JP5098693B2 - Liquid crystal polyester fiber - Google Patents

Liquid crystal polyester fiber Download PDF

Info

Publication number
JP5098693B2
JP5098693B2 JP2008046408A JP2008046408A JP5098693B2 JP 5098693 B2 JP5098693 B2 JP 5098693B2 JP 2008046408 A JP2008046408 A JP 2008046408A JP 2008046408 A JP2008046408 A JP 2008046408A JP 5098693 B2 JP5098693 B2 JP 5098693B2
Authority
JP
Japan
Prior art keywords
fiber
temperature
weight
liquid crystal
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008046408A
Other languages
Japanese (ja)
Other versions
JP2008240229A (en
Inventor
義嗣 船津
大士 勝田
裕平 前田
浩司 立川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008046408A priority Critical patent/JP5098693B2/en
Publication of JP2008240229A publication Critical patent/JP2008240229A/en
Application granted granted Critical
Publication of JP5098693B2 publication Critical patent/JP5098693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は高強度、高弾性率であり、耐熱性、熱寸法安定性に優れ、単繊維繊度が小さく、かつ繊維長手方向の均一性、耐摩耗性に優れる液晶ポリエステル繊維に関するものである。   The present invention relates to a liquid crystal polyester fiber having high strength and high elastic modulus, excellent heat resistance and thermal dimensional stability, small single fiber fineness, and excellent uniformity and wear resistance in the longitudinal direction of the fiber.

液晶ポリエステルは剛直な分子鎖からなるポリマーであり、溶融紡糸においてはその分子鎖を繊維軸方向に高度に配向させ、さらに熱処理(固相重合)を施すことにより溶融紡糸で得られる繊維の中では最も高い強度、弾性率が得られることが知られている。また液晶ポリエステルは固相重合により分子量が増加し、融点が上昇するため耐熱性、寸法安定性が向上することも知られている(非特許文献1参照)。このように液晶ポリエステル繊維においては固相重合を施すことにより高強度、高弾性率、優れた耐熱性、熱寸法安定性が発現する。   Liquid crystalline polyester is a polymer composed of rigid molecular chains. In melt spinning, the molecular chains are highly oriented in the fiber axis direction, and further subjected to heat treatment (solid phase polymerization). It is known that the highest strength and elastic modulus can be obtained. In addition, it is also known that liquid crystal polyester has an increased molecular weight due to solid-phase polymerization and an increased melting point, thereby improving heat resistance and dimensional stability (see Non-Patent Document 1). Thus, liquid crystal polyester fibers exhibit high strength, high elastic modulus, excellent heat resistance, and thermal dimensional stability by solid phase polymerization.

一方で液晶ポリエステル繊維は剛直な分子鎖が繊維軸方向へ高度に配向し緻密な結晶が生成されるため、繊維軸垂直方向への相互作用が低く、摩擦によりフィブリルが発生しやすく耐摩耗性に劣るという欠点を持つ。   On the other hand, the liquid crystalline polyester fiber has a rigid molecular chain highly oriented in the fiber axis direction and a dense crystal is formed. Therefore, the interaction in the direction perpendicular to the fiber axis is low, and fibrils are easily generated by friction, resulting in wear resistance. Has the disadvantage of being inferior.

また液晶ポリエステル繊維の固相重合は、設備の簡素化、生産性の向上の点から、繊維をパッケージとし、これを処理する方法が工業的には採用されているが、固相重合反応が進行しうる温度域では単糸間融着が発生しやすく、パッケージ形状からの解舒の際に融着部分がはがれ欠陥が生じるという問題がある。欠陥は強度低下など繊維長手方向の均一性を損ねる他、欠陥を起点として繊維がフィブリル化するという問題も引き起こす。   Solid-phase polymerization of liquid crystal polyester fibers is industrially adopted as a method of processing fibers by packaging them from the viewpoint of simplifying equipment and improving productivity, but solid-state polymerization proceeds. There is a problem in that fusion between single yarns is likely to occur in a temperature range that can be obtained, and the fused portion is peeled off during unwinding from the package shape. Defects deteriorate the uniformity in the longitudinal direction of the fiber, such as a decrease in strength, and also cause problems such as fiber fibrillation starting from the defects.

近年、特にモノフィラメントからなるフィルター、スクリーン印刷用紗に対し、性能向上のため織密度の高密度化(高メッシュ化)、紗厚の低減、開口部(オープニング)の大面積化の要望が強まり、これを達成するために単繊維繊度の細繊度化、高強度化が強く要求されると同時に、高性能化のために開口部の欠点減少も要求されている。開口部の欠点は前記したフィブリルが繊維の製造工程または高次加工工程での摩擦により生じるため、繊維長手方向の強度、繊度の均一性向上、繊維の耐摩耗性の向上が求められている。   In recent years, especially for filters made of monofilaments and scissors for screen printing, there has been a growing demand for higher density of woven fabric (higher mesh), reduction of wrinkle thickness, and larger area of opening (opening) to improve performance. In order to achieve this, there is a strong demand for fineness and high strength of the single fiber fineness, and at the same time, there is a demand for reducing defects in the opening for high performance. The defects of the opening are caused by the above-described fibrils caused by friction in the fiber manufacturing process or the high-order processing process, and therefore, the strength in the fiber longitudinal direction, the improvement in the uniformity of the fineness, and the improvement in the abrasion resistance of the fiber are required.

