20 ° C. or higher because higher wear resistance is higher. The upper limit is not particularly limited, but the upper limit that can be industrially reached is about 80 ° C.

なお、本発明の液晶ポリエステル繊維においては、吸熱ピークは1つであるが、固相重合が不十分な場合など繊維構造によっては2つ以上のピークが観測されることがある。この場合のピーク半値幅はそれぞれのピークの半値幅を合計した値とする。   In the liquid crystal polyester fiber of the present invention, there is one endothermic peak, but two or more peaks may be observed depending on the fiber structure, such as when solid phase polymerization is insufficient. In this case, the peak half-value width is the sum of the half-value widths of the respective peaks.

本発明の繊維の融点(Tm)は300℃以上が好ましく、310℃以上がより好ましく、320℃以上がさらに好ましい。このような高い融点を有することで耐熱性、熱寸法安定性が優れるため、製品とした後も高温で加工ができ、後加工性に優れる。Tmの上限は特に限定されないが、本発明で達し得る上限としては400℃程度である。 The melting point (Tm 1 ) of the fiber of the present invention is preferably 300 ° C. or higher, more preferably 310 ° C. or higher, and further preferably 320 ° C. or higher. Since it has such a high melting point, heat resistance and thermal dimensional stability are excellent, so that it can be processed at a high temperature even after it is made into a product, and post-processability is excellent. The upper limit of Tm 1 is not particularly limited, but the upper limit that can be reached in the present invention is about 400 ° C.

また融解熱量ΔHmの値は、液晶ポリエステルの構成単位の組成により変化するが、6.0J/g以下であることが好ましい。ΔHmが6.0J/g以下に低下することで結晶化度は低下し、フィブリル構造が乱れ、繊維全体が柔軟化し、かつ破壊の起点となる結晶/非晶の構造差が減少することで耐摩耗性が向上する。ΔHmは低いほど耐摩耗性は向上するため5.0J/g以下がより好ましい。なおΔHmの下限は特に限定されないが、高い強度、弾性率を得るためには0.5J/g以上が好ましい。 The value of heat of fusion ΔHm 1 varies depending on the composition of the structural unit of the liquid crystal polyester, but is preferably 6.0 J / g or less. By reducing ΔHm 1 to 6.0 J / g or less, the degree of crystallinity is lowered, the fibril structure is disturbed, the entire fiber is softened, and the crystal / amorphous structural difference that is the starting point of fracture is reduced. Abrasion resistance is improved. As ΔHm 1 is lower, the wear resistance is improved, so 5.0 J / g or less is more preferable. The lower limit of ΔHm 1 is not particularly limited, but 0.5 J / g or more is preferable in order to obtain high strength and elastic modulus.

液晶ポリエステル繊維を固相重合すると分子量が増加し強度、伸度、弾性率、耐熱性は向上し、同時に結晶化度も高まりΔHmが増加する。結晶化度が高まると強度、伸度、弾性率、耐熱性はさらに向上するが、結晶部と非晶部の構造差が顕著となり、その界面が破壊されやすくなり耐摩耗性は低下してしまう。これに対し固相重合した繊維の1つの特徴である高い分子量を持つことで高い強度、伸度、弾性率、耐熱性を保持すると共に、固相重合をしていない液晶ポリエステル繊維のような低い結晶化度すなわち低いΔHmを有することが耐摩耗性向上の観点から好ましい。 When the liquid crystalline polyester fiber is solid-phase polymerized, the molecular weight is increased and the strength, elongation, elastic modulus, and heat resistance are improved. At the same time, the crystallinity is increased and ΔHm 1 is increased. When the degree of crystallinity increases, the strength, elongation, elastic modulus, and heat resistance are further improved, but the structural difference between the crystal part and the amorphous part becomes remarkable, the interface is easily broken, and the wear resistance is lowered. . On the other hand, it has high molecular weight, which is one of the characteristics of solid-phase polymerized fibers, and maintains high strength, elongation, elastic modulus, and heat resistance, and is low like liquid crystal polyester fibers that are not solid-phase polymerized. From the viewpoint of improving the wear resistance, it is preferable to have a crystallinity, that is, a low ΔHm 1 .

このような繊維構造を達成するためには、例えば、後述するような固相重合した液晶ポリエステル繊維を、その液晶ポリエステル繊維のTm+10℃以上で熱処理することで実現できる。 In order to achieve such a fiber structure, for example, a liquid crystal polyester fiber subjected to solid phase polymerization as described later can be realized by heat-treating the liquid crystal polyester fiber at Tm 1 + 10 ° C. or higher.

なお、上述の液晶ポリエステル繊維のTm、Tmにおけるピーク半値幅、融解熱量ΔHmは実施例における、E.項記載の方法により得られる値を指す。 In addition, the peak half-width at Tm 1 and Tm 1 and the heat of fusion ΔHm 1 of the above-described liquid crystal polyester fiber are the same as those in the examples. It refers to the value obtained by the method described in the item.

本発明で得られる繊維には表面平滑性向上による耐摩耗性向上、工程通過性向上などのために仕上げ油剤が付着されていることが好ましく、仕上げ油剤の油分付着率は繊維重量に対し0.1wt%以上が好しい。なお本発明でいう油分付着率とは実施例における、D.項記載の手法により求められた値をいう。油分は多いほどその効果は高まるため、0.5wt%以上がより好ましい。ただし油分が多すぎると繊維同士の接着力が高まり、隣り合う糸同士が寄り付き擬似接着することで糸切れを起こすほか、工程中での擦過により余剰の油剤がガイドや張力付与装置に堆積することで工程汚れを発生し、工程洗浄のための停台回数が増加し、製織性不良等の問題を引き起こすため、3.0wt%以下、2.0wt%以下が好ましい。   The finished oil is preferably attached to the fiber obtained by the present invention in order to improve the wear resistance by improving the surface smoothness and the process passability, and the oil adhesion rate of the finished oil is 0. 1 wt% or more is preferable. The oil adhesion rate referred to in the present invention refers to D.I. The value obtained by the method described in the section. Since the effect increases as the amount of oil increases, 0.5 wt% or more is more preferable. However, if there is too much oil, the adhesive strength between the fibers will increase, the adjacent yarns will approach each other and pseudo-bonding will cause thread breakage, and excess oil will accumulate on the guide and tension applying device due to rubbing during the process In order to cause process contamination and increase the number of stops for process cleaning and cause problems such as poor weaving, 3.0 wt% or less and 2.0 wt% or less are preferable.

仕上げ油剤種は一般的なポリエステルモノフィラメント用仕上げ油剤等が適用できるが、製織工程におけるスカム発生による工程通過性低下を避けるため、仕上げ油剤には粒状物を含まないことが好ましい。   As the type of finishing oil, a general finishing oil for polyester monofilaments and the like can be applied, but it is preferable that the finishing oil does not contain particulates in order to avoid deterioration in processability due to scum generation in the weaving process.

以下、本発明の液晶ポリエステル繊維の製造方法について詳細に説明する。   Hereinafter, the manufacturing method of the liquid crystalline polyester fiber of this invention is demonstrated in detail.

本発明に用いる液晶ポリエステルの融点は、溶融紡糸可能な温度範囲を広くするため好ましくは200〜380℃であり、紡糸性を高めるためにより好ましいのは250〜360℃である。なお液晶ポリエステルポリマーの融点は実施例における、E.項記載の方法で測定される値をいう。   The melting point of the liquid crystalline polyester used in the present invention is preferably 200 to 380 ° C. in order to widen the temperature range in which melt spinning is possible, and more preferably 250 to 360 ° C. in order to improve the spinnability. The melting point of the liquid crystal polyester polymer is E. The value measured by the method described in the item.

本発明で用いる液晶ポリエステルのポリスチレン換算の重量平均分子量(以下、分子量と記載)は3.0万以上が好ましい。分子量を3.0万以上とすることで紡糸温度において適切な粘度を持ち製糸性を高めることができる。分子量が高いほど得られる繊維の強度、伸度、弾性率は高まるが、分子量が高すぎると粘度が高くなり流動性が悪くなり、ついには流動しなくなるため分子量は25.0万未満が好ましく、20.0万未満がより好ましい。ここでいう、ポリスチレン換算の重量平均分子量は実施例における、F.項記載の方法で測定される値をいう。   The polystyrene equivalent weight average molecular weight (hereinafter referred to as molecular weight) of the liquid crystalline polyester used in the present invention is preferably 30,000 or more. By setting the molecular weight to 30,000 or more, it has an appropriate viscosity at the spinning temperature and can improve the spinning property. The higher the molecular weight, the higher the strength, elongation and elastic modulus of the resulting fiber, but if the molecular weight is too high, the viscosity will be high and the fluidity will be poor, and eventually it will not flow, so the molecular weight is preferably less than 25 million, More preferably less than 20 million. The weight average molecular weight in terms of polystyrene referred to here is the same as that of F. The value measured by the method described in the item.

本発明に用いる液晶ポリエステルは溶融紡糸に供する前に乾燥することが水分混入による発泡を抑え、製糸性を高める上で好ましい。また真空乾燥を行うことで、液晶ポリエステルに残存するモノマーも除去できるため、製糸性をさらに高めることができ、より好ましい。乾燥条件としては100〜200℃にて、8〜24時間の真空乾燥が通常用いられる。   The liquid crystalline polyester used in the present invention is preferably dried before being subjected to melt spinning in order to suppress foaming due to water mixing and to improve the yarn-making property. Moreover, since the monomer which remain | survives in liquid crystalline polyester can also be removed by performing vacuum drying, a yarn-making property can be improved further and it is more preferable. As drying conditions, vacuum drying at 100 to 200 ° C. for 8 to 24 hours is usually used.

溶融紡糸において、液晶ポリエステルの溶融押出は公知の手法を用いることができるが、重合時に生成する秩序構造をなくすためにエクストルーダー型の押出機を用いることが好ましい。押し出されたポリマーは配管を経由しギアーポンプなど公知の計量装置により計量され、異物除去のフィルターを通過した後、口金へと導かれる。このときポリマー配管から口金までの温度(紡糸温度)は流動性を高めるため液晶ポリエステルの融点以上とすることが好ましく、液晶ポリエステルの融点+10℃以上がより好ましい。ただし紡糸温度が過度に高いと液晶ポリエステルの粘度が増加し、流動性の悪化、製糸性の悪化を招くため500℃以下とすることが好ましく、400℃以下がより好ましい。なお、ポリマー配管から口金までの温度をそれぞれ独立して調整することも可能である。この場合、口金に近い部位の温度をその上流側の温度より高くすることで吐出が安定する。   In melt spinning, a known method can be used for melt extrusion of liquid crystal polyester, but an extruder type extruder is preferably used in order to eliminate the ordered structure generated during polymerization. The extruded polymer is measured by a known measuring device such as a gear pump through a pipe, and after passing through a filter for removing foreign matter, is guided to a base. At this time, the temperature from the polymer pipe to the die (spinning temperature) is preferably not less than the melting point of the liquid crystal polyester, and more preferably not less than the melting point of the liquid crystal polyester + 10 ° C. in order to improve fluidity. However, if the spinning temperature is excessively high, the viscosity of the liquid crystal polyester increases, leading to deterioration of fluidity and yarn-making property. Therefore, the temperature is preferably 500 ° C. or less, and more preferably 400 ° C. or less. It is also possible to independently adjust the temperature from the polymer pipe to the base. In this case, the discharge is stabilized by making the temperature of the part close to the base higher than the temperature on the upstream side.

吐出においては口金孔の孔径を小さくするとともに、ランド長(口金孔の孔径と同一の直管部の長さ)を長くすることが製糸性を高め、繊度の均一性を高める点で好ましい。ただし孔径が過度に小さいと孔の詰まりが発生しやすくなるため直径0.05mm以上0.50mm以下が好ましく、0.10mm以上0.30mm以下がより好ましい。ランド長は過度に長いと圧力損失が高くなるため、ランド長を孔径で除した商で定義されるL/Dは0.5以上3.0以下が好ましく0.8以上2.5以下がより好ましい。   In discharging, it is preferable to reduce the diameter of the mouthpiece hole and to increase the land length (the length of the straight pipe portion that is the same as the diameter of the mouthpiece hole) from the viewpoint of improving the yarn-making property and improving the uniformity of the fineness. However, when the hole diameter is excessively small, clogging of the hole is likely to occur, and the diameter is preferably 0.05 mm or more and 0.50 mm or less, and more preferably 0.10 mm or more and 0.30 mm or less. If the land length is excessively long, the pressure loss increases. Therefore, the L / D defined by the quotient obtained by dividing the land length by the hole diameter is preferably 0.5 or more and 3.0 or less, more preferably 0.8 or more and 2.5 or less. preferable.

また均一性を維持するために1つの口金の孔数は50孔以下が好ましく、20孔以下がより好ましい。孔数の下限としては1孔でもよい。なお、口金孔の直上に位置する導入孔はストレート孔とすることが圧力損失を高めない点で好ましい。導入孔と口金孔の接続部分はテーパーとすることが異常滞留を抑制する上で好ましい。   In order to maintain uniformity, the number of holes in one die is preferably 50 holes or less, and more preferably 20 holes or less. The lower limit of the number of holes may be one hole. In addition, it is preferable that the introduction hole located immediately above the die hole is a straight hole in terms of not increasing pressure loss. In order to suppress abnormal stagnation, it is preferable that the connecting portion between the introduction hole and the die hole is tapered.

口金孔より吐出されたポリマーは保温、冷却領域を通過させ固化させた後、一定速度で回転するローラー(ゴデットローラー)により引き取られる。保温領域は過度に長いと製糸性が悪くなるため口金面から200mmまでとすることが好ましく、100mmまでとすることがより好ましい。保温領域は加熱手段を用いて雰囲気温度を高めることも可能であり、その温度範囲は100℃以上500℃以下が好ましく、200℃以上400℃以下がより好ましい。冷却は不活性ガス、空気、水蒸気等を用いることができるが、平行あるいは環状に噴き出す空気流を用いることが環境負荷を低くする点から好ましい。   The polymer discharged from the base hole passes through a heat retaining and cooling region and solidifies, and is then taken up by a roller (godet roller) that rotates at a constant speed. If the heat-retaining region is excessively long, the yarn forming property is deteriorated, so that it is preferably up to 200 mm from the base surface, and more preferably up to 100 mm. In the heat retaining region, the atmospheric temperature can be increased by using a heating means, and the temperature range is preferably 100 ° C. or higher and 500 ° C. or lower, and more preferably 200 ° C. or higher and 400 ° C. or lower. For the cooling, an inert gas, air, water vapor, or the like can be used. However, it is preferable to use an air flow that is jetted in parallel or in an annular shape from the viewpoint of reducing the environmental load.

引き取り速度は生産性、単糸繊度の低減のため50m/分以上が好ましく、500m/分以上がより好ましい。本発明で好ましい例として挙げた液晶ポリエステルは紡糸温度において好適な曳糸性を有することから引き取り速度を高速にでき、上限は特に制限されないが、曳糸性の点から2000m/分程度となる。   The take-up speed is preferably 50 m / min or more, more preferably 500 m / min or more in order to reduce productivity and single yarn fineness. The liquid crystalline polyester mentioned as a preferred example in the present invention has a suitable spinnability at the spinning temperature, so that the take-up speed can be increased, and the upper limit is not particularly limited, but is about 2000 m / min from the viewpoint of spinnability.

引き取り速度を吐出線速度で除した商で定義される紡糸ドラフトは1以上500以下とすることが好ましく製糸性を高め、繊度の均一性を高める点で10以上100以下とすることがより好ましい。   The spinning draft defined by the quotient obtained by dividing the take-up speed by the discharge linear speed is preferably 1 or more and 500 or less, and more preferably 10 or more and 100 or less from the viewpoint of improving the spinning property and improving the uniformity of the fineness.

溶融紡糸においてはポリマーの冷却固化から巻き取りまでの間に油剤を付与することが繊維の取り扱い性を向上させる上で好ましい。油剤は公知のものを使用できるが、固相重合前の巻き返し工程において溶融紡糸で得られた繊維(以下、紡糸原糸と記載する)を解舒する際の解舒性を向上させる点で一般的な紡糸油剤や後述の無機粒子(A)/リン酸系化合物(B)の混合油剤を用いることが好ましい。   In melt spinning, it is preferable to add an oil agent between the cooling and solidification of the polymer and the winding to improve the handleability of the fiber. As the oil agent, known ones can be used. However, it is generally used in terms of improving the unwinding property when unwinding the fiber obtained by melt spinning in the rewinding step before the solid phase polymerization (hereinafter referred to as the spinning yarn). It is preferable to use a typical spinning oil agent or a mixed oil agent of inorganic particles (A) / phosphoric acid compound (B) described later.

巻き取りは公知の巻取機を用いパーン、チーズ、コーンなどの形態のパッケージとすることができるが、巻き取り時にパッケージ表面にローラーが接触しないパーン巻きとすることが繊維に摩擦力を与えずフィブリル化させない点で好ましい。   Winding can be carried out using a known winding machine to form a package such as pirn, cheese, corn, etc. However, wrapping with a roller that does not contact the surface of the package during winding does not give the fiber a frictional force. It is preferable in that it is not fibrillated.

本発明においては、液晶ポリエステル繊維に無機粒子(A)とリン酸系化合物(B)とを塗布した後に固相重合を施すことを特徴とする。無機粒子(A)とリン酸系化合物(B)とを塗布することで固相重合時に繊維間で発生する融着を抑制する効果に加え、該成分が固相重合工程において後述のメカニズムにより熱変性することで、その後の洗浄工程において繊維からの除去が容易となる。洗浄して得られた繊維は繊維上の固相重合油剤の残存物が少ないので、スカムの発生および走行張力変動が抑制されるため製織性が良好になる。   In the present invention, solid phase polymerization is performed after applying inorganic particles (A) and a phosphoric acid compound (B) to liquid crystal polyester fibers. In addition to the effect of suppressing fusion occurring between fibers during solid-phase polymerization by applying inorganic particles (A) and phosphoric acid compound (B), the components are heated by a mechanism described later in the solid-phase polymerization process. The modification facilitates removal from the fiber in the subsequent washing step. Since the fiber obtained by washing has a small amount of solid-phase polymerization oil residue on the fiber, the occurrence of scum and fluctuation in running tension are suppressed, so that the weaving property is improved.

本発明における無機粒子(A)とは、公知の無機粒子であり、例として鉱物、水酸化マグネシウム等の金属水酸化物、シリカやアルミナ等の金属酸化物、炭酸カルシウムや炭酸バリウム等の炭酸塩化合物、硫酸カルシウムや硫酸バリウム等の硫酸塩化合物の他、カーボンブラック等が挙げられる。このような耐熱性の高い無機粒子を繊維上へ塗布することで単糸間の接触面積を減らし、固相重合時に発生する融着を回避することが可能となる。   The inorganic particles (A) in the present invention are known inorganic particles, and examples include minerals, metal hydroxides such as magnesium hydroxide, metal oxides such as silica and alumina, and carbonates such as calcium carbonate and barium carbonate. In addition to compounds, sulfate compounds such as calcium sulfate and barium sulfate, carbon black and the like can be mentioned. By applying such heat-resistant inorganic particles onto the fibers, it is possible to reduce the contact area between the single yarns and avoid the fusion that occurs during solid phase polymerization.

無機粒子(A)は、塗布工程を考慮して取扱いが容易であり環境負荷低減の観点から水分散が容易であることが好ましく、かつ、固相重合条件下において不活性であることが望ましい。これらの観点からシリカやケイ酸塩を用いることが好ましい。ケイ酸塩の場合は特に層状構造を持つフィロケイ酸塩が好ましい。なおフィロケイ酸塩としては、カオリナイト、ハロイ石、蛇紋石、珪ニッケル鉱、スメクタイト族、葉ろう石、滑石、雲母などが挙げられるが、これらの中でも入手の容易性を考慮して滑石、雲母を用いることが最も好ましい。   The inorganic particles (A) are easy to handle in consideration of the coating process, are preferably easy to disperse in water from the viewpoint of reducing the environmental load, and are preferably inert under solid-state polymerization conditions. From these viewpoints, it is preferable to use silica or silicate. In the case of a silicate, a phyllosilicate having a layered structure is particularly preferable. Examples of phyllosilicates include kaolinite, halloyite, serpentine, siliceous ore, smectite group, phyllite, talc, and mica. Most preferably, is used.

また、無機粒子(A)のメディアン径(D50)としては、10μm以下が好ましい。D50を10μm以下とすることで無機粒子(A)が繊維間に保持される確率が高まり、融着抑制効果が顕著となるためである。同様の理由より、より好ましくはD50が5μm以下である。また、D50の下限としてはコスト面、また固相重合後の洗浄工程における洗浄性を考慮し0.01μm以上が好ましい。なお、ここでいうメディアン径(D50)とは実施例における、G.項記載の方法により測定される値をいう。   Moreover, as a median diameter (D50) of an inorganic particle (A), 10 micrometers or less are preferable. This is because, by setting D50 to 10 μm or less, the probability that the inorganic particles (A) are held between the fibers is increased, and the fusion suppressing effect becomes remarkable. For the same reason, D50 is more preferably 5 μm or less. In addition, the lower limit of D50 is preferably 0.01 μm or more in consideration of the cost and the detergency in the washing step after solid phase polymerization. The median diameter (D50) referred to here is G. The value measured by the method described in the item.

また、本発明におけるリン酸系化合物(B)とは、下式下記化学式(1)〜(3)で示される化合物が使用できる。   In addition, as the phosphoric acid compound (B) in the present invention, compounds represented by the following chemical formulas (1) to (3) can be used.

Figure 0006040549
Figure 0006040549

ここで、R,Rは炭化水素、Mはアルカリ金属、Mはアルカリ金属、水素、炭化水素、含酸素炭化水素のいずれかを指す。 Here, R 1 and R 2 are hydrocarbons, M 1 is an alkali metal, M 2 is any one of an alkali metal, hydrogen, a hydrocarbon, and an oxygen-containing hydrocarbon.

なお、nは1以上の整数を表す。なお、nの上限は熱分解抑制の観点から好ましくは100以下、より好ましくは10以下である。   Note that n represents an integer of 1 or more. The upper limit of n is preferably 100 or less, more preferably 10 or less, from the viewpoint of suppressing thermal decomposition.

としては、固相重合時の熱分解による発生ガスを考慮し、環境負荷を低減する観点から構造中にフェニル基を含まないことが好ましく、アルキル基で構成されることがより好ましい。Rの炭素数としては、繊維表面への親和性の観点から2以上が好ましく、かつ、固相重合に伴う有機成分の分解による重量減量率を押さえ、固相重合時の分解により発生する炭化物が繊維表面へ残存することを防ぐ観点から20以下が好ましい。 As R 1 , in consideration of the gas generated by thermal decomposition during solid phase polymerization, it is preferable that the structure does not contain a phenyl group, and more preferably an alkyl group, from the viewpoint of reducing the environmental load. The carbon number of R 1 is preferably 2 or more from the viewpoint of affinity for the fiber surface, and suppresses the weight loss rate due to decomposition of the organic component accompanying solid phase polymerization, and is generated by decomposition during solid phase polymerization. Is preferably 20 or less from the viewpoint of preventing the remaining on the fiber surface.

また、Rとしては、水への溶解性の観点から炭素数5以下の炭化水素が好ましく、より好ましいのは炭素数2または3である。 R 2 is preferably a hydrocarbon having 5 or less carbon atoms from the viewpoint of solubility in water, and more preferably 2 or 3 carbon atoms.

としては製造コストの観点からナトリウム、カリウムが好ましい。 M 1 is preferably sodium or potassium from the viewpoint of production cost.

リン酸系化合物(B)を無機粒子(A)と併用することで、無機粒子(A)の分散性を高め、繊維への均一塗布を可能とし、優れた融着抑制効果を発現するだけでなく、無機粒子(A)が繊維表面に固着することを抑制することができので、洗浄後の繊維への無機粒子(A)の残存量が減り、その後の加工工程におけるスカム発生を抑制する効果が発現する。加えて、本願発明者らは鋭意検討の末、リン酸系化合物(B)が固相重合条件下において脱水反応およびリン酸系化合物(B)に含まれる有機成分が分解することでリン酸塩の縮合塩が形成され、この縮合塩形成に由来して固相重合後の洗浄工程において水により容易に繊維から除去することが可能であることを見出したのである。一方、リン酸系化合物(B)を単独塗布した場合、縮合塩の潮解性により通常の繊維の保管条件においても繊維表面でリン酸塩が吸湿、潮解し粘性を帯びるため洗浄性が低下することも確認した。すなわち、無機粒子(A)とリン酸系化合物(B)を併用することにより初めて優れた洗浄性が発現することを見出したものである。この優れた洗浄性が発現するメカニズムとしては、無機粒子(A)を併用することにより、無機粒子(A)が吸湿性を持つため、リン酸系化合物(B)の縮合塩が自然に吸湿し潮解することを防ぎ、水中を通過する際にのみリン酸系化合物(B)の縮合塩が吸水することで膨張し、無機粒子(A)と共に繊維表面から層状にはがれ落ちるためと推測している。   By using the phosphoric acid compound (B) in combination with the inorganic particles (A), the dispersibility of the inorganic particles (A) can be increased, enabling uniform application to the fibers, and exhibiting an excellent anti-fusing effect. Since the inorganic particles (A) can be prevented from sticking to the fiber surface, the residual amount of the inorganic particles (A) on the fibers after washing is reduced, and the effect of suppressing the occurrence of scum in the subsequent processing step. Is expressed. In addition, the inventors of the present application have made extensive studies, and the phosphate compound (B) is subjected to a dehydration reaction and the organic component contained in the phosphate compound (B) is decomposed under solid-state polymerization conditions, thereby causing phosphate. From the formation of this condensation salt, it was found that it can be easily removed from the fiber with water in the washing step after solid phase polymerization. On the other hand, when the phosphoric acid compound (B) is applied alone, the decontamination property of the condensed salt causes the phosphate to absorb moisture and deliquesce on the fiber surface even under normal fiber storage conditions, resulting in a decrease in detergency. Also confirmed. That is, it has been found that excellent detergency is expressed only when the inorganic particles (A) and the phosphoric acid compound (B) are used in combination. As a mechanism for expressing this excellent detergency, since the inorganic particles (A) have hygroscopicity when the inorganic particles (A) are used in combination, the condensed salt of the phosphoric acid compound (B) naturally absorbs moisture. It is presumed that the condensed salt of the phosphoric acid compound (B) expands by absorbing water only when passing through water, preventing deliquescence, and peels off in layers from the fiber surface together with the inorganic particles (A). .

無機粒子(A)およびリン酸系化合物(B)の付着量を適性化しつつ均一塗布するためにはリン酸系化合物(B)の希釈液に無機粒子(A)を添加した混合油剤を用いることが好ましく、希釈液としては安全性の観点から水を用いることが好ましい。なお、融着抑制の観点から希釈液中の無機粒子(A)の濃度は高いことが望ましく0.01wt%以上、より好ましくは0.1wt%以上であり、上限としては均一分散の観点から10wt%以下が好ましく、より好ましく5wt%以下である。また、リン酸系化合物(B)の濃度は無機粒子(A)の均一分散の観点からは高いことが望ましく、0.1wt%以上、より好ましくは1.0wt%以上である。なお、リン酸系化合物(B)の濃度の上限としては特に制限はないが、混合油剤の粘度上昇による付着過多、粘度の温度依存性増大による付着斑を避ける目的で50wt%以下が好ましく、より好ましくは30wt%以下である。   In order to uniformly apply the inorganic particles (A) and the phosphoric acid compound (B) with an appropriate amount of adhesion, use a mixed oil obtained by adding the inorganic particles (A) to the diluted solution of the phosphoric acid compound (B). It is preferable to use water as the diluent from the viewpoint of safety. Note that the concentration of the inorganic particles (A) in the diluent is desirably high from the viewpoint of suppressing fusion, and is preferably 0.01 wt% or more, more preferably 0.1 wt% or more, and the upper limit is 10 wt% from the viewpoint of uniform dispersion. % Or less is preferable, and 5 wt% or less is more preferable. The concentration of the phosphoric acid compound (B) is desirably high from the viewpoint of uniform dispersion of the inorganic particles (A), and is 0.1 wt% or more, more preferably 1.0 wt% or more. In addition, although there is no restriction | limiting in particular as an upper limit of the density | concentration of a phosphoric acid type compound (B), 50 wt% or less is preferable in order to avoid the excessive adhesion by the viscosity increase of a mixed oil agent, and the adhesion spot by the temperature dependence increase of a viscosity, More Preferably it is 30 wt% or less.

また、繊維への無機粒子(A)とリン酸系化合物(B)の塗布方法としては、溶融紡糸から巻き取りまでの間に行っても良いが、付着効率を高めるためには溶融紡糸して巻き取った糸条を巻き返しながら該糸条に塗布する、あるいは溶融紡糸で少量を付着させ、巻き取った糸条を巻き返しながら追加塗布することが好ましい。   In addition, as a method of applying the inorganic particles (A) and the phosphoric acid compound (B) to the fiber, it may be performed from melt spinning to winding, but in order to increase the adhesion efficiency, melt spinning is performed. It is preferable that the wound yarn is applied to the yarn while being rewound, or a small amount is adhered by melt spinning, and the wound yarn is additionally applied while being rewound.

付着方法はガイド給油法でも良いが、モノフィラメントなど総繊度の細い繊維に均一に付着させるためには金属製あるいはセラミック製のキスロール(オイリングロール)による付着が好ましい。なお、繊維がカセ状、トウ状の場合は混合油剤へ浸漬することで塗布できる。   The adhering method may be a guide oiling method, but in order to uniformly adhere to fine fibers such as monofilaments, adhering with a metal or ceramic kiss roll (oiling roll) is preferable. In addition, when a fiber is a cake shape and a tow shape, it can apply | coat by immersing in a mixed oil agent.

なお、繊維への無機粒子(A)の付着率を(a)wt%、リン酸系化合物(B)の付着率を(b)wt%としたとき、以下の条件をともに満たすことが好ましい。
条件1. 30≧a+b≧2.0
条件2. a≧0.05
条件3. b/a≧1
上記条件1において、固相重合油剤の油分付着率(a+b)が多いほど融着は抑制できるため、2.0wt%以上が好ましい一方で、多すぎると繊維がべたつきハンドリングが悪化するため30wt%以下が好ましい。より好ましくは4.0wt%以上20wt%以下である。なお繊維への固相重合油剤の油分付着率(a+b)は固相重合油剤塗布後の繊維について実施例D.項に記載した手法により求められる油分付着率の値を指す。
In addition, when the adhesion rate of the inorganic particles (A) to the fiber is (a) wt% and the adhesion rate of the phosphoric acid compound (B) is (b) wt%, it is preferable to satisfy both of the following conditions.
Condition 1. 30 ≧ a + b ≧ 2.0
Condition 2. a ≧ 0.05
Condition 3. b / a ≧ 1
In the above condition 1, since the fusion can be suppressed as the oil component adhesion rate (a + b) of the solid phase polymerization oil increases, 2.0 wt% or more is preferable. On the other hand, if the amount is too large, the sticky handling deteriorates and 30 wt% or less. Is preferred. More preferably, it is 4.0 wt% or more and 20 wt% or less. The oil adhesion rate (a + b) of the solid-phase polymerization oil to the fiber is the same as that of Example D. It refers to the value of the oil adhesion rate obtained by the method described in the section.

ここで、固相重合油剤を塗布する前に繊維に固相重合油剤以外の油剤が塗布されている場合には、固相重合油剤塗布前の繊維について実施例D.項記載の手法で油分付着率D1を求め、固相重合油剤塗布後の繊維について実施例D.項記載の手法で油分付着率D2を求め、固相重合油剤の油分付着率(a+b)はこれらの差であるD2−D1とする。   Here, when an oil agent other than the solid phase polymerization oil agent is applied to the fiber before applying the solid phase polymerization oil agent, Example D. The oil adhesion rate D1 was determined by the method described in the paragraph, and Example D. was applied to the fibers after application of the solid-phase polymerization oil. The oil adhesion rate D2 is determined by the method described in the section, and the oil content adhesion rate (a + b) of the solid phase polymerization oil is defined as D2−D1 which is the difference between them.

条件2において、無機粒子(A)の付着率(a)は0.05wt%以上とすることで無機粒子による融着抑制効果が顕著となる。付着率(a)の上限としては均一付着の観点から5wt%以下が目安である。   Under condition 2, the adhesion rate (a) of the inorganic particles (A) is 0.05 wt% or more, so that the effect of suppressing the fusion caused by the inorganic particles becomes remarkable. The upper limit of the adhesion rate (a) is 5 wt% or less from the viewpoint of uniform adhesion.

条件3において、リン酸系化合物(B)の付着率(b)を無機粒子(A)の付着率(a)以上とすることでリン酸系化合物(B)の固相重合時の縮合塩形成に由来した優れた洗浄性がより顕著に現れ、また無機粒子(A)と繊維間の固着を抑制する観点からも好ましい。   Formation of condensed salt during solid-phase polymerization of phosphoric acid compound (B) by setting the adhering rate (b) of phosphoric acid compound (B) to be equal to or higher than the adhering rate (a) of inorganic particles (A) under Condition 3 The excellent detergency derived from is more prominent, and is also preferable from the viewpoint of suppressing sticking between the inorganic particles (A) and the fibers.

なお、ここでいう無機粒子(A)の付着率(a)および、リン酸系化合物(B)の付着率(b)とは、下式にて算出される値を指す。   Here, the adhesion rate (a) of the inorganic particles (A) and the adhesion rate (b) of the phosphoric acid compound (B) refer to values calculated by the following equations.

(無機粒子(A)の付着率(a))=(a+b)×Ca÷(Ca+Cb)
(リン酸系化合物(B)の付着率(b))=(a+b)×Cb÷(Ca+Cb)
ここで、Caは固相重合油剤中の無機粒子(A)の濃度、Cbは固相重合油剤中のリン酸系化合物(B)の濃度を指す。
(Adhesion rate of inorganic particles (A) (a)) = (a + b) × Ca ÷ (Ca + Cb)
(Adhesion rate of phosphoric acid compound (B) (b)) = (a + b) × Cb ÷ (Ca + Cb)
Here, Ca indicates the concentration of the inorganic particles (A) in the solid phase polymerization oil, and Cb indicates the concentration of the phosphoric acid compound (B) in the solid phase polymerization oil.

本発明においては、無機粒子(A)とリン酸系化合物(B)を塗布した後に固相重合を行う。固相重合を行うことで分子量が高まり、これにより強度、弾性率、伸度が高まる。固相重合はカセ状、トウ状(例えば金属網等に載せて行う)、あるいはローラー間で連続的に糸条として処理することも可能であるが、設備が簡素化でき、生産性も向上できる点から繊維を芯材に巻き取ったパッケージ状で行うことが好ましい。   In the present invention, solid phase polymerization is performed after coating the inorganic particles (A) and the phosphoric acid compound (B). By performing solid phase polymerization, the molecular weight is increased, thereby increasing strength, elastic modulus, and elongation. Solid-phase polymerization can be processed in the form of a cake, tow (for example, carried on a metal net), or continuously as a thread between rollers, but the equipment can be simplified and productivity can be improved. It is preferable to carry out in the form of a package in which fibers are wound around a core from the point.

固相重合は窒素等の不活性ガス雰囲気中や、空気のような酸素含有の活性ガス雰囲気中または減圧下で行うことが可能であるが、設備の簡素化および繊維あるいは芯材の酸化防止のため窒素雰囲気下で行うことが好ましい。この際、固相重合の雰囲気は露点が−40℃以下の低湿気体が好ましい。   Solid-phase polymerization can be carried out in an inert gas atmosphere such as nitrogen, an oxygen-containing active gas atmosphere such as air, or under reduced pressure, but it can simplify equipment and prevent oxidation of fibers or core materials. Therefore, it is preferable to carry out in a nitrogen atmosphere. At this time, the atmosphere of the solid phase polymerization is preferably a low-humidity gas having a dew point of −40 ° C. or less.

固相重合温度は、固相重合に供する液晶ポリエステル繊維の吸熱ピーク温度をTm(℃)とした場合、最高到達温度がTm−60℃以上であることが好ましい。このような融点近傍の高温とすることで固相重合が速やかに進行し、繊維の強度を向上させることができる。なお、ここで言うTmは一般には液晶ポリエステル繊維の融点であり、本発明においては実施例E.項記載の測定方法により求められた値を指す。なお最高到達温度はTm(℃)未満とすることが融着防止のために好ましい。また固相重合温度を時間に対し段階的にあるいは連続的に高めることは、融着を防ぐと共に固相重合の時間効率を高めることができ、より好ましい。この場合、固相重合の進行と共に液晶ポリエステル繊維の融点は上昇するため、固相重合温度は、固相重合前の液晶ポリエステル繊維のTm+100℃程度まで高めることができる。ただしこの場合においても固相重合での最高到達温度は固相重合後の繊維のTm−60(℃)以上Tm(℃)未満とすることが固相重合速度を高めかつ融着を防止できる点から好ましい。 When the endothermic peak temperature of the liquid crystal polyester fiber subjected to solid phase polymerization is defined as Tm 1 (° C.), the maximum attainment temperature is preferably Tm 1 -60 ° C. or higher. By setting the temperature close to the melting point, solid phase polymerization can proceed rapidly and the strength of the fiber can be improved. The Tm 1 referred to here is generally the melting point of the liquid crystalline polyester fiber. The value calculated | required by the measuring method of item description is pointed out. It is preferable that the maximum temperature be less than Tm 1 (° C.) in order to prevent fusion. Further, it is more preferable to raise the solid-phase polymerization temperature stepwise or continuously with respect to time because it can prevent fusion and increase the time efficiency of solid-phase polymerization. In this case, since the melting point of the liquid crystal polyester fiber increases with the progress of the solid phase polymerization, the solid phase polymerization temperature can be increased to about Tm 1 + 100 ° C. of the liquid crystal polyester fiber before the solid phase polymerization. However preventing maximum temperature enhances the solid phase polymerization rate be less than Tm 1 -60 of the fiber after solid phase polymerization (℃) than Tm 1 (℃) and fused in the solid phase polymerization in this case It is preferable from the point which can be performed.

固相重合時間は、繊維の分子量すなわち強度、弾性率、伸度を十分に高くするためには最高到達温度で5時間以上とすることが好ましく、10時間以上がより好ましい。一方、強度、弾性率、伸度増加の効果は経過時間と共に飽和するため、生産性を高めるためには50時間以下とすることが好ましい。   The solid phase polymerization time is preferably 5 hours or more at the maximum temperature, and more preferably 10 hours or more, in order to sufficiently increase the molecular weight, that is, strength, elastic modulus, and elongation of the fiber. On the other hand, the effects of increasing the strength, elastic modulus, and elongation are saturated with the elapsed time.

本発明においては、固相重合した後、洗浄を行うことを特徴とする。本発明の製造方法により得られる液晶ポリエステル繊維は洗浄することで容易に固相重合油剤が除去可能であり、洗浄後の繊維は繊維上に有機成分に由来するゲル化物や固形物を有しないため、製織工程中での堆積物発生量が少なく、また走行張力変動が大幅に改善されることで製織工程における工程安定性および製品収率の大幅な改善が可能となる。すなわち、本発明の製造方法により得られる液晶ポリエステル繊維は製織工程における堆積物(スカム)が少なく、かつ走行張力の変動が小さく工程通過性に優れることで織物の製品収率が大幅に改善された液晶ポリエステル繊維を与え得る繊維として好適である。このように堆積物(スカム)が少なく、かつ走行張力の変動が小さく工程通過性に優れる液晶ポリエステル繊維は、製織を行うフィルターやスクリーン紗といったメッシュ織物に特に好適に用いることができる。   The present invention is characterized by washing after solid phase polymerization. Since the liquid crystalline polyester fiber obtained by the production method of the present invention can be easily removed by washing, the fiber after washing does not have gelled or solid matter derived from organic components on the fiber. The amount of deposits generated during the weaving process is small, and the fluctuation in running tension is greatly improved, so that the process stability and product yield in the weaving process can be greatly improved. That is, the liquid crystal polyester fiber obtained by the production method of the present invention has a significantly improved product yield of the woven fabric due to less deposits (scum) in the weaving process and less fluctuation in running tension and excellent processability. It is suitable as a fiber that can give liquid crystal polyester fiber. As described above, the liquid crystal polyester fiber having a small amount of deposits (scum), small fluctuation in running tension, and excellent processability can be used particularly suitably for mesh fabrics such as filters and screen wrinkles.

なお、本発明においては、製織工程における工程通過性および製品収率向上の観点から、固相重合した後、洗浄を行うことが好ましい。洗浄を行い融着防止用の固相重合油剤を除去することで、後の工程、たとえば製織工程での固相重合油剤のガイド等への堆積による工程通過性の悪化、堆積物の製品への混入による欠点生成などを抑制することが可能となる。   In the present invention, it is preferable to perform washing after solid phase polymerization from the viewpoint of process passability and product yield improvement in the weaving process. By removing the solid-phase polymerization oil agent for preventing fusion by washing, deterioration of the process passability due to deposition on the guide of the solid-phase polymerization oil agent in the subsequent process, for example, weaving process, the deposit to the product It is possible to suppress generation of defects due to mixing.

洗浄方法としては、繊維表面を布や紙で拭き取る方法も挙げられるが、固相重合糸に力学的な負荷を与えるとフィブリル化するため、固相重合油剤が溶解あるいは分散できる液体に繊維を浸す方法が好ましい。液体への浸漬に加えて流体を用いて吹き飛ばす方法は、液体により膨潤した固相重合油剤が効率的に除去できるためより好ましい。   The cleaning method includes a method of wiping the fiber surface with cloth or paper, but fibrillation occurs when a mechanical load is applied to the solid-phase polymerized yarn, so that the fiber is immersed in a liquid that can dissolve or disperse the solid-phase polymerized oil. The method is preferred. A method of blowing off using a fluid in addition to immersion in a liquid is more preferable because the solid-phase polymerization oil swollen by the liquid can be efficiently removed.

洗浄に用いる液体は、環境負荷を低減するために水とすることが好ましい。液体の温度は高い方が除去効率を高めることができ、30℃以上が好ましく、40℃以上がより好ましい。ただし温度が高すぎる場合には液体の蒸発が著しくなるため、液体の沸点−20℃以下が好ましく、沸点−30℃以下がより好ましい。   The liquid used for cleaning is preferably water in order to reduce the environmental load. The higher the temperature of the liquid, the higher the removal efficiency. The temperature is preferably 30 ° C or higher, more preferably 40 ° C or higher. However, if the temperature is too high, the liquid will evaporate significantly, so the boiling point of the liquid is preferably −20 ° C. or lower, more preferably the boiling point of −30 ° C. or lower.

洗浄に用いる液体には、洗浄効率向上の観点から界面活性剤を添加することが好ましい。界面活性剤の添加量は除去効率を高め、かつ環境負荷を低下させるため0.01〜1wt%が好ましく、0.1〜0.5wt%がより好ましい。   A surfactant is preferably added to the liquid used for cleaning from the viewpoint of improving cleaning efficiency. The addition amount of the surfactant is preferably 0.01 to 1 wt%, more preferably 0.1 to 0.5 wt% in order to increase the removal efficiency and reduce the environmental load.

さらに、洗浄効率を高めるため、洗浄に用いる液体に振動または液流を付与することが好ましい。この場合、液体を超音波振動させるなどの手法もあるが、設備簡素化、省エネの観点から液流を付与することが好ましい。液流付与の方法は液浴内の撹拌、ノズルでの液流付与等の方法があるが、液浴を循環する際の供給をノズルで行うことで簡単に実施できることからノズルでの液流付与が好ましい。   Furthermore, in order to increase the cleaning efficiency, it is preferable to impart vibration or a liquid flow to the liquid used for cleaning. In this case, there is a method of ultrasonically vibrating the liquid, but it is preferable to apply a liquid flow from the viewpoint of simplifying the equipment and saving energy. There are liquid flow application methods such as stirring in the liquid bath and liquid flow application at the nozzle, but it can be easily implemented by supplying with the nozzle when circulating in the liquid bath. Is preferred.

洗浄による固相重合油剤除去の程度は目的に応じ適宜調整されるが、高次加工工程や製織工程での繊維の工程通過性向上や織物品位向上の観点から洗浄後の繊維に残存する固相重合油剤の油分付着率として2.0wt%以下とすることが好ましく、より好ましくは1.0wt%以下、最も好ましくは0.5wt%以下である。なお、残存固重油剤の付着率は洗浄工程の直後で巻き取った繊維について実施例D.項に記載した手法により求められる値を指す。   The degree of removal of the solid-phase polymerization oil agent by washing is appropriately adjusted according to the purpose, but the solid phase remaining in the washed fiber from the viewpoint of improving the processability of the fiber in the higher processing and weaving processes and improving the quality of the fabric. The oil adhesion rate of the polymerized oil is preferably 2.0 wt% or less, more preferably 1.0 wt% or less, and most preferably 0.5 wt% or less. It should be noted that the adhesion rate of the remaining solid heavy oil agent was determined in Example D. with respect to the fiber wound immediately after the washing step. The value obtained by the method described in the section.

洗浄は単位時間当たりの処理量を増加させるため、繊維をカセ状、トウ状、あるいはパッケージの状態で液体に浸しても良いが、繊維長手方向の均一な除去を行うために、繊維を連続的に走行させつつ液体に浸すことが好ましい。繊維を連続的に液体に浸す方法は、ガイド等を用いて繊維を浴内に導く方法でも良いが、ガイドとの接触抵抗による固相重合繊維のフィブリル化を抑制するため、浴の両端にスリットを設け、このスリットを通って繊維が浴内を通過できるようにし、かつ浴内には糸道ガイドを設けないことが好ましい。   Since washing increases the throughput per unit time, the fibers may be immersed in liquid in the form of a cake, tow, or package, but the fibers are continuously removed for uniform removal in the fiber longitudinal direction. It is preferable to immerse in the liquid while running. The method of continuously immersing the fiber in the liquid may be a method of guiding the fiber into the bath using a guide or the like, but in order to suppress fibrillation of the solid-phase polymerized fiber due to contact resistance with the guide, slits are provided at both ends of the bath. It is preferable to allow the fiber to pass through the slit through the slit and not to provide a yarn path guide in the bath.

なお、パッケージ状の固相重合糸を連続的に走行させる場合、繊維を解舒するが、固相重合で生じる軽微な融着を剥がす際のフィブリル化を抑制するためには固相重合パッケージを回転させながら、回転軸と垂直方向(繊維周回方向)に糸を解舒する、いわゆる横取りにより解舒することが好ましい。   When the packaged solid-phase polymerized yarn is continuously run, the fibers are unwound, but in order to suppress fibrillation when peeling the slight fusion caused by solid-phase polymerization, the solid-phase polymerized package is used. It is preferable that the yarn is unwound by so-called side cutting, in which the yarn is unwound in the direction perpendicular to the rotation axis (fiber wrapping direction) while rotating.

そのような解舒方法としては、モーター等を用いて回転数一定で積極駆動する方法、ダンサーローラーを用いて回転数を制御しながら調速解舒する方式、フリーロールに固相重合パッケージをかけて、調速ローラーにより繊維を引っ張りつつ解舒する方法が挙げられる。また、液晶ポリエステル繊維をパッケージの状態で液体に浸し、そのまま解舒する方法も、油分を効率的に除去することが可能であるため、好ましい態様である。   Such unwinding methods include a method of actively driving at a constant rotation speed using a motor, etc., a method of speed-control unwinding while controlling the rotation speed using a dancer roller, and a solid-state polymerization package on a free roll. Then, a method of unwinding while pulling the fiber with a speed control roller can be mentioned. A method of immersing the liquid crystal polyester fiber in a liquid in a package state and unwinding it as it is is a preferable embodiment because the oil component can be efficiently removed.

なお、流体を用いて吹き飛ばす場合に用いる流体は、空気または水であることが好ましい。特に流体に空気を用いる場合は、液晶ポリエステル繊維表面を乾燥させる効果も期待することが可能になるため、その後の工程中で汚れが堆積することを防止し、すなわち収率の改善が見込まれることから、好ましい態様である。   In addition, it is preferable that the fluid used when blowing off using a fluid is air or water. In particular, when air is used as the fluid, it is possible to expect the effect of drying the liquid crystal polyester fiber surface, so that it is possible to prevent the accumulation of dirt in the subsequent process, that is, the yield can be improved. Therefore, this is a preferred embodiment.

また、洗浄後の液晶ポリエステル繊維表面には洗浄に用いた液体が付着しているため、すすぐことも好ましい態様である。洗浄に用いた液体が液晶ポリエステル繊維表面に残存すると最終的に乾燥して糸表面上の異物となるため、すすぐことで液晶ポリエステル繊維表面がより均一化でき、後の工程における異物堆積に起因した解舒張力の変動を抑制することが可能になる。   Moreover, since the liquid used for washing | cleaning has adhered to the liquid crystal polyester fiber surface after washing | cleaning, it is also a preferable aspect. If the liquid used for cleaning remains on the surface of the liquid crystal polyester fiber, it will eventually dry and become foreign matter on the yarn surface, so that the surface of the liquid crystal polyester fiber can be made more uniform by rinsing. It is possible to suppress fluctuations in the unwinding tension.

すすぎに用いる流体は水であることが好ましい。すすぎは、液晶ポリエステル繊維表面に付着した洗浄液成分を除去する目的で行われるため、該成分を溶解させることができる水を用いると、効率的に洗浄を行うことができる。また該成分の溶解度を増すことを目的に水を加温することも好ましい様態である。加温する温度は、高温ほど溶解度が高まるため、すすぎの効率が上がることが期待できるため、上限は特に限定されるものではないが、加温に要するエネルギー消費を抑え、エネルギーコストを低減することや、蒸発によるロスを考慮すると、80℃を目安にすると良い。   The fluid used for rinsing is preferably water. Rinsing is performed for the purpose of removing the cleaning liquid component adhering to the surface of the liquid crystal polyester fiber, so that it is possible to perform cleaning efficiently by using water capable of dissolving the component. It is also a preferred embodiment to warm water for the purpose of increasing the solubility of the component. The upper temperature is not particularly limited because the higher the temperature, the higher the solubility and the higher the efficiency of rinsing, so the energy consumption required for heating should be reduced and the energy cost reduced. Considering the loss due to evaporation, 80 ° C. is a good guideline.

すすぎを行った後に、吹き飛ばしによる液晶ポリエステル繊維表面に残存した水分の除去を組み合わせることでより好ましい様態となる。   It becomes a more preferable aspect by combining the removal of the water | moisture content which remained on the liquid-crystal polyester fiber surface by blowing off after rinsing.

また、洗浄後に後の工程における工程通過性向上の観点から仕上げ油剤を塗布することが好ましい。仕上げ油剤としては、ポリエステル繊維用に一般に用いられる仕上げ油剤が好ましく適用できるが、工程中での脱落による走行張力変動を抑制する観点から粒子を含まないことがより好ましい。   Moreover, it is preferable to apply a finishing oil from the viewpoint of improving process passability in a subsequent process after washing. As the finishing oil, a finishing oil generally used for polyester fibers can be preferably applied, but it is more preferable that the finishing oil does not contain particles from the viewpoint of suppressing fluctuations in running tension due to dropping during the process.

仕上げ油剤の油分付着率としては、仕上げ油剤による潤滑性などの効果を発揮させるために繊維に対して0.1wt%以上が好ましく、過剰付与による後加工工程での汚れを予防する目的で3.0%以下が好ましい。ここでいう仕上げ油剤の油分付着率とは、仕上げ油剤付与後の繊維について実施例D.項記載の方法にて求められる油分付着率の値から同繊維の残存固相重合油剤の油分付着率の値を差し引いた値をいう。   The oil adhesion rate of the finishing oil is preferably 0.1 wt% or more with respect to the fiber in order to exert effects such as lubricity by the finishing oil, and for the purpose of preventing soiling in the post-processing step due to excessive application. 0% or less is preferable. The oil adhesion rate of the finishing oil referred to here is that of Example D.F. The value obtained by subtracting the value of the oil adhesion rate of the residual solid-phase polymerization oil of the fiber from the value of the oil adhesion rate determined by the method described in the item.

また、スクリーン紗やフィルター用モノフィラメントなど液晶ポリエステル繊維の使用目的により特に繊維の耐磨耗性向上が必要な場合は、洗浄後にTm+10℃以上の温度で高温熱処理を施すことが好ましい。なお、ここで言うTmは実施例E.記載の測定方法により求められた値を指す。Tmは繊維の融点であるが、液晶ポリエステル繊維に融点+10℃以上もの高温で熱処理を施すことでTmにおけるピーク半値幅は15℃以上となり、繊維全体の結晶化度、結晶の完全性を低下させることで耐摩耗性が大きく向上する。 In addition, when it is particularly necessary to improve the abrasion resistance of the fiber depending on the purpose of use of the liquid crystal polyester fiber such as a screen basket or a monofilament for a filter, it is preferable to perform a high temperature heat treatment at a temperature of Tm 1 + 10 ° C. or higher after washing. In addition, Tm 1 said here is Example E.1. The value calculated | required by the measuring method of description is pointed out. Tm 1 is the melting point of the fiber, but when the liquid crystal polyester fiber is heat-treated at a high temperature of melting point + 10 ° C. or higher, the peak half width at Tm 1 becomes 15 ° C. or higher, and the crystallinity of the whole fiber and the completeness of the crystal are improved. By reducing it, the wear resistance is greatly improved.

熱処理という点では液晶ポリエステル繊維の固相重合があるが、この場合の処理温度は繊維の融点以下としないと繊維が融着、溶断してしまう。固相重合の場合、処理に伴い繊維の融点が上昇するため、最終の固相重合温度は処理前の繊維の融点以上となることがあるが、その場合でも処理温度は処理されている繊維の融点、すなわち熱処理後の繊維の融点よりも低い。すなわち、ここでいう高温熱処理とは、固相重合を行うことではなく、固相重合によって形成された緻密な結晶部分と非晶部分の構造差を減少させること、つまり結晶化度、結晶の完全性を低下させることで耐摩耗性を高めるものである。したがって処理温度は熱処理によりTmが変化しても、処理後の繊維のTm+10℃以上とすることが好ましく、この点から処理温度は処理後の繊維のTm+10℃以上とすることが好ましく、Tm+40℃以上がより好ましく、Tm+60℃以上とすることがさらに好ましく、Tm+80℃以上とすることが特に好ましい。なお、処理温度の上限としては繊維が溶断する温度であり、張力、速度、単繊維繊度、処理長で異なるがTm+300℃程度である。 In terms of heat treatment, there is solid-state polymerization of liquid crystalline polyester fibers, but if the treatment temperature in this case is not lower than the melting point of the fibers, the fibers will be fused and melted. In the case of solid-phase polymerization, the melting point of the fiber increases with the treatment, so the final solid-phase polymerization temperature may be equal to or higher than the melting point of the fiber before the treatment. It is lower than the melting point, that is, the melting point of the fiber after heat treatment. That is, the high temperature heat treatment here is not solid phase polymerization, but reduces the structural difference between the dense crystalline portion and the amorphous portion formed by solid phase polymerization, that is, the degree of crystallinity and completeness of the crystal. The wear resistance is improved by reducing the property. Thus also the processing temperature changes is Tm 1 by heat treatment, preferably greater than or equal to Tm 1 + 10 ° C. of the treated fiber, the process temperature from this point be Tm 1 + 10 ° C. or more fibers after treatment Preferably, Tm 1 + 40 ° C. or higher is more preferable, Tm 1 + 60 ° C. or higher is further preferable, and Tm 1 + 80 ° C. or higher is particularly preferable. The upper limit of the treatment temperature is the temperature at which the fibers are melted, and is about Tm 1 + 300 ° C. although it varies depending on the tension, speed, single fiber fineness, and treatment length.

また、別の熱処理として液晶ポリエステル繊維の熱延伸があるが、熱延伸は高温で繊維を緊張させるものであり、繊維構造は分子鎖の配向が高くなり、強度、弾性率は増加し、結晶化度、結晶の完全性は維持したまま、すなわちΔHmは高いまま、Tmのピーク半値幅は小さいままである。したがって耐摩耗性に劣る繊維構造となり、結晶化度を低下(ΔHm減少)、結晶の完全性を低下(ピーク半値幅増加)させて耐摩耗性を向上させることを目的とする本発明の熱処理とは異なる。なお本発明で言う高温熱処理では結晶化度が低下するため、強度、弾性率は増加しない。 Another heat treatment is the thermal stretching of liquid crystalline polyester fiber, but the thermal stretching is to tension the fiber at high temperature, the fiber structure has higher molecular chain orientation, the strength and elastic modulus increase, and the crystallization The degree of crystal integrity is maintained, that is, ΔHm 1 remains high, and the peak half-width of Tm 1 remains small. Accordingly, the heat treatment of the present invention aims to improve the wear resistance by reducing the crystallinity (decreasing ΔHm 1 ) and decreasing the crystal perfection (increasing peak half-value width), resulting in a fiber structure inferior in wear resistance. Is different. The high temperature heat treatment referred to in the present invention does not increase the strength and elastic modulus because the crystallinity is lowered.

高温熱処理は、繊維を連続的に走行させながら行うことが繊維間の融着を防ぎ、処理の均一性を高められるため好ましい。このときフィブリルの発生を防ぎ、かつ均一な処理を行うため、非接触熱処理を行うことが好ましい。加熱手段としては雰囲気の加熱、レーザーや赤外線を用いた輻射加熱などがあるがブロックまたはプレートヒーターを用いたスリットヒーターによる加熱は雰囲気加熱、輻射加熱の両方の効果を併せ持ち、処理の安定性が高まるため好ましい。   The high-temperature heat treatment is preferably performed while continuously running the fibers because fusion between the fibers can be prevented and the uniformity of the treatment can be improved. At this time, non-contact heat treatment is preferably performed in order to prevent generation of fibrils and perform uniform treatment. Heating means include atmospheric heating and radiant heating using laser and infrared rays, but heating with a slit heater using a block or plate heater has both the effects of atmospheric heating and radiant heating, increasing the stability of processing. Therefore, it is preferable.

処理時間は結晶化度、結晶の完全性を低下させるためには長い方が好ましく、0.01秒以上が好ましく、0.05秒以上がより好ましく、0.1秒以上がさらに好ましい。また処理時間の上限は、設備負荷を小さくするため、また処理時間が長いと分子鎖の配向が緩和し強度、弾性率が低下するため5.0秒以下が好ましく、3.0秒以下がより好ましく、2.0秒以下とすることがさらに好ましい。   The treatment time is preferably longer in order to lower the crystallinity and crystal perfection, preferably 0.01 seconds or more, more preferably 0.05 seconds or more, and further preferably 0.1 seconds or more. Further, the upper limit of the treatment time is preferably 5.0 seconds or less, more preferably 3.0 seconds or less, because the equipment load is reduced, and if the treatment time is long, the orientation of the molecular chain is relaxed and the strength and elastic modulus are lowered. Preferably, it is 2.0 seconds or less.

処理する際の繊維の張力は過度に高いと溶断が発生しやすく、また過度の張力がかかった状態で熱処理を行う場合、結晶化度の低下が小さく耐摩耗性の向上効果が低くなるため、できるだけ低張力にすることが好ましい。この点において熱延伸とは明らかに異なる。しかしながら、張力が低いと繊維の走行が不安定となり処理が不均一になることから、0.001cN/dtex以上1.0cN/dtex以下が好ましく、0.1cN/dtex以上0.3cN/dtex以下がより好ましい。   When the fiber tension at the time of processing is excessively high, fusing is likely to occur, and when heat treatment is performed in an excessive tension state, the effect of improving wear resistance is low because the decrease in crystallinity is small. It is preferable to make the tension as low as possible. This is clearly different from thermal stretching. However, if the tension is low, the fiber travel becomes unstable and the treatment becomes non-uniform, so 0.001 cN / dtex or more and 1.0 cN / dtex or less is preferable, and 0.1 cN / dtex or more and 0.3 cN / dtex or less. More preferred.

また走行させつつ高温熱処理する場合、張力はできるだけ低いほうが好ましいが、適宜ストレッチおよびリラックスを加えても良い。しかしながら、張力が低すぎると繊維の走行が不安定となり処理が不均一になることから、リラックス率は2%以下(延伸倍率0.98倍以上)が好ましい。また、張力が高いと熱による溶断が発生しやすく、また過度の張力がかかった状態で熱処理を行う場合、結晶化度の低下が小さく耐摩耗性の向上効果が低くなるため、ストレッチ率は熱処理温度にもよるが、10%(延伸倍率1.10倍)未満が好ましい。より好ましくは5%(延伸倍率1.05倍)未満、さらに好ましくは3%(1.03倍)未満である。なお、延伸倍率は、熱処理をローラー間(第1ローラーおよび第2ローラー間)で行う際には、第2ローラー速度を第1ローラー速度で割った商で定義される。   When heat treatment is performed while running, the tension is preferably as low as possible, but stretching and relaxation may be added as appropriate. However, if the tension is too low, the fiber travel becomes unstable and the treatment becomes non-uniform, so the relaxation rate is preferably 2% or less (stretching ratio 0.98 times or more). Also, when the tension is high, fusing due to heat is likely to occur, and when heat treatment is performed in an excessive tension state, the reduction in crystallinity is small and the effect of improving wear resistance is low. Depending on the temperature, it is preferably less than 10% (stretching ratio: 1.10 times). More preferably, it is less than 5% (stretching ratio: 1.05 times), more preferably less than 3% (1.03 times). The draw ratio is defined as a quotient obtained by dividing the second roller speed by the first roller speed when the heat treatment is performed between the rollers (between the first roller and the second roller).

処理速度は処理長にもよるが高速であるほど高温短時間処理が可能となり、耐摩耗向上効果が高まり、さらに生産性も向上するため100m/分以上が好ましく、200m/分以上がより好ましく、300m/分以上がさらに好ましい。処理速度の上限は繊維の走行安定性から1000m/分程度である。   Although the treatment speed depends on the treatment length, the higher the speed, the higher the temperature and short time treatment becomes possible, and the effect of improving wear resistance is further enhanced, and the productivity is also improved, preferably 100 m / min or more, more preferably 200 m / min or more, More preferably, it is 300 m / min or more. The upper limit of the processing speed is about 1000 m / min from the running stability of the fiber.

処理長は加熱方法にもよるが、非接触加熱の場合には均一な処理を行うために100mm以上が好ましく、200mm以上がより好ましく、500mm以上がさらに好ましい。また処理長が過度に長いとヒーター内部での糸揺れにより処理ムラ、繊維の溶断が発生するため3000mm以下が好ましく、2000mm以下がより好ましく、1000mm以下がさらに好ましい。   The treatment length depends on the heating method, but in the case of non-contact heating, it is preferably 100 mm or more, more preferably 200 mm or more, and even more preferably 500 mm or more in order to perform uniform treatment. In addition, if the treatment length is excessively long, processing unevenness and fiber fusing occur due to yarn swinging inside the heater, and therefore it is preferably 3000 mm or less, more preferably 2000 mm or less, and even more preferably 1000 mm or less.

本発明の製造方法により得られる液晶ポリエステル繊維は高強度、高弾性率、高耐熱の特徴を有しながら、繊維上に有機成分に由来するゲル化物や固形物を有しないため、工程中での堆積物発生量が少なく、また走行張力変動が大幅に改善されたものである。   Since the liquid crystalline polyester fiber obtained by the production method of the present invention has high strength, high elastic modulus, and high heat resistance, it does not have gelled or solid matter derived from organic components on the fiber. The amount of deposit generated is small, and the running tension fluctuation is greatly improved.

このため、一般産業用資材、土木・建築資材、スポーツ用途、防護衣、ゴム補強資材、電気材料(特に、テンションメンバーとして)、音響材料、一般衣料等の分野で広く用いられる。有効な用途としては、スクリーン紗、フィルター、ロープ、ネット、魚網、コンピューターリボン、プリント基板用基布、抄紙用のカンバス、エアーバッグ、飛行船、ドーム用等の基布、ライダースーツ、釣糸、各種ライン(ヨット、パラグライダー、気球、凧糸)、ブラインドコード、網戸用支持コード、自動車や航空機内各種コード、電気製品やロボットの力伝達コード等が挙げられ、特に有効な用途として工業資材用織物等に用いるモノフィラメントが挙げられ、中でも高強度、高弾性率、細繊度化の要求が強く、製織性向上、織物品位向上のため工程中での堆積物発生による張力変動の抑制を必要とする印刷用スクリーン紗やフィルター用のメッシュ織物として最も好適に用いることができる。   For this reason, it is widely used in the fields of general industrial materials, civil engineering / building materials, sports applications, protective clothing, rubber reinforcing materials, electrical materials (particularly as tension members), acoustic materials, and general clothing. Effective applications include screen kites, filters, ropes, nets, fishnets, computer ribbons, printed circuit board base fabrics, paper canvases, air bags, airships, dome base fabrics, rider suits, fishing lines, various lines (Yachts, paragliders, balloons, kites), blind cords, support cords for screen doors, various cords for automobiles and aircraft, power transmission cords for electrical products and robots, etc. Monofilaments to be used include printing screens that require high strength, high elastic modulus, finer fineness, and need to suppress fluctuations in tension due to deposits generated in the process to improve weaving and fabric quality. It can be most suitably used as a mesh fabric for bags and filters.

以下、実施例により本発明をより具体的に説明する。なお実施例中の各特性値は次の方法で求めた。   Hereinafter, the present invention will be described more specifically with reference to examples. In addition, each characteristic value in an Example was calculated | required with the following method.

A.走行張力変動幅(R)
液晶ポリエステル繊維を、湯浅糸道製ワッシャーテンサーY−601Lを使用し、ダイヤルの目盛りを0とし(このとき2本のパイプガイドは繊維走行方向に対し直交するように並ぶ)、2本のパイプガイドのうちどちらか1本の外側に繊維を走行させ、ワッシャー(TW−3)2枚を走行させているパイプガイドに挿入し、その間に繊維を走行させるようにし(走行糸が成す角度が約90°)、速度30m/分で走行させ、インテック株式会社製P/C対応型テンションメーター(型式:IT−NR)により、テンサーから5〜10cm下流の位置で走行糸条の張力を10分間連続測定し、付属のTenshionStarV400 V1.14にてEEPROMのDamping−timerを3としてデータを採取した。10分間の連続データのうち、最大値(Fmax)および最小値(Fmin)から走行張力の変動幅(R)を下式にて算出した。
A. Running tension fluctuation range (R)
Using liquid crystal polyester fiber, Washer Tensor Y-601L made by Yuasa Yarnichi, dial scale is set to 0 (at this time, two pipe guides are arranged so as to be orthogonal to the fiber running direction), two pipe guides The fiber is made to travel outside one of them, and two washers (TW-3) are inserted into the traveling pipe guide so that the fiber travels between them (the angle formed by the traveling yarn is about 90 °). °), traveling at a speed of 30 m / min, and continuously measuring the tension of the running yarn for 10 minutes at a position 5 to 10 cm downstream from the tensor using a P / C compatible tension meter (model: IT-NR) manufactured by Intec Corporation. Then, the data was collected using the attached TensionStar V400 V1.14 with the EEPROM Damping-timer set to 3. The fluctuation range (R) of the running tension was calculated from the maximum value (Fmax) and the minimum value (Fmin) among the continuous data for 10 minutes by the following equation.

(走行張力変動幅(R))=Fmax−Fmin
B.単繊維繊度
検尺機にて繊維を10mカセ取りし、その重量(g)を1000倍し、1水準当たり10回の測定を行い、平均値を繊度(dtex)とした。これをフィラメント数で除した商を単繊維繊度(dtex)とした。
(Running tension fluctuation range (R)) = Fmax−Fmin
B. Single fiber fineness 10 m of fiber was removed with a measuring instrument, the weight (g) was multiplied by 1000, 10 measurements were performed per level, and the average value was defined as fineness (dtex). The quotient obtained by dividing this by the number of filaments was defined as the single fiber fineness (dtex).

C.強度、伸度、弾性率
JIS L1013:1999記載の方法に準じて、試料長100mm、引張速度50mm/分の条件で、オリエンテック社製テンシロンUCT−100を用い1水準当たり10回の測定を行い、平均値を強力(cN)、強度(cN/dtex)、伸度(%)、弾性率(cN/dtex)とした。なお、弾性率とは初期引張抵抗度のことである。
C. Strength, elongation, elastic modulus 10 measurements per standard using Tensilon UCT-100 manufactured by Orientec under the conditions of sample length 100 mm and tensile speed 50 mm / min according to the method described in JIS L1013: 1999 The average value was defined as strength (cN), strength (cN / dtex), elongation (%), and elastic modulus (cN / dtex). The elastic modulus is the initial tensile resistance.

D.油分付着率
100mg以上の繊維を採取し、60℃にて10分間乾燥させた後の重量を測定し(W0)、繊維重量に対し100倍以上の水にドデシルベンゼンスルホン酸ナトリウムを繊維重量に対し2.0wt%添加した溶液に繊維を浸漬させ、室温にて20分超音波洗浄し、洗浄後の繊維を水洗し、60℃にて10分間乾燥させた後の重量を測定し(W1)、次式により油分付着率を算出した。
D. Oil content: 100mg or more of fiber was collected and weighed after drying for 10 minutes at 60 ° C (W0), and sodium dodecylbenzenesulfonate was added to the fiber weight with 100 times or more water. The fiber is immersed in a solution containing 2.0 wt%, ultrasonically washed at room temperature for 20 minutes, the washed fiber is washed with water, and the weight after drying at 60 ° C. for 10 minutes is measured (W1). The oil adhesion rate was calculated by the following formula.

(油分付着率(wt%))=(W0−W1)×100/W1
E.液晶ポリエステル繊維のTm、Tmにおけるピーク半値幅、融解熱量ΔHm、液晶ポリエステルポリマーの融点
TA instruments社製DSC2920により示差熱量測定を行い、50℃から20℃/分の昇温条件で測定した際に観測される吸熱ピークの温度をTm(℃)とし、Tmにおけるピーク半値幅(℃)、融解熱量(ΔHm)(J/g)を測定した。
(Oil content rate (wt%)) = (W0−W1) × 100 / W1
E. Peak half width at Tm 1, Tm 1 of the liquid crystal polyester fiber, heat of fusion .DELTA.Hm 1, performs a differential calorimetry by melting TA instruments Co. DSC2920 liquid crystal polyester polymer, was measured at a Atsushi Nobori condition of 20 ° C. / min from 50 ° C. The temperature of the endothermic peak observed at this time was defined as Tm 1 (° C.), and the peak half-value width (° C.) and heat of fusion (ΔHm 1 ) (J / g) at Tm 1 were measured.

なお、参考例に示した液晶ポリエステルポリマーについてはTmの観測後、Tm+20℃の温度で5分間保持した後、20℃/分の降温条件で50℃まで一旦冷却し、再度20℃/分の昇温条件で測定した際に観測される吸熱ピークをTmとし、Tmをもってポリマーの融点とした。 Incidentally, after observing the Tm 1 for a liquid crystal polyester polymer shown in Reference Examples, it was held 5 minutes at a temperature of Tm 1 + 20 ° C., once cooled to 50 ° C. at a cooling condition of 20 ° C. / min, again 20 ° C. / The endothermic peak observed when measured under the temperature rise condition for 2 minutes was defined as Tm 2, and Tm 2 was defined as the melting point of the polymer.

F.ポリスチレン換算の重量平均分子量(分子量)
溶媒としてペンタフルオロフェノール/クロロホルム=35/65(重量比)の混合溶媒を用い、液晶ポリエステルの濃度が0.04〜0.08重量/体積%となるように溶解させGPC測定用試料とした。なお、室温24時間の放置でも不溶物がある場合は、さらに24時間静置し、上澄み液を試料とした。これを、Waters社製GPC測定装置を用いて測定し、ポリスチレン換算により重量平均分子量(Mw)を求めた。
カラム:ShodexK−806M 2本、K−802 1本
検出器:示差屈折率検出器RI
温度 :23±2℃
流速 :0.8mL/分
注入量:200μL
G.メディアン径(D50)
島津製作所製レーザー回折式粒度分布測定装置SALD−2000Jで粒径測定を行い、メディアン径(D50)を求めた。
F. Polystyrene equivalent weight average molecular weight (molecular weight)
A mixed solvent of pentafluorophenol / chloroform = 35/65 (weight ratio) was used as a solvent, and the solution was dissolved so that the concentration of liquid crystal polyester was 0.04 to 0.08 weight / volume% to obtain a sample for GPC measurement. In addition, when there was an insoluble matter even after standing at room temperature for 24 hours, the mixture was left still for 24 hours, and the supernatant was used as a sample. This was measured using a GPC measuring apparatus manufactured by Waters, and the weight average molecular weight (Mw) was determined by polystyrene conversion.
Column: Two Shodex K-806M, one K-802 Detector: Differential refractive index detector RI
Temperature: 23 ± 2 ° C
Flow rate: 0.8 mL / min Injection volume: 200 μL
G. Median diameter (D50)
The particle size was measured with a Shimadzu laser diffraction particle size distribution analyzer SALD-2000J, and the median diameter (D50) was determined.

H.スカム発生量
液晶ポリエステル繊維を、湯浅糸道工業(株)製ワッシャーテンサーY−601Lを使用し、ダイヤルの目盛りを0とし(このとき2本のパイプガイドは繊維走行方向に対し直交するように並ぶ)、2本のパイプガイドのうちどちらか1本の外側に繊維を走行させ、ワッシャー(TW−3)2枚を走行させているパイプガイドに挿入し、その間に繊維を走行させるようにし(走行糸が成す確度が約90°)、10万mの繊維を速度400m/分で走行させ、繊維の走行前後でのワッシャー重量を(株)メトラートレド製分析用電子天秤(EP214C)で測定したときの、下式で示す値をいう。なお、走行させる繊維長は2.5万mから10万mの間で選択でき、繊維長が10万m未満の場合は、走行させた繊維長から繊維長10万mに相当するスカム発生量を比例計算した。
H. Amount of scum generation Using liquid crystal polyester fiber, Washer Tensor Y-601L manufactured by Yuasa Yidomichi Kogyo Co., Ltd., dial scale set to 0 (at this time, the two pipe guides are arranged so as to be orthogonal to the fiber running direction. ) Run the fiber on the outside of one of the two pipe guides, insert two washers (TW-3) into the running pipe guide, and let the fiber run between them (running) When the yarn is run at a speed of 400 m / min and the weight of the washer before and after running the fiber is measured with an analytical electronic balance (EP214C) manufactured by METTLER TOLEDO The value shown by the following formula. The running fiber length can be selected from 25,000 m to 100,000 m. When the fiber length is less than 100,000 m, the amount of scum generated is equivalent to the running fiber length of 100,000 m. Was proportionally calculated.

スカム発生量(g)=(繊維走行後のワッシャー重量)−(繊維走行前のワッシャー重量)
I.製織性、織物特性評価
レピア織機にて経糸に13dtexのポリエステルモノフィラメントを用い、織密度を経、緯とも250本/インチ(2.54cm)とし、打ち込み速度を100回/分とし、緯糸を液晶ポリエステル繊維として緯打ち込み試織を行った。この時、幅180cm、長さ10mの試織における給糸口(セラミックガイド)へのスカムの堆積から工程通過性を評価し、糸切れによる停台回数から製織性を評価し、織物開口部へのスカムの混入個数から織物品位を評価した。それぞれの判断基準を下記する。なお、停台回数が15回を越える場合は製織不可との判断により製織評価を中断した。
<工程通過性>
製織後も目視にてスカムの堆積が認められない;優良(◎)
製織後にスカムは認められるが繊維走行には支障なし;良好(○)
製織中にスカムが認められ繊維走行張力が増加する;(×)
<製織性>
停台5回以下;優良(◎)、6〜10回;良好(○)、11回以上;不良(×)
<織物品位>
スカム混入個数5個以下;優良(◎)、6〜10個;良好(○)、11個以上;不良(×)
参考例1
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸870重量部、4,4’−ジヒドロキシビフェニル327重量部、ハイドロキノン89重量部、テレフタル酸292重量部、イソフタル酸157重量部および無水酢酸1460重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、335℃まで4時間で昇温した。
Scum generation amount (g) = (Washer weight after running fiber) − (Washer weight before running fiber)
I. Evaluation of weaving properties and fabric characteristics Using polyester monofilament of 13 dtex for warp with rapier loom, weaving density is set to 250 weft / inch (2.54 cm), weaving speed is 100 times / min, weft is liquid crystalline polyester Weaving trials were conducted as fibers. At this time, the process passability is evaluated from the accumulation of scum on the yarn feeder (ceramic guide) in the trial weaving with a width of 180 cm and a length of 10 m, and the weaving property is evaluated from the number of stops due to yarn breakage. The quality of the fabric was evaluated from the number of scum. The criteria for each are described below. When the number of stops exceeded 15 times, weaving evaluation was interrupted by judging that weaving was impossible.
<Process passability>
Even after weaving, no accumulation of scum is observed visually; excellent (◎)
Although scum is observed after weaving, there is no hindrance to fiber running; good (○)
Scum is observed during weaving and fiber running tension increases; (×)
<Weaving properties>
Stopping 5 times or less; Excellent (◎), 6 to 10 times; Good (◯), 11 times or more; Poor (x)
<Textile grade>
Number of mixed scum: 5 or less; Excellent (◎), 6 to 10; Good (◯), 11 or more; Defective (×)
Reference example 1
In a 5 L reaction vessel equipped with a stirring blade and a distillation tube, 870 parts by weight of p-hydroxybenzoic acid, 327 parts by weight of 4,4′-dihydroxybiphenyl, 89 parts by weight of hydroquinone, 292 parts by weight of terephthalic acid, 157 parts by weight of isophthalic acid Then, 1460 parts by weight of acetic anhydride (1.10 equivalents of total phenolic hydroxyl groups) was added, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, followed by reaction at 145 ° C. for 2 hours. Then, it heated up to 335 degreeC in 4 hours.

重合温度を335℃に保持し、1.5時間で133Paに減圧し、更に40分間反応を続け、トルクが28kgcmに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。   The polymerization temperature was maintained at 335 ° C., the pressure was reduced to 133 Pa in 1.5 hours, and the reaction was continued for another 40 minutes. When the torque reached 28 kgcm, the polycondensation was completed. Next, the inside of the reaction vessel was pressurized to 0.1 MPa, the polymer was discharged to a strand through a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.

得られた液晶ポリエステルの組成、融点、分子量は表1に記載の通りである。   The composition, melting point and molecular weight of the obtained liquid crystal polyester are as shown in Table 1.

参考例2
攪拌翼、留出管を備えた5Lの反応容器に p−ヒドロキシ安息香酸907重量部と6−ヒドロキシ−2−ナフトエ酸457重量部および無水酢酸946重量部(フェノ−ル性水酸基合計の1.03モル当量)を攪拌翼、留出管を備えた反応容器に仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、325℃まで4時間で昇温した。
Reference example 2
In a 5 L reaction vessel equipped with a stirring blade and a distillation tube, 907 parts by weight of p-hydroxybenzoic acid, 457 parts by weight of 6-hydroxy-2-naphthoic acid and 946 parts by weight of acetic anhydride (1. 03 molar equivalents) was charged into a reaction vessel equipped with a stirring blade and a distillation tube, and the temperature was raised from room temperature to 145 ° C. over 30 minutes while stirring in a nitrogen gas atmosphere, followed by reaction at 145 ° C. for 2 hours. Then, it heated up to 325 degreeC in 4 hours.

重合温度を325℃に保持し、1.5時間で133Paに減圧し、更に20分間反応を続け、所定トルクに到達したところで重縮合を完了させた。次に反応容器内を0.1MPaに加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。   The polymerization temperature was maintained at 325 ° C., the pressure was reduced to 133 Pa in 1.5 hours, and the reaction was continued for another 20 minutes. When the predetermined torque was reached, the polycondensation was completed. Next, the inside of the reaction vessel was pressurized to 0.1 MPa, the polymer was discharged to a strand through a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.

得られた液晶ポリエステルの組成、融点、分子量は表1に記載の通りである。   The composition, melting point and molecular weight of the obtained liquid crystal polyester are as shown in Table 1.

Figure 0006040549
Figure 0006040549

実施例1
参考例1の液晶ポリエステルを用い、160℃、12時間の真空乾燥を行った後、大阪精機工作株式会社製φ15mm単軸エクストルーダーにて溶融押し出しし、ギアーポンプで計量しつつ紡糸パックにポリマーを供給した。紡糸パックでは金属不織布フィルターを用いてポリマーを濾過し、10ホールの口金よりポリマーを吐出した。吐出したポリマーは40mmの保温領域を通過させた後、25℃、空気流の環状冷却風により糸条の外側から冷却し固化させ、その後、脂肪酸エステル化合物を主成分とする紡糸油剤を付与し全フィラメントを第1ゴデットロールに引き取った。これを同じ速度である第2ゴデットロールを介した後、全フィラメント中の1本以外はサクションガンにて吸引し、残り1本のフィラメント繊維はダンサーアームを介しパーンワインダー(神津製作所社製EFT型テークアップワインダー、巻取パッケージに接触するコンタクトロール無し)にてパーンの形状に巻き取った。巻取中、糸切れは発生せず製糸性は良好であった。なお、得られた繊維の繊度は6.0dtex、強度は6.4cN/dtex、伸度は1.4%、弾性率は495cN/dtexであった。
この紡糸繊維パッケージから神津製作所社製SSP−MV型リワインダー(接触長(最内層の巻きストローク)200mm、ワインド数8.7、テーパー角45°)を用いて巻き返しを行った。紡糸繊維の解舒は、縦方向(繊維周回方向に対し垂直方向)に行い、調速ローラーは用いず、オイリングローラー(梨地仕上げのステンレスロール)を用いてリン酸系化合物(B)として下記化学式(4)で示されるリン酸系化合物(B)を6.0wt%含有する水溶液に無機粒子(A)として表2に滑石1として示すメディアン径1.0μmのタルク、SG−2000(日本タルク株式会社製)を1.0wt%分散させた固相重合油剤の給油を行った。
Example 1
After vacuum drying at 160 ° C. for 12 hours using the liquid crystal polyester of Reference Example 1, melt extrusion with a φ15 mm single screw extruder manufactured by Osaka Seiki Machine Co., Ltd., and supplying the polymer to the spinning pack while measuring with a gear pump did. In the spinning pack, the polymer was filtered using a metal nonwoven fabric filter, and the polymer was discharged from a 10-hole die. The discharged polymer is allowed to pass through a heat-retaining region of 40 mm, and then cooled and solidified from the outside of the yarn with an annular cooling air flow at 25 ° C., and then a spinning oil mainly composed of a fatty acid ester compound is applied to the polymer. The filament was taken up on the first godet roll. After passing this through the second godet roll at the same speed, all but one of the filaments is sucked with a suction gun, and the remaining one filament fiber is passed through a dancer arm through a pan winder (EFT take by Kozu Seisakusho). It was wound up in the shape of a pan with an upwinder and no contact roll in contact with the winding package. During winding, yarn breakage did not occur, and the yarn forming property was good. The obtained fiber had a fineness of 6.0 dtex, a strength of 6.4 cN / dtex, an elongation of 1.4%, and an elastic modulus of 495 cN / dtex.
The spun fiber package was rewound using an SSP-MV type rewinder (contact length (winding stroke of the innermost layer) 200 mm, wind number 8.7, taper angle 45 °) manufactured by Kozu Seisakusho. The spinning fiber is unwound in the longitudinal direction (perpendicular to the fiber circulation direction), without using a speed control roller, but using an oiling roller (satin-finished stainless steel roll) as a phosphate compound (B) Talc having a median diameter of 1.0 μm shown as talc 1 in Table 2 as inorganic particles (A) in an aqueous solution containing 6.0 wt% of the phosphoric acid compound (B 1 ) represented by (4), SG-2000 (Nippon Talc) The solid-phase polymerization oil agent in which 1.0 wt% was dispersed was supplied.

Figure 0006040549
Figure 0006040549

巻き返しの芯材にはステンレス製の穴あきボビンにケブラーフェルト(目付280g/m、厚み1.5mm)を巻いたものを用い、面圧は100gfとした。巻き返し後の繊維への固相重合油剤の油分付着率(a+b)は15wt%であった。 As the core material for rewinding, a bobbin made of stainless steel wound with Kevlar felt (weight per unit area 280 g / m 2 , thickness 1.5 mm) was used, and the surface pressure was 100 gf. The oil adhesion rate (a + b) of the solid phase polymerization oil to the fiber after rewinding was 15 wt%.

次に巻き返したパッケージからステンレスの穴あきボビンを外し、ケブラーフェルトに繊維を巻き取ったパッケージの状態として固相重合を行なった。固相重合は、密閉型オーブンを用い、室温から240℃までは約30分で昇温し、240℃にて3時間保持した後、4℃/時間で290℃まで昇温し、20時間保持する条件にて固相重合を行った。なお、雰囲気は除湿窒素を流量20NL/分にて供給し、庫内が加圧にならないように排気口より排気させた。   Next, the bobbin made of stainless steel was removed from the wound package, and solid state polymerization was performed in a package state in which the fiber was wound around Kevlar felt. In solid-phase polymerization, using a closed oven, the temperature is raised from room temperature to 240 ° C. in about 30 minutes, held at 240 ° C. for 3 hours, then heated to 290 ° C. at 4 ° C./hour and held for 20 hours. Solid-state polymerization was performed under the following conditions. The atmosphere was supplied with dehumidified nitrogen at a flow rate of 20 NL / min and exhausted from the exhaust port so that the interior was not pressurized.

得られた固相重合後の繊維の繊度は6.0dtex、強度は24.5cN/dtex、伸度は2.6%、弾性率は1100cN/dtexであり、固相重合前の繊維と比べて強度、伸度、弾性率が向上しており、固相重合が進んでいることが確認できた。   The fiber after solid phase polymerization has a fineness of 6.0 dtex, a strength of 24.5 cN / dtex, an elongation of 2.6%, and an elastic modulus of 1100 cN / dtex, compared to the fiber before solid phase polymerization. It was confirmed that the strength, elongation, and elastic modulus were improved and solid phase polymerization was progressing.

こうして得られた固相重合後のパッケージから繊維を解舒し、連続して固相重合油剤除去のための洗浄、および高温非接触熱処理を行なった。   Fibers were unwound from the thus obtained package after solid-phase polymerization, and continuously washed for removing the solid-phase polymerization oil agent and subjected to high-temperature non-contact heat treatment.

すなわち固相重合後のパッケージをフリーロールクリール(軸およびベアリングを有し、外層部は自由に回転できる。ブレーキおよび駆動源なし)にはめ、ここから糸を横方向(繊維周回方向)に引き出し、連続して、繊維を両端にスリットを設けた浴長150cm(接触長150cm)の浴槽(内部に繊維と接触するガイドなし)内に通し、油剤を洗浄除去した。洗浄液は非イオン・アニオン系の界面活性剤(三洋化成社製グランアップUS−30)を0.2wt%含有した50℃の温水とし、外部タンクにてこれを温調し、ポンプにて水槽に供給した。水槽への供給に際しては、水槽内に5cm間隔で穴を開けたパイプを通し、このパイプに供給することで水槽内に液流を与えるようにした。なおスリットおよび液面調整用の穴からあふれた洗浄液は回収し、外部タンクに戻す機構を設けている。   That is, the package after solid-phase polymerization is fitted into a freeroll creel (having a shaft and a bearing, and the outer layer portion can freely rotate. There is no brake and drive source), and the yarn is pulled out in the lateral direction (fiber circulation direction) from here. Continuously, the fiber was passed through a 150 cm bath (contact length 150 cm) bath (no guide contacting the fiber inside) with slits at both ends, and the oil agent was washed away. The cleaning liquid is 50 ° C. warm water containing 0.2 wt% of a nonionic / anionic surfactant (Granup US-30 manufactured by Sanyo Kasei Co., Ltd.). Supplied. When supplying to the water tank, a pipe having holes formed at intervals of 5 cm was passed through the water tank, and a liquid flow was given to the water tank by supplying the pipe. A cleaning liquid overflowing from the slit and the liquid level adjusting hole is collected and returned to the external tank.

洗浄後の繊維は引き続き、両端にスリットを設けた浴長23cm(接触長23cm)の浴槽(内部に繊維と接触するガイドなし)内に通し、50℃の温水ですすいだ。すすぎ後の繊維はベアリングローラーガイドを通し、空気流を当てて水を吹き飛ばして除去した後に、400m/分のセパレートローラー付きの第1ローラーに通した。なお、クリールはフリーロールであるため、このローラーにより繊維に張力を付与することで、固相重合パッケージからの解舒を行ない、繊維を走行させることになる。   The washed fiber was then passed through a bath with a bath length of 23 cm (contact length: 23 cm) with slits at both ends (without a guide contacting the fiber inside) and rinsed with hot water at 50 ° C. The fiber after the rinsing was passed through a bearing roller guide, blown away with air flow, and then passed through a first roller with a separation roller of 400 m / min. In addition, since a creel is a free roll, by applying tension | tensile_strength to a fiber with this roller, the unwinding from a solid-phase polymerization package will be performed and a fiber will run.

ローラーを通過した繊維を510℃に加熱した長さ1mのスリットヒーター間を走行させ、高温熱処理を行なった。スリットヒーター内にはガイド類を設けず、またヒーターと繊維も非接触としている。ヒーター通過後の繊維はセパレートローラー付きの第2ローラーに通した。第1ローラーと第2ローラーは同速度とした。第2ローラーを通過した繊維は、セラミック製のオイリングローラーにより脂肪酸エステル化合物を主体とする仕上げ油剤を付与し、EFT型ボビントラバースワインダー(神津製作所社製)にて巻き取った。   The fiber that passed through the roller was run between slit heaters having a length of 1 m, heated to 510 ° C., and subjected to high-temperature heat treatment. No guides are provided in the slit heater, and the heater and fiber are not in contact with each other. The fiber after passing through the heater was passed through a second roller with a separate roller. The first roller and the second roller were at the same speed. The fiber that passed through the second roller was provided with a finishing oil mainly composed of a fatty acid ester compound by a ceramic oiling roller, and wound with an EFT type bobbin traverse winder (manufactured by Kozu Seisakusho).

得られた繊維の物性は表2に示すとおり、残存固相重合油剤の油分付着率が極めて低く、かつ走行張力変動幅(R)が小さいため、スカム発生および張力変動が抑制されており、工程通過性および織物品位は優良であった。また、製織性も優良であった。   As shown in Table 2, the physical properties of the obtained fiber are such that the residual solid-phase polymerization oil has a very low oil adhesion rate and a small running tension fluctuation range (R), so that scum generation and tension fluctuation are suppressed. Passability and fabric quality were excellent. The weaving property was also excellent.

なお、得られた繊維のTmは339℃、ΔHmは0.5J/g、Tmにおけるピーク半値幅は31℃、スカム発生量は0.0003gであった。 The obtained fiber had a Tm 1 of 339 ° C., ΔHm 1 of 0.5 J / g, a peak half width at Tm 1 of 31 ° C., and a scum generation amount of 0.0003 g.

以上の結果から、実際の製織等の高次工程においても張力変動が小さく、スカム発生が抑制され、印刷用スクリーン紗、フィルター用などのメッシュ織物とした際には欠点が少なく、良好な特性を有することが期待できる。   From the above results, tension fluctuation is small even in high-order processes such as actual weaving, scum generation is suppressed, and there are few defects when mesh fabrics are used for printing screens, filters, etc. You can expect to have.

実施例2〜6
巻き返し時のオイリングローラーの回転数を変え、巻き返し後の繊維への固相重合油剤の油分付着率(a+b)を表2の通り変えた以外は実施例1と同様にして液晶ポリエステル繊維を得た。
Examples 2-6
A liquid crystal polyester fiber was obtained in the same manner as in Example 1, except that the number of rotations of the oiling roller during rewinding was changed and the oil adhesion rate (a + b) of the solid phase polymerization oil to the fiber after rewinding was changed as shown in Table 2. .

得られた繊維の物性は表2に示すとおり、残存固相重合油剤の油分付着率が極めて低く、かつ走行張力変動幅(R)が小さいため、スカム発生および張力変動が抑制されており、工程通過性および織物品位は優良であった。また、製織性も優良であった。   As shown in Table 2, the physical properties of the obtained fiber are such that the residual solid-phase polymerization oil has a very low oil adhesion rate and a small running tension fluctuation range (R), so that scum generation and tension fluctuation are suppressed. Passability and fabric quality were excellent. The weaving property was also excellent.

なお、実施例2で得られた繊維のTmは332℃、ΔHmは0.6J/g、Tmにおけるピーク半値幅は29℃、スカム発生量は0.0005gであった。実施例3で得られた繊維のTmは335℃、ΔHmは0.7J/g、Tmにおけるピーク半値幅は28℃、スカム発生量は0.0007gであった。実施例4で得られた繊維のTmは337℃、ΔHmは0.5J/g、Tmにおけるピーク半値幅は26℃、スカム発生量は0.0005gであった。実施例5で得られた繊維のTmは331℃、ΔHmは0.7J/g、Tmにおけるピーク半値幅は28℃、スカム発生量は0.0004gであった。実施例6で得られた繊維のTmは334℃、ΔHmは0.6J/g、Tmにおけるピーク半値幅は27℃、スカム発生量は0.0006gであった。 In addition, Tm 1 of the fiber obtained in Example 2 was 332 ° C., ΔHm 1 was 0.6 J / g, the peak half width at Tm 1 was 29 ° C., and the amount of scum generated was 0.0005 g. The fiber obtained in Example 3 had a Tm 1 of 335 ° C., ΔHm 1 of 0.7 J / g, a peak half width at Tm 1 of 28 ° C., and a scum generation amount of 0.0007 g. The fiber obtained in Example 4 had a Tm 1 of 337 ° C., ΔHm 1 of 0.5 J / g, a peak half width at Tm 1 of 26 ° C., and a scum generation amount of 0.0005 g. The fiber obtained in Example 5 had Tm 1 of 331 ° C., ΔHm 1 of 0.7 J / g, peak half width at Tm 1 of 28 ° C., and scum generation amount of 0.0004 g. The fiber obtained in Example 6 had Tm 1 of 334 ° C., ΔHm 1 of 0.6 J / g, peak half width at Tm 1 of 27 ° C., and scum generation amount of 0.0006 g.

以上の結果から、実際の製織等の高次工程においても張力変動が小さく、スカム発生が抑制され、印刷用スクリーン紗、フィルター用などのメッシュ織物とした際には欠点が少なく、良好な特性を有することが期待できる。   From the above results, tension fluctuation is small even in high-order processes such as actual weaving, scum generation is suppressed, and there are few defects when mesh fabrics are used for printing screens, filters, etc. You can expect to have.

Figure 0006040549
Figure 0006040549

実施例7
紡糸工程において、フィラメント数を10とした以外は実施例1と同様にして液晶ポリエステル繊維を得た。
Example 7
A liquid crystal polyester fiber was obtained in the same manner as in Example 1 except that the number of filaments was 10 in the spinning process.

得られた繊維の物性は表3に示すとおり、残存固相重合油剤の油分付着率が極めて低く、かつ走行張力変動幅(R)が小さいため、スカム発生および張力変動が抑制されており工程通過性および織物品位は優良であった。また、製織性も優良であった。   As shown in Table 3, the physical properties of the obtained fiber are extremely low in the solid-phase polymerization oil agent, and the running tension fluctuation range (R) is small. The quality and fabric quality were excellent. The weaving property was also excellent.

なお、実施例7で得られた繊維のTmは338℃、ΔHmは1.3J/g、Tmにおけるピーク半値幅は25℃、スカム発生量は0.0012gであった。 The fiber obtained in Example 7 had a Tm 1 of 338 ° C., ΔHm 1 of 1.3 J / g, a peak half width at Tm 1 of 25 ° C., and a scum generation amount of 0.0012 g.

以上の結果から、実際の製織等の高次工程においても張力変動が小さく、スカム発生が抑制され、印刷用スクリーン紗、フィルター用などのメッシュ織物とした際には欠点が少なく、良好な特性を有することが期待できる。   From the above results, tension fluctuation is small even in high-order processes such as actual weaving, scum generation is suppressed, and there are few defects when mesh fabrics are used for printing screens, filters, etc. You can expect to have.

なお、紡糸にて得られた繊維の繊度は6.0dtex、強度は6.1cN/dtex、伸度は1.3%、弾性率は463cN/dtexであり、固相重合後の繊維の繊度は6.0dtex、強度は23.6cN/dtex、伸度は2.5%、弾性率は1058cN/dtexであり、固相重合前の繊維と比べて強度、伸度、弾性率が向上しており、固相重合が進んでいることを確認した。   The fineness of the fiber obtained by spinning is 6.0 dtex, the strength is 6.1 cN / dtex, the elongation is 1.3%, and the elastic modulus is 463 cN / dtex. The fineness of the fiber after solid-phase polymerization is 6.0 dtex, strength is 23.6 cN / dtex, elongation is 2.5%, elastic modulus is 1058 cN / dtex, and the strength, elongation and elastic modulus are improved compared to the fiber before solid phase polymerization. It was confirmed that solid state polymerization was progressing.

実施例8
無機粒子(A)としてシリカであるサイリシア310P(富士シリシア化学株式会社製)を用いた以外は実施例1と同様にして液晶ポリエステル繊維を得た。
Example 8
A liquid crystal polyester fiber was obtained in the same manner as in Example 1 except that Silica 310P (manufactured by Fuji Silysia Chemical Ltd.), which is silica, was used as the inorganic particles (A).

得られた繊維の物性は表3に示すとおり、残存固相重合油剤の油分付着率が極めて低く、かつ走行張力変動幅(R)が小さいため、スカム発生および張力変動が抑制されており、工程通過性および織物品位は優良であった。また、製織性も優良であった。   As shown in Table 3, the physical properties of the obtained fiber are such that the residual solid-phase polymerization oil has a very low oil content adhesion rate and a small running tension fluctuation range (R), so that scum generation and tension fluctuation are suppressed. Passability and fabric quality were excellent. The weaving property was also excellent.

なお、実施例8で得られた繊維のTmは337℃、ΔHmは0.5J/g、Tmにおけるピーク半値幅は28℃、スカム発生量は0.0010gであった。 The fiber obtained in Example 8 had a Tm 1 of 337 ° C., ΔHm 1 of 0.5 J / g, a peak half width at Tm 1 of 28 ° C., and a scum generation amount of 0.0010 g.

以上の結果から、実際の製織等の高次工程においても張力変動が小さく、スカム発生が抑制され、印刷用スクリーン紗、フィルター用などのメッシュ織物とした際には欠点が少なく、良好な特性を有することが期待できる。   From the above results, tension fluctuation is small even in high-order processes such as actual weaving, scum generation is suppressed, and there are few defects when mesh fabrics are used for printing screens, filters, etc. You can expect to have.

実施例9
無機粒子(A)として表3に滑石2として示すメディアン径7.0μmのタルク、“ミクロエース”(登録商標)P−2(日本タルク株式会社製)を用いた以外は実施例1と同様にして液晶ポリエステル繊維を得た。
Example 9
As in Example 1, except that talc with a median diameter of 7.0 μm, “Microace” (registered trademark) P-2 (manufactured by Nippon Talc Co., Ltd.) shown as talc 2 in Table 3 is used as the inorganic particles (A). Liquid crystal polyester fiber was obtained.

得られた繊維の物性は表3に示すとおり、残存固相重合油剤の油分付着率が極めて低く、かつ走行張力変動幅(R)が小さいため、スカム発生および張力変動が抑制されており、工程通過性および織物品位は優良であった。また、製織性は良好であった。   As shown in Table 3, the physical properties of the obtained fiber are such that the residual solid-phase polymerization oil has a very low oil content adhesion rate and a small running tension fluctuation range (R), so that scum generation and tension fluctuation are suppressed. Passability and fabric quality were excellent. The weaving property was good.

なお、実施例9で得られた繊維のTmは334℃、ΔHmは0.6J/g、Tmにおけるピーク半値幅は24℃、スカム発生量は0.0010gであった。 In addition, Tm 1 of the fiber obtained in Example 9 was 334 ° C., ΔHm 1 was 0.6 J / g, the peak half width at Tm 1 was 24 ° C., and the amount of scum generated was 0.0010 g.

以上の結果から、実際の製織等の高次工程においても若干の糸切れ懸念はあるものの張力変動が小さく、スカム発生が抑制され、印刷用スクリーン紗、フィルター用などのメッシュ織物とした際には欠点が少なく、良好な特性を有することが期待できる。   From the above results, although there are some concerns about thread breakage even in high-order processes such as actual weaving, the fluctuation in tension is small, scum generation is suppressed, and when mesh fabrics are used for printing screens, filters, etc. There are few defects and it can be expected to have good characteristics.

なお、実施例1対比製織性が若干低下した要因としては無機粒子のメディアン径が大きいため、繊維の固相重合時にごく軽微な融着が発生しており、これに起因して繊維物性の低下がおき、製織時の糸切れにつながったものと推測する。   In addition, since the median diameter of the inorganic particles is large as a factor that slightly reduces the weaving property compared with Example 1, a very slight fusion occurred during the solid-phase polymerization of the fibers, resulting in a decrease in fiber properties. It is presumed that this led to thread breakage during weaving.

実施例10
無機粒子(A)として表3に滑石3として示すメディアン径11μmのタルク、“タルカンパウダー”(登録商標)PK−C(林化成株式会社製)を用いた以外は実施例1と同様にして液晶ポリエステル繊維を得た。
Example 10
Liquid crystal in the same manner as in Example 1 except that talc having a median diameter of 11 μm shown as talc 3 in Table 3 and “Talcan Powder” (registered trademark) PK-C (manufactured by Hayashi Kasei Co., Ltd.) were used as inorganic particles (A). Polyester fibers were obtained.

得られた繊維の物性は表3に示すとおり、残存固相重合油剤の油分付着率が極めて低く、かつ走行張力変動幅(R)が小さいため、スカム発生および張力変動が抑制されており工程通過性および織物品位は優良であった。また、製織性は良好であった。   As shown in Table 3, the physical properties of the obtained fiber are extremely low in the solid-phase polymerization oil agent, and the running tension fluctuation range (R) is small. The quality and fabric quality were excellent. The weaving property was good.

なお、実施例10で得られた繊維のTmは334℃、ΔHmは0.7J/g、Tmにおけるピーク半値幅は28℃、スカム発生量は0.0009gであった。 In addition, Tm 1 of the fiber obtained in Example 10 was 334 ° C., ΔHm 1 was 0.7 J / g, the peak half width at Tm 1 was 28 ° C., and the amount of scum generated was 0.0009 g.

以上の結果から、実際の製織等の高次工程においても若干の糸切れ懸念はあるものの張力変動が小さく、スカム発生が抑制され、印刷用スクリーン紗、フィルター用などのメッシュ織物とした際には欠点が少なく、良好な特性を有することが期待できる。   From the above results, although there are some concerns about thread breakage even in high-order processes such as actual weaving, the fluctuation in tension is small, scum generation is suppressed, and when mesh fabrics are used for printing screens, filters, etc. There are few defects and it can be expected to have good characteristics.

なお、実施例1対比製織性が若干低下した要因としては無機粒子のメディアン径が大きいため、繊維の固相重合時にごく軽微な融着が発生しており、これに起因して繊維物性の低下がおき、製織時の糸切れにつながったものと推測する。   In addition, since the median diameter of the inorganic particles is large as a factor that slightly reduces the weaving property compared with Example 1, a very slight fusion occurred during the solid-phase polymerization of the fibers, resulting in a decrease in fiber properties. It is presumed that this led to thread breakage during weaving.

Figure 0006040549
Figure 0006040549

実施例11〜14
固相重合油剤中の無機粒子(A)の分散量を変え、繊維への無機粒子の付着率(a)wt%を表4の通り変えた以外は実施例1と同様にして液晶ポリエステル繊維を得た。
Examples 11-14
A liquid crystal polyester fiber was prepared in the same manner as in Example 1 except that the dispersion amount of the inorganic particles (A) in the solid phase polymerization oil agent was changed and the adhesion rate (a) wt% of the inorganic particles to the fibers was changed as shown in Table 4. Obtained.

得られた繊維の物性は表4に示すとおり、残存固相重合油剤の油分付着率が極めて低くかつ走行張力変動幅(R)が小さいため、スカム発生および張力変動が抑制されており、工程通過性および織物品位は優良であった。また、製織性も優良もしくは良好であった。   As shown in Table 4, the physical properties of the obtained fibers are such that the residual solid phase polymerization oil has a very low oil adhesion rate and a small running tension fluctuation range (R), so that scum generation and tension fluctuation are suppressed, and the process passes. The quality and fabric quality were excellent. The weaving property was also excellent or good.

なお、実施例11で得られた繊維のTmは336℃、ΔHmは0.5J/g、Tmにおけるピーク半値幅は29℃、スカム発生量は0.0012gであった。実施例12で得られた繊維のTmは337℃、ΔHmは0.7J/g、Tmにおけるピーク半値幅は27℃、スカム発生量は0.0007gであった。実施例13で得られた繊維のTmは332℃、ΔHmは0.6J/g、Tmにおけるピーク半値幅は24℃、スカム発生量は0.0007gであった。実施例14で得られた繊維のTmは333℃、ΔHmは0.5J/g、Tmにおけるピーク半値幅は26℃、スカム発生量は0.0011gであった。 In addition, Tm 1 of the fiber obtained in Example 11 was 336 ° C., ΔHm 1 was 0.5 J / g, the peak half width at Tm 1 was 29 ° C., and the amount of scum generated was 0.0012 g. The fiber obtained in Example 12 had a Tm 1 of 337 ° C., ΔHm 1 of 0.7 J / g, a peak half width at Tm 1 of 27 ° C., and a scum generation amount of 0.0007 g. The fiber obtained in Example 13 had Tm 1 of 332 ° C., ΔHm 1 of 0.6 J / g, peak half width at Tm 1 of 24 ° C., and scum generation amount of 0.0007 g. The fiber obtained in Example 14 had a Tm 1 of 333 ° C., ΔHm 1 of 0.5 J / g, a peak half width at Tm 1 of 26 ° C., and a scum generation amount of 0.0011 g.

以上の結果から、実際の製織等の高次工程においても張力変動が小さく、スカム発生が抑制され、印刷用スクリーン紗、フィルター用などのメッシュ織物とした際には欠点が少なく、良好な特性を有することが期待できる。   From the above results, tension fluctuation is small even in high-order processes such as actual weaving, scum generation is suppressed, and there are few defects when mesh fabrics are used for printing screens, filters, etc. You can expect to have.

なお、実施例11にて実施例1対比、製織性が若干低下した要因として無機粒子(A)の添加量が低いため、固相重合時に若干の融着が発生しており、これに起因して繊維物性の低下がおき、製織時の糸切れにつながったものと推測する。
また、実施例14にて実施例1対比、製織性が若干低下した要因として無機粒子(A)の添加量が多く付着斑が発生し、固相重合時に若干の融着が発生しており、これに起因して繊維物性の低下がおき、製織時の糸切れにつながったものと推測する。
In Example 11, compared with Example 1, the amount of inorganic particles (A) was low as a factor that slightly reduced the weaving property, so that some fusion occurred during solid-phase polymerization, which is attributed to this. Therefore, it is assumed that the physical properties of the fibers were lowered, leading to yarn breakage during weaving.
Further, compared to Example 1 in Example 14, the amount of inorganic particles (A) added as a factor that slightly reduced the weaving occurred, adhesion spots occurred, and some fusion occurred during solid phase polymerization, It is presumed that the fiber physical properties were lowered due to this, leading to yarn breakage during weaving.

実施例15、16
リン酸系化合物(B)として表4のとおり、下記化学式(5)で示されるリン酸系化合物(B)、または下記化学式(6)で示されるリン酸系化合物(B)に変更した以外は実施例1と同様にして液晶ポリエステル繊維を得た。
Examples 15 and 16
As shown in Table 4, the phosphoric acid compound (B) was changed to the phosphoric acid compound (B 2 ) represented by the following chemical formula (5) or the phosphoric acid compound (B 3 ) represented by the following chemical formula (6). Except for the above, liquid crystal polyester fibers were obtained in the same manner as in Example 1.

Figure 0006040549
Figure 0006040549

Figure 0006040549
Figure 0006040549

得られた繊維の物性は表4に示すとおり、残存固相重合油剤の油分付着率が極めて低く、かつ走行張力変動幅(R)が小さいため、スカム発生および張力変動が抑制されており、工程通過性および織物品位は優良であった。また、製織性も優良であった。   As shown in Table 4, the physical properties of the obtained fiber are such that the residual solid phase polymerization oil has a very low oil adhesion rate and has a small running tension fluctuation range (R), so that scum generation and tension fluctuation are suppressed. Passability and fabric quality were excellent. The weaving property was also excellent.

なお、実施例15で得られた繊維のTmは329℃、ΔHmは0.5J/g、Tmにおけるピーク半値幅は28℃、スカム発生量は0.0006gであった。実施例16で得られた繊維のTmは330℃、ΔHmは0.6J/g、Tmにおけるピーク半値幅は27℃、スカム発生量は0.0007gであった。 The fiber obtained in Example 15 had a Tm 1 of 329 ° C., ΔHm 1 of 0.5 J / g, a peak half width at Tm 1 of 28 ° C., and a scum generation amount of 0.0006 g. The fiber obtained in Example 16 had a Tm 1 of 330 ° C., ΔHm 1 of 0.6 J / g, a peak half width at Tm 1 of 27 ° C., and a scum generation amount of 0.0007 g.

以上の結果から、実際の製織等の高次工程においても張力変動が小さく、スカム発生が抑制され、印刷用スクリーン紗、フィルター用などのメッシュ織物とした際には欠点が少なく、良好な特性を有することが期待できる。   From the above results, tension fluctuation is small even in high-order processes such as actual weaving, scum generation is suppressed, and there are few defects when mesh fabrics are used for printing screens, filters, etc. You can expect to have.

Figure 0006040549
Figure 0006040549

実施例17,18
紡糸工程における吐出量を変化させ、繊度を変更した以外は実施例1と同様にして液晶ポリエステル繊維を得た。
Examples 17 and 18
A liquid crystal polyester fiber was obtained in the same manner as in Example 1 except that the discharge amount in the spinning process was changed and the fineness was changed.

得られた繊維の物性は表5に示すとおり、残存固相重合油剤の油分付着率が極めて低く、かつ走行張力変動幅(R)が小さいため、スカム発生および張力変動が抑制されており、工程通過性および織物品位は優良であった。また、製織性も優良であった。   As shown in Table 5, the physical properties of the obtained fiber have a very low oil adhesion rate of the residual solid-phase polymerization oil agent and a small running tension fluctuation range (R), so that scum generation and tension fluctuation are suppressed. Passability and fabric quality were excellent. The weaving property was also excellent.

なお、実施例17で得られた繊維のTmは338℃、ΔHmは0.5J/g、Tmにおけるピーク半値幅は29℃、スカム発生量は0.0007gであった。実施例18で得られた繊維のTmは336℃、ΔHmは0.7J/g、Tmにおけるピーク半値幅は26℃、スカム発生量は0.0006gであった。 The fiber obtained in Example 17 had a Tm 1 of 338 ° C., ΔHm 1 of 0.5 J / g, a peak half width at Tm 1 of 29 ° C., and a scum generation amount of 0.0007 g. The fiber obtained in Example 18 had Tm 1 of 336 ° C., ΔHm 1 of 0.7 J / g, peak half-width at Tm 1 of 26 ° C., and scum generation amount of 0.0006 g.

以上の結果から、実際の製織等の高次工程においても張力変動が小さく、スカム発生が抑制され、印刷用スクリーン紗、フィルター用などのメッシュ織物とした際には欠点が少なく、良好な特性を有することが期待できる。   From the above results, tension fluctuation is small even in high-order processes such as actual weaving, scum generation is suppressed, and there are few defects when mesh fabrics are used for printing screens, filters, etc. You can expect to have.

なお、実施例17において紡糸にて得られた繊維の繊度は4.0dtex、強度は5.8cN/dtex、伸度は1.3%、弾性率は460cN/dtexであり、固相重合後の繊維の繊度は4.0dtex、強度は21.0cN/dtex、伸度は2.3%、弾性率は1059cN/dtexであり、固相重合前の繊維と比べて強度、伸度、弾性率が向上しており、固相重合が進んでいることを確認した。   The fiber obtained by spinning in Example 17 had a fineness of 4.0 dtex, a strength of 5.8 cN / dtex, an elongation of 1.3%, and an elastic modulus of 460 cN / dtex. The fineness of the fiber is 4.0 dtex, the strength is 21.0 cN / dtex, the elongation is 2.3%, the elastic modulus is 1059 cN / dtex, and the strength, elongation, and elastic modulus are higher than those of the fiber before solid phase polymerization. It was confirmed that solid phase polymerization was progressing.

また、実施例18において紡糸にて得られた繊維の繊度は13.0dtex、強度は6.1cN/dtex、伸度は1.3%、弾性率は484cN/dtexであり、固相重合後の繊維の繊度は13.0dtex、強度は20.5cN/dtex、伸度は2.2%、弾性率は945cN/dtexであり、固相重合前の繊維と比べて強度、伸度、弾性率が向上しており、固相重合が進んでいることを確認した。   Further, the fineness of the fiber obtained by spinning in Example 18 was 13.0 dtex, the strength was 6.1 cN / dtex, the elongation was 1.3%, and the elastic modulus was 484 cN / dtex. The fineness of the fiber is 13.0 dtex, the strength is 20.5 cN / dtex, the elongation is 2.2%, the elastic modulus is 945 cN / dtex, and the strength, elongation, and elastic modulus are higher than those of the fiber before solid phase polymerization. It was confirmed that solid phase polymerization was progressing.

実施例19
スリットヒーターを昇温せずに、高温熱処理を行わなかった以外は実施例1と同様にして液晶ポリエステル繊維を得た。
Example 19
A liquid crystal polyester fiber was obtained in the same manner as in Example 1 except that the temperature of the slit heater was not increased and the high temperature heat treatment was not performed.

得られた繊維の物性は表5に示すとおり、残存固相重合油剤の油分付着率が極めて低く、かつ走行張力変動幅(R)が小さいため、スカム発生および張力変動が抑制されており、工程通過性および織物品位は優良であった。また、製織性も良好であった。   As shown in Table 5, the physical properties of the obtained fiber have a very low oil adhesion rate of the residual solid-phase polymerization oil agent and a small running tension fluctuation range (R), so that scum generation and tension fluctuation are suppressed. Passability and fabric quality were excellent. Moreover, the weaving property was also good.

なお、実施例19で得られた繊維のTmは345℃、ΔHmは7.8J/g、Tmにおけるピーク半値幅は6.3℃、スカム発生量は0.0012gであった。 In addition, Tm 1 of the fiber obtained in Example 19 was 345 ° C., ΔHm 1 was 7.8 J / g, the peak half-width at Tm 1 was 6.3 ° C., and the amount of scum generated was 0.0012 g.

以上の結果から、実際の製織等の高次工程においても若干の糸切れの懸念はあるものの張力変動が小さく、スカム発生が抑制され、印刷用スクリーン紗、フィルター用などのメッシュ織物とした際には欠点が少なく、良好な特性を有することが期待できる。   From the above results, there are concerns about slight yarn breakage even in high-order processes such as actual weaving, but the tension fluctuation is small, the occurrence of scum is suppressed, and when mesh fabrics are used for printing screens, filters, etc. Can be expected to have good characteristics with few defects.

なお、実施例1対比、製織性が若干低下した要因として熱処理を行わなかったため、工程中での擦過により繊維のフィブリルが発生し易く、これに起因して製織時の糸切れにつながったものと推測する。   In addition, since heat treatment was not performed as a factor that slightly reduced the weaving property as compared with Example 1, fiber fibrils were likely to be generated by rubbing in the process, which led to yarn breakage during weaving. Infer.

実施例20
紡糸時に参考例2の液晶ポリエステルポリマーを使用した以外は実施例19と同様にして液晶ポリエステル繊維を得た。
Example 20
A liquid crystal polyester fiber was obtained in the same manner as in Example 19 except that the liquid crystal polyester polymer of Reference Example 2 was used at the time of spinning.

得られた繊維の物性は表5に示すとおり、残存固相重合油剤の油分付着率が極めて低く、かつ走行張力変動幅(R)が小さいため、スカム発生および張力変動が抑制されており、工程通過性および織物品位は優良であった。また、製織性も良好であった。また、紡糸にて得られた固相重合前の繊維の繊度は6.0dtex、強度は8.8cN/dtex、伸度は2.0%、弾性率は532cN/dtexであり、固相重合前の繊維と比べて強度、伸度、弾性率が向上しており、固相重合が進んでいることを確認した。   As shown in Table 5, the physical properties of the obtained fiber have a very low oil adhesion rate of the residual solid-phase polymerization oil agent and a small running tension fluctuation range (R), so that scum generation and tension fluctuation are suppressed. Passability and fabric quality were excellent. Moreover, the weaving property was also good. The fiber before solid phase polymerization obtained by spinning has a fineness of 6.0 dtex, a strength of 8.8 cN / dtex, an elongation of 2.0%, and an elastic modulus of 532 cN / dtex. The strength, elongation, and elastic modulus were improved as compared with the above fiber, and it was confirmed that solid phase polymerization was progressing.

なお、実施例20で得られた繊維のTmは320℃、ΔHmは11J/g、Tmにおけるピーク半値幅は7.5℃、スカム発生量は0.0012gであった。 In addition, Tm 1 of the fiber obtained in Example 20 was 320 ° C., ΔHm 1 was 11 J / g, the peak half width at Tm 1 was 7.5 ° C., and the amount of scum generated was 0.0012 g.

以上の結果から、実際の製織等の高次工程においても若干の糸切れの懸念はあるものの張力変動が小さく、スカム発生が抑制され、印刷用スクリーン紗、フィルター用などのメッシュ織物とした際には欠点が少なく、良好な特性を有することが期待できる。   From the above results, there are concerns about slight yarn breakage even in high-order processes such as actual weaving, but the tension fluctuation is small, the occurrence of scum is suppressed, and when mesh fabrics are used for printing screens, filters, etc. Can be expected to have good characteristics with few defects.

なお、実施例1対比、製織性が若干低下した要因として熱処理を行わなかったため、工程中での擦過により繊維のフィブリルが発生し易く、これに起因して製織時の糸切れにつながったものと推測する。   In addition, since heat treatment was not performed as a factor that slightly reduced the weaving property as compared with Example 1, fiber fibrils were likely to be generated by rubbing in the process, which led to yarn breakage during weaving. Infer.

Figure 0006040549
Figure 0006040549

実施例21〜23
仕上げ油剤の付与時にオイリングローラーの回転数を変更し、仕上げ油剤の油分付着率を変更した以外は実施例1と同様にして液晶ポリエステル繊維を得た。
Examples 21-23
Liquid crystal polyester fibers were obtained in the same manner as in Example 1 except that the number of rotations of the oiling roller was changed when the finishing oil was applied, and the oil adhesion rate of the finishing oil was changed.

得られた繊維の物性は表6に示すとおり、残存固相重合油剤の油分付着率が極めて低く、かつ走行張力変動幅(R)が小さいため、スカム発生および張力変動が抑制されており工程通過性および織物品位は優良であった。製織性も優良または良好であった。なお、仕上げ油剤の油分付着率の増加に伴い、繊維の擬似接着に起因した糸切れの頻度が増加し、製織性が低下する傾向が確認された。   As shown in Table 6, the physical properties of the obtained fiber are extremely low in the solid-phase polymerization oil agent, and the running tension fluctuation range (R) is small. The quality and fabric quality were excellent. The weaving property was also excellent or good. As the oil adhesion rate of the finishing oil increased, the frequency of yarn breakage due to the pseudo-adhesion of the fibers increased, and the tendency of the weaving to decrease was confirmed.

なお、実施例21で得られた繊維のTmは338℃、ΔHmは0.6J/g、Tmにおけるピーク半値幅は24℃、スカム発生量は0.0007gであった。実施例22で得られた繊維のTmは335℃、ΔHmは0.7J/g、Tmにおけるピーク半値幅は27℃、スカム発生量は0.0007gであった。実施例23で得られた繊維のTmは337℃、ΔHmは0.5J/g、Tmにおけるピーク半値幅は23℃、スカム発生量は0.0009gであった。 In addition, Tm 1 of the fiber obtained in Example 21 was 338 ° C., ΔHm 1 was 0.6 J / g, the peak half width at Tm 1 was 24 ° C., and the amount of scum generated was 0.0007 g. The fiber obtained in Example 22 had a Tm 1 of 335 ° C., ΔHm 1 of 0.7 J / g, a peak half width at Tm 1 of 27 ° C., and a scum generation amount of 0.0007 g. The fiber obtained in Example 23 had a Tm 1 of 337 ° C., ΔHm 1 of 0.5 J / g, a peak half width at Tm 1 of 23 ° C., and a scum generation amount of 0.0009 g.

以上の結果から、実際の製織等の高次工程においても張力変動が小さく、スカム発生が抑制され、印刷用スクリーン紗、フィルター用などのメッシュ織物とした際には欠点が少なく、良好な特性を有することが期待できる。   From the above results, tension fluctuation is small even in high-order processes such as actual weaving, scum generation is suppressed, and there are few defects when mesh fabrics are used for printing screens, filters, etc. You can expect to have.

実施例24
参考例1の液晶ポリエステルおよびビクトレックス社製ポリエーテルエーテルケトン樹脂PEEK90G(融点344℃。以下、PEEKと呼ぶ)を用いた。ペレット状にて液晶ポリエステルおよびPEEKを重量比90/10の比率で混合した後、エクストルーダーにて溶融・混練した以外は実施例1と同様にして紡糸、巻き返し、固相重合、洗浄、高温熱処理を行い、液晶ポリエステルからなるブレンド繊維を得た。
Example 24
The liquid crystal polyester of Reference Example 1 and polyether ether ketone resin PEEK90G (melting point: 344 ° C., hereinafter referred to as PEEK) manufactured by Victrex were used. Spinning, rewinding, solid phase polymerization, washing, high-temperature heat treatment in the same manner as in Example 1 except that liquid crystal polyester and PEEK were mixed in a pellet form at a weight ratio of 90/10 and then melted and kneaded with an extruder. The blend fiber which consists of liquid crystalline polyester was obtained.

得られた繊維の物性は表6に示すとおり、実施例1の繊維対比若干の強度、弾性率の低下がみられたものの、残存固相重合油剤の油分付着率が極めて低く、かつ走行張力変動幅(R)が小さいため、スカム発生および張力変動が抑制されており、工程通過性および織物品位は優良であった。また、製織性も良好であった。   As shown in Table 6, although the physical properties of the obtained fibers were slightly reduced in strength and elastic modulus compared to the fibers of Example 1, the oil adhesion rate of the remaining solid-phase polymerization oil agent was extremely low, and the running tension fluctuated. Since the width (R) was small, scum generation and tension fluctuation were suppressed, and the process passability and the fabric quality were excellent. Moreover, the weaving property was also good.

なお、実施例24で得られた繊維のTmは344℃、ΔHmは4.4J/g、Tmにおけるピーク半値幅は15.47℃、スカム発生量は0.0012gであった。 The fiber obtained in Example 24 had a Tm 1 of 344 ° C., ΔHm 1 of 4.4 J / g, a peak half width at Tm 1 of 15.47 ° C., and a scum generation amount of 0.0012 g.

以上の結果から、実際の製織等の高次工程においても若干の糸切れの懸念はあるものの張力変動が小さく、スカム発生が抑制され、印刷用スクリーン紗、フィルター用などのメッシュ織物とした際には欠点が少なく、良好な特性を有することが期待できる。   From the above results, there are concerns about slight yarn breakage even in high-order processes such as actual weaving, but the tension fluctuation is small, the occurrence of scum is suppressed, and when mesh fabrics are used for printing screens, filters, etc. Can be expected to have good characteristics with few defects.

なお、実施例1対比、製織性が若干低下した要因としては異種ポリマーのブレンド繊維であるため、工程中での擦過によりポリマー界面での剥離による繊維のフィブリルが発生し易く、これに起因して製織時の糸切れ回数の増加につながったものと推測する。   In addition, as compared with Example 1, as a factor that the weaving property is slightly lowered, because of the blended fibers of different polymers, fiber fibrils are likely to occur due to peeling at the polymer interface due to abrasion in the process. It is estimated that this led to an increase in the number of yarn breaks during weaving.

なお、紡糸にて得られた繊維の繊度は6.0dtex、強度は5.6cN/dtex、伸度は1.2%、弾性率は432cN/dtexであり、固相重合後の繊維の繊度は6.0dtex、強度は22.1cN/dtex、伸度は2.3%、弾性率は985cN/dtexであり、固相重合前の繊維と比べて強度、伸度、弾性率が向上しており、固相重合が進んでいることを確認した。   The fineness of the fiber obtained by spinning is 6.0 dtex, the strength is 5.6 cN / dtex, the elongation is 1.2%, and the elastic modulus is 432 cN / dtex. The fineness of the fiber after solid-phase polymerization is 6.0 dtex, strength is 22.1 cN / dtex, elongation is 2.3%, elastic modulus is 985 cN / dtex, and the strength, elongation and elastic modulus are improved compared to the fiber before solid phase polymerization. It was confirmed that solid state polymerization was progressing.

実施例25
芯成分として参考例1の液晶ポリエステル、鞘ポリマーとしてPEEKを用い、芯鞘複合繊維用の口金に別々のエクストルーダーで溶融した液晶ポリエステルとPEEKを供給した以外は実施例1と同様にして紡糸、巻き返し、固相重合、洗浄、高温熱処理を行い、芯と鞘の重量比が70/30である液晶ポリエステルからなる複合繊維を得た。
Example 25
Spinning in the same manner as in Example 1 except that the liquid crystal polyester of Reference Example 1 was used as the core component, PEEK was used as the sheath polymer, and the liquid crystal polyester and PEEK melted by separate extruders were supplied to the die for the core-sheath composite fiber. Rewinding, solid phase polymerization, washing, and high temperature heat treatment were performed to obtain a composite fiber made of liquid crystal polyester having a core / sheath weight ratio of 70/30.

得られた繊維の物性は表6に示すとおり、実施例1の繊維対比若干の強度、弾性率の低下がみられたものの、残存固相重合油剤の油分付着率が極めて低く、かつ走行張力変動幅(R)が小さいため、スカム発生および張力変動が抑制されており、工程通過性および織物品位は優良であった。また、製織性も良好であった。   As shown in Table 6, although the physical properties of the obtained fibers were slightly reduced in strength and elastic modulus compared to the fibers of Example 1, the oil adhesion rate of the remaining solid-phase polymerization oil agent was extremely low, and the running tension fluctuated. Since the width (R) was small, scum generation and tension fluctuation were suppressed, and the process passability and the fabric quality were excellent. Moreover, the weaving property was also good.

なお、実施例25で得られた繊維のTmは344℃、ΔHmは13J/g、Tmにおけるピーク半値幅は16℃、スカム発生量は0.0010gであった。 In addition, Tm 1 of the fiber obtained in Example 25 was 344 ° C., ΔHm 1 was 13 J / g, the peak half width at Tm 1 was 16 ° C., and the amount of scum generated was 0.0010 g.

以上の結果から、実際の製織等の高次工程においても若干の糸切れの懸念はあるものの張力変動が小さく、スカム発生が抑制され、印刷用スクリーン紗、フィルター用などのメッシュ織物とした際には欠点が少なく、良好な特性を有することが期待できる。   From the above results, there are concerns about slight yarn breakage even in high-order processes such as actual weaving, but the tension fluctuation is small, the occurrence of scum is suppressed, and when mesh fabrics are used for printing screens, filters, etc. Can be expected to have good characteristics with few defects.

なお、実施例1対比、製織性が若干低下した要因としては異種ポリマーとの芯鞘複合繊維であるため、工程中での擦過によりポリマー界面での剥離による繊維のフィブリルが発生し易く、これに起因して製織時の糸切れ回数の増加につながったものと推測する。   As compared with Example 1, the reason why the weaving property was slightly lowered was the core-sheath composite fiber with the different polymer, so that fiber fibrils were easily generated due to peeling at the polymer interface due to abrasion in the process. It is presumed that this led to an increase in the number of yarn breaks during weaving.

なお、紡糸にて得られた繊維の繊度は6.0dtex、強度は4.9cN/dtex、伸度は1.0%、弾性率は343cN/dtexであり、固相重合後の繊維の繊度は6.0dtex、強度は16.7cN/dtex、伸度は1.7%、弾性率は758cN/dtexであり、固相重合前の繊維と比べて強度、伸度、弾性率が向上しており、固相重合が進んでいることを確認した。   The fineness of the fiber obtained by spinning is 6.0 dtex, the strength is 4.9 cN / dtex, the elongation is 1.0%, and the elastic modulus is 343 cN / dtex. The fineness of the fiber after solid-phase polymerization is 6.0 dtex, strength is 16.7 cN / dtex, elongation is 1.7%, elastic modulus is 758 cN / dtex, and the strength, elongation and elastic modulus are improved compared to the fiber before solid phase polymerization. It was confirmed that solid state polymerization was progressing.

Figure 0006040549
Figure 0006040549

比較例1
固相重合工程の後に洗浄を行わなかったこと以外は実施例1と同様にして液晶ポリエステル繊維を得た。
Comparative Example 1
A liquid crystal polyester fiber was obtained in the same manner as in Example 1 except that no washing was performed after the solid phase polymerization step.

得られた繊維の物性は表7に示すとおり、残存固相重合油剤の油分付着率が高く、走行張力変動幅(R)が高いため、給糸口へのスカム堆積量が多く、製品へのスカム混入が多発し織物品位不良であった。また、糸切れも多発したが、これはスカム堆積による張力変動の増大に起因すると推測する。なお比較例1で得られた繊維のスカム発生量は0.0636gであった。   As shown in Table 7, the physical properties of the obtained fiber are high in the oil adhesion rate of the residual solid-phase polymerization oil agent and high in the running tension fluctuation range (R), so the amount of scum accumulated on the yarn feeder is large, and the scum on the product Mixing occurred frequently and the quality of the fabric was poor. In addition, yarn breakage occurred frequently, which is presumed to be caused by an increase in tension fluctuation due to scum accumulation. The amount of scum generated in the fiber obtained in Comparative Example 1 was 0.0636 g.

以上の結果から、実際の製織等の高次工程においてもスカムが多量発生し、走行張力変動が増大し、糸切れが発生するだけでなく、印刷用スクリーン紗、フィルター用などのメッシュ織物とした際には欠点が頻発することが予想される。   From the above results, a large amount of scum is generated even in high-order processes such as actual weaving, fluctuations in running tension increase, thread breakage occurs, and mesh fabrics for printing screens and filters are used. In some cases, defects are expected to occur frequently.

比較例2
固相重合用油剤として無機粒子(A)のみを用い、リン酸系化合物(B)を用いなかったこと以外は実施例1と同様にして固相重合を行ったところ繊維同士が融着し、解舒時にフィブリルが多発し糸切れしたため、洗浄工程以降を実施することができなかった。
Comparative Example 2
When the solid phase polymerization was performed in the same manner as in Example 1 except that only the inorganic particles (A) were used as the oil agent for solid phase polymerization and the phosphoric acid compound (B) was not used, the fibers were fused. Since the fibrils occurred frequently at the time of unwinding and the yarn was broken, it was not possible to carry out the washing process and subsequent steps.

比較例3
固相重合用油剤としてリン酸系化合物(B)の代わりにポリエチレングリコールラウリレート主成分の紡糸油剤を用いたこと以外は実施例1と同様にして液晶ポリエステル繊維を得た。
Comparative Example 3
A liquid crystal polyester fiber was obtained in the same manner as in Example 1 except that a spinning oil mainly composed of polyethylene glycol laurate was used in place of the phosphoric acid compound (B) as an oil for solid phase polymerization.

得られた繊維の物性は表7に示すとおり、残存固相重合油剤の油分付着率が高く、走行張力変動幅(R)が高いため、給糸口へのスカム堆積量が多く、製品へのスカム混入が多発し織物品位不良であった。また、糸切れも頻発したが、これはスカム堆積による張力変動増大による糸切れに加え、固相重合時の融着に起因した繊維のフィブリル化によるものと推測される。   As shown in Table 7, the physical properties of the obtained fiber are high in the oil adhesion rate of the residual solid-phase polymerization oil agent and high in the running tension fluctuation range (R), so the amount of scum accumulated on the yarn feeder is large, and the scum on the product Mixing occurred frequently and the quality of the fabric was poor. In addition, yarn breakage occurred frequently, which is presumed to be due to fiber fibrillation due to fusion during solid phase polymerization in addition to yarn breakage due to increased tension fluctuation due to scum deposition.

なお、比較例3で得られた繊維のTmは332℃、ΔHmは0.7J/g、Tmにおけるピーク半値幅は25℃、スカム発生量は0.0110gであった。 In addition, Tm 1 of the fiber obtained in Comparative Example 3 was 332 ° C., ΔHm 1 was 0.7 J / g, the peak half width at Tm 1 was 25 ° C., and the amount of scum generated was 0.0110 g.

以上の結果から、実際の製織等の高次工程においてもスカムが多量発生し、走行張力変動が増大し、糸切れが発生するだけでなく、印刷用スクリーン紗、フィルター用などのメッシュ織物とした際には欠点が頻発することが予想される。   From the above results, a large amount of scum is generated even in high-order processes such as actual weaving, fluctuations in running tension increase, thread breakage occurs, and mesh fabrics for printing screens and filters are used. In some cases, defects are expected to occur frequently.

比較例4
固相重合用油剤として無機粒子(A)を用いなかったこと以外は実施例1と同様にして液晶ポリエステル繊維を得た。
Comparative Example 4
Liquid crystal polyester fibers were obtained in the same manner as in Example 1 except that the inorganic particles (A) were not used as the oil agent for solid phase polymerization.

得られた繊維にはフィブリル発生が認められ、これは固相重合油剤として無機粒子(A)を用いなかったために繊維間の融着が発生したためと推測される。なお、得られた繊維の物性は表7に示すとおり、残存固相重合油剤の油分付着率が高く、走行張力変動幅(R)が高いため、給糸口へのスカム堆積量が多く、スカムおよびフィブリルに起因するとみられる糸切れが多発したため製織を中止した。   Fibril generation was observed in the obtained fiber, which is presumed to be caused by fusion between fibers because inorganic particles (A) were not used as the solid phase polymerization oil agent. In addition, as shown in Table 7, the physical properties of the obtained fibers are high in the adhesion rate of the residual solid-phase polymerization oil agent and the running tension fluctuation range (R) is high, so that the amount of scum accumulated on the yarn feeder is large. Weaving was discontinued due to frequent thread breakage that was probably caused by fibrils.

なお、比較例4で得られた繊維のTmは335℃、ΔHmは0.6J/g、Tmにおけるピーク半値幅は24℃、スカム発生量は0.0113gであった。 The fiber obtained in Comparative Example 4 had a Tm 1 of 335 ° C., ΔHm 1 of 0.6 J / g, a peak half width at Tm 1 of 24 ° C., and a scum generation amount of 0.0113 g.

以上の結果から、実際の製織等の高次工程においてもスカムが多量発生し、スカムやフィブリルに起因した糸切れが多発するため、製織不可であることが予想される。   From the above results, a large amount of scum is generated even in high-order processes such as actual weaving, and yarn breakage due to scum and fibrils occurs frequently.

比較例5
固相重合用油剤として無機粒子(A)とリン酸系化合物(B)の代わりにポリジメチルシロキサンを主成分とする油剤を使用したこと以外は実施例1と同様にして液晶ポリエステル繊維を得た。
Comparative Example 5
A liquid crystal polyester fiber was obtained in the same manner as in Example 1 except that an oil agent mainly composed of polydimethylsiloxane was used instead of the inorganic particles (A) and the phosphoric acid compound (B) as the oil agent for solid phase polymerization. .

得られた繊維の物性は表7に示すとおり、残存する固相重合油剤は計算上少ないものの走行張力変動が大きく、製織中に給糸口に微量のスカム堆積が見られ、これに起因するとみられる走行張力増大および製品へのスカム混入が発生した。また、張力変動によると思われる糸切れが多発した。なお、液晶ポリエステル繊維の表面の走査型電子顕微鏡の結果からもポリジメチルシロキサンのゲル化物とみられる凹凸がみられ、製織評価時の給糸口に付着したスカム成分のIR測定の結果からもポリジメチルシロキサンに由来するゲル化物が繊維上に付着していることからが明らかになった。すなわち、固相重合時にポリジメチルシロキサンがゲル化し、これが洗浄工程後も繊維上に残存し、張力変動の原因となっていることが推測される。   As shown in Table 7, the physical properties of the obtained fibers are small in calculation of the remaining solid-phase polymerization oil agent, but the running tension fluctuation is large, and a small amount of scum is accumulated at the yarn feeder during weaving, which is considered to be caused by this. The running tension increased and scum was mixed into the product. In addition, thread breakage, which seems to be due to fluctuations in tension, occurred frequently. The surface of the liquid crystal polyester fiber also has irregularities that can be seen as a gel of polydimethylsiloxane from the result of scanning electron microscope, and the result of IR measurement of the scum component adhering to the yarn feeder at the time of weaving evaluation also shows polydimethylsiloxane. It was clarified from the fact that the gelled product derived from was attached on the fiber. That is, it is presumed that polydimethylsiloxane gels during solid-phase polymerization and remains on the fiber even after the washing step, causing tension fluctuations.

なお、比較例5で得られた繊維のTmは336℃、ΔHmは0.7J/g、Tmにおけるピーク半値幅は27℃、スカム発生量は0.0025gであった。 The fiber obtained in Comparative Example 5 had a Tm 1 of 336 ° C., ΔHm 1 of 0.7 J / g, a peak half-width at Tm 1 of 27 ° C., and a scum generation amount of 0.0025 g.

以上の結果から、実際の製織等の高次工程においは張力変動の増大が助長され、製織時の張力変動による糸切れや製織時のテンション斑や糸切れの発生による製織性不良に加え、製品へのスカム混入が予想される。   From the above results, increase in tension fluctuation is promoted in higher-order processes such as actual weaving, etc., in addition to yarn breakage due to tension fluctuation during weaving and poor weaving due to occurrence of tension spots and thread breakage during weaving, as well as products It is expected that scum will be mixed.

比較例6
仕上げ油剤の付与時にオイリングローラーの回転数を変更し、仕上げ油剤の油分付着率を変更し、繊維の油分付着率を3.2wt%とした以外は実施例1と同様にして液晶ポリエステル繊維を得た。
Comparative Example 6
A liquid crystal polyester fiber was obtained in the same manner as in Example 1 except that the oiling roller rotation rate was changed at the time of applying the finishing oil, the oil adhesion rate of the finishing oil was changed, and the fiber oil adhesion rate was 3.2 wt%. It was.

得られた繊維の物性は表7に示すとおり、残存固相重合油剤の油分付着率が極めて低く、かつ走行張力変動幅(R)が小さいため、スカム発生および張力変動が抑制されており、工程通過性および織物品位は優良であった。しかしながら、繊維同士の擬似接着に起因した糸切れによる停台が頻発したため製織中止とした。   As shown in Table 7, the physical properties of the obtained fibers are such that the residual solid-phase polymerization oil has a very low oil adhesion rate and a small running tension fluctuation range (R), so that scum generation and tension fluctuations are suppressed. Passability and fabric quality were excellent. However, weaving was stopped because frequent stops due to yarn breakage due to pseudo-bonding of fibers.

なお、比較例6で得られた繊維のTmは333℃、ΔHmは0.8J/g、Tmにおけるピーク半値幅は29℃、スカム発生量は0.0012gであった。 The fiber obtained in Comparative Example 6 had a Tm 1 of 333 ° C., ΔHm 1 of 0.8 J / g, a peak half width at Tm 1 of 29 ° C., and a scum generation amount of 0.0012 g.

以上の結果から、実際の製織等の高次工程においてもスカムの抑制効果は著しいものの、油分付着率が高いため、繊維同士が擬似接着することで糸切れが多発するため、製織不可であることが予想される。   From the above results, although the effect of suppressing scum is remarkable even in high-order processes such as actual weaving, the oil adhesion rate is high, so yarn breakage frequently occurs due to pseudo-bonding of fibers, so weaving is impossible Is expected.

Figure 0006040549
Figure 0006040549

Claims (12)

走行張力変動幅(R)が5cN以下で、かつ、油分付着率が3.0wt%以下であることを特徴とする液晶ポリエステル繊維。   A liquid crystal polyester fiber having a running tension fluctuation range (R) of 5 cN or less and an oil adhesion rate of 3.0 wt% or less. スカム発生量が0.01g以下である請求項1記載の液晶ポリエステル繊維。   The liquid crystal polyester fiber according to claim 1, wherein the amount of scum generated is 0.01 g or less. 強度が12.0cN/dtex以上である請求項1または2記載の液晶ポリエステル繊維。   The liquid crystal polyester fiber according to claim 1 or 2, wherein the strength is 12.0 cN / dtex or more. 示差熱量測定において、50℃から20℃/分の昇温条件で測定した際に観測される吸熱ピーク(Tm1)におけるピーク半値幅が15℃以上である請求項1〜3のいずれか1項記載の液晶ポリエステル繊維。   4. The peak half-value width in an endothermic peak (Tm1) observed when the temperature is measured at 50 ° C. to 20 ° C./min in differential calorimetry is 15 ° C. or more. Liquid crystal polyester fiber. モノフィラメントである請求項1〜4のいずれか1項記載の液晶ポリエステル繊維。   The liquid crystal polyester fiber according to any one of claims 1 to 4, which is a monofilament. 単一のポリマー成分からなる請求項1〜5のいずれか1項記載の液晶ポリエステル繊維。   The liquid crystal polyester fiber according to any one of claims 1 to 5, comprising a single polymer component. 液晶ポリエステルが下記構造単位(I)、(II)、(III)、(IV)、(V)からなる請求項1〜6のいずれか1項記載の液晶ポリエステル繊維。
Figure 0006040549
The liquid crystal polyester fiber according to any one of claims 1 to 6, wherein the liquid crystal polyester comprises the following structural units (I), (II), (III), (IV), and (V).
Figure 0006040549
請求項1〜7いずれか1項記載の液晶ポリエステル繊維からなるメッシュ織物。   A mesh fabric comprising the liquid crystal polyester fiber according to any one of claims 1 to 7. 液晶ポリエステルを溶融紡糸して得た糸条に、無機粒子(A)とリン酸系化合物(B)とを塗布した後に固相重合し、次いで洗浄することを特徴とする液晶ポリエステル繊維の製造方法。   A method for producing a liquid crystal polyester fiber, characterized in that inorganic yarn (A) and phosphoric acid compound (B) are applied to a yarn obtained by melt spinning liquid crystal polyester, followed by solid phase polymerization and then washing . 洗浄後の液晶ポリエステル繊維の吸熱ピーク温度(Tm1)+10℃以上の温度で、洗浄に次いで高温熱処理を施す請求項9記載の液晶ポリエステル繊維の製造方法。   The method for producing a liquid crystal polyester fiber according to claim 9, wherein the liquid crystal polyester fiber is subjected to a high temperature heat treatment after the cleaning at a temperature of the endothermic peak temperature (Tm1) + 10 ° C or higher after the cleaning. 無機粒子(A)がシリカ、ケイ酸塩から選択される一種以上である請求項9または10記載の製造方法。   The method according to claim 9 or 10, wherein the inorganic particles (A) are at least one selected from silica and silicate. リン酸系化合物(B)が下記化学式(1)〜(3)で示される化合物から選択される一種以上である請求項9〜11のいずれか1項記載の製造方法。
Figure 0006040549
The production method according to any one of claims 9 to 11, wherein the phosphoric acid compound (B) is at least one selected from compounds represented by the following chemical formulas (1) to (3).
Figure 0006040549
JP2012073779A 2011-03-30 2012-03-28 Liquid crystal polyester fiber and method for producing the same Active JP6040549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012073779A JP6040549B2 (en) 2011-03-30 2012-03-28 Liquid crystal polyester fiber and method for producing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2011076158 2011-03-30
JP2011076158 2011-03-30
JP2011263399 2011-12-01
JP2011263399 2011-12-01
JP2012073779A JP6040549B2 (en) 2011-03-30 2012-03-28 Liquid crystal polyester fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013136860A JP2013136860A (en) 2013-07-11
JP6040549B2 true JP6040549B2 (en) 2016-12-07

Family

ID=48912783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012073779A Active JP6040549B2 (en) 2011-03-30 2012-03-28 Liquid crystal polyester fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP6040549B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3116933B1 (en) * 2014-03-11 2018-05-09 Synvina C.V. Process for enhancing the molecular weight of a polyester
JP6617626B2 (en) * 2016-03-18 2019-12-11 東レ株式会社 Liquid crystal polyester multifilament and method for producing the same
JP6753231B2 (en) * 2016-09-07 2020-09-09 東レ株式会社 Liquid crystal polyester multifilament

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2674062B2 (en) * 1988-02-15 1997-11-05 東レ株式会社 Manufacturing method of high strength liquid crystal polyarylate resin molding
WO2008105439A1 (en) * 2007-02-28 2008-09-04 Toray Industries, Inc. Liquid crystalline polyester fiber and process for production of the same
JP5298597B2 (en) * 2008-03-28 2013-09-25 東レ株式会社 Method for producing liquid crystal polyester fiber
EP2407583B1 (en) * 2009-03-11 2013-10-09 Toray Industries, Inc. Liquid crystal polyester fibers and method for producing the same
JP5327109B2 (en) * 2009-03-23 2013-10-30 東レ株式会社 Liquid crystalline polyester fiber and winding package
KR101647414B1 (en) * 2011-03-29 2016-08-10 도레이 카부시키가이샤 Liquid crystal polyester fibers and method for producing same

Also Published As

Publication number Publication date
JP2013136860A (en) 2013-07-11

Similar Documents

Publication Publication Date Title
US10584429B2 (en) Method of producing liquid crystal polyester fibers
KR101310008B1 (en) Liquid crystal polyester fibers and method for producing the same
JP5286827B2 (en) Liquid crystal polyester fiber
WO2015115259A1 (en) Liquid crystal polyester fibers, and production method therefor
JP5470930B2 (en) Method for producing liquid crystal polyester fiber
JP5327109B2 (en) Liquid crystalline polyester fiber and winding package
JP5428271B2 (en) Method for producing liquid crystal polyester fiber
JP4983689B2 (en) Method for producing liquid crystal polyester fiber
JP6040549B2 (en) Liquid crystal polyester fiber and method for producing the same
JP5298597B2 (en) Method for producing liquid crystal polyester fiber
JP5239439B2 (en) Liquid crystal polyester fiber and method for producing the same
JP2016089308A (en) Manufacturing method of liquid crystal polyester fiber
JP2014167174A (en) Liquid crystal polyester fiber and production method thereof
JP5115471B2 (en) Liquid crystalline polyester fiber and method for producing the same
JP5239454B2 (en) Liquid crystal polyester fiber and method for producing the same
JP5729200B2 (en) Liquid crystal polyester fiber and method for producing the same
JP5915227B2 (en) Liquid crystal polyester fiber and method for producing the same
JP2016089285A (en) Manufacturing method of liquid crystal polyester fiber
JP2019157331A (en) Manufacturing method of liquid crystalline polyester monofilament
JP6720561B2 (en) Liquid crystal polyester monofilament
JP2018003219A (en) Manufacturing method of liquid crystal polyester fiber
JP6225592B2 (en) Liquid crystal polyester monofilament package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161024

R151 Written notification of patent or utility model registration

Ref document number: 6040549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151