さらに製織など繊維高次加工工程での工程通過性悪化もフィブリルの引っ掛かり、あるいはガイドへのフィブリルの堆積による張力変動が要因であり、繊維長手方向の強度、繊度の均一性向上、繊維の耐摩耗性の向上が求められている。   In addition, deterioration in process passability in high-level fiber processing such as weaving is caused by fibril catching or tension fluctuation due to fibril deposition on the guide, improving the fiber longitudinal strength, fineness uniformity, and fiber abrasion resistance. There is a need for improvement in performance.

液晶ポリエステル繊維の耐摩耗性改善については、芯成分が液晶ポリエステル、鞘成分がポリフェニレンスルフィドからなる芯鞘型複合繊維(特許文献1参照)や、島成分が液晶ポリエステル、海成分が屈曲性熱可塑性ポリマーからなる海島型複合繊維が提案されている(特許文献2参照)。これらの技術では屈曲性ポリマーが繊維表面を形成することで耐摩耗性の向上は達成できるものの、液晶ポリエステル以外の成分の分率が多いため繊維の強度が劣る、液晶ポリエステルの高強度化に必要な繊維の固相重合において低融点の繊維表面が融着しやすくなり、欠陥が発生しやすいという問題があった。さらに特許文献1のような芯鞘複合紡糸においては、単成分紡糸に比べ芯鞘それぞれの吐出量は少なく、細繊度化のために吐出量をさらに低減させた際には、滞留時間の増加に伴うゲル化あるいは劣化分解により溶融粘度が変化し、繊維長手方向に太細ムラや複合異常が生じ長手方向の均一性を損ねるという問題があった。また特許文献2のようなブレンド紡糸においても細繊度化のために吐出量を低減させると長手方向のブレンドムラの影響が顕在化し長手方向の均一性を損ねるという問題があった。   For improving the abrasion resistance of the liquid crystal polyester fiber, the core component is a liquid crystal polyester and the sheath component is a core / sheath type composite fiber (see Patent Document 1), the island component is a liquid crystal polyester, and the sea component is a flexible thermoplastic. A sea-island type composite fiber made of a polymer has been proposed (see Patent Document 2). Although these technologies can achieve improved wear resistance by forming a fiber surface with a flexible polymer, the fiber strength is inferior due to the high fraction of components other than liquid crystal polyester, which is necessary for increasing the strength of liquid crystal polyester. In the solid phase polymerization of such fibers, there is a problem that the surface of the fiber having a low melting point is easily fused and defects are easily generated. Furthermore, in the core-sheath composite spinning as in Patent Document 1, the discharge amount of each core-sheath is smaller than that of single component spinning, and when the discharge amount is further reduced for fineness, the residence time is increased. As a result, the melt viscosity is changed due to gelation or degradation decomposition, resulting in a problem that thick unevenness and composite abnormality occur in the longitudinal direction of the fiber and the uniformity in the longitudinal direction is impaired. Further, in blend spinning as in Patent Document 2, if the discharge amount is reduced for fineness, the effect of blend unevenness in the longitudinal direction becomes obvious and the uniformity in the longitudinal direction is impaired.

これらの問題は液晶ポリエステルと他成分との複合という手段に起因しており、このことから液晶ポリエステル単成分での細繊度化、高強度化、長手方向の高い均一性、耐摩耗性を同時に達成し得るような技術が望まれていた。   These problems are caused by the combination of liquid crystal polyester and other components, which makes it possible to simultaneously achieve finer, higher strength, high longitudinal uniformity and wear resistance with a single component of liquid crystal polyester. A technology that can do this has been desired.

ところで、改質された液晶ポリエステルの繊維化について、特定組成の液晶ポリエステルを用い、導入部がテーパーであるノズルで溶融紡糸を行うことで固相重合をせずとも高強度化できる技術が提案されている(特許文献3参照)。しかし、該技術で得られている繊度は最小でも19dtexであり、細繊度化は達成できていない。また該技術では強度は高いものの、固相重合を行わないため熱寸法安定性や弾性率については劣るという問題がある。さらに該技術で用いているテーパーノズルでは流線が不安定になるためか製糸安定性に劣り、少量のサンプルは得られるが長時間の製糸は困難であり、特に細繊度化に重要となる紡糸速度の高速化の際に、さらに製糸性が劣るという問題がある。   By the way, regarding the fiberization of the modified liquid crystal polyester, a technology that can increase the strength without using solid phase polymerization by using a liquid crystal polyester having a specific composition and performing melt spinning with a nozzle having a tapered introduction portion has been proposed. (See Patent Document 3). However, the fineness obtained by this technique is 19 dtex at the minimum, and fineness reduction cannot be achieved. Moreover, although this technique is high in strength, there is a problem that thermal dimensional stability and elastic modulus are inferior because solid phase polymerization is not performed. Furthermore, the taper nozzle used in this technique is inferior in spinning stability due to unstable streamlines, and a small amount of sample is obtained, but long-time spinning is difficult, and spinning that is particularly important for fineness When the speed is increased, there is a problem that the yarn forming property is further deteriorated.

また、パッケージ状態での固相重合においては単繊維繊度の細繊度化に伴い比表面積が増加するため単繊維間の接触点が増加し固相重合において融着が発生しやすくなる。したがって細繊度化に伴い繊維長手方向の繊度、強度の均一性はより悪化する。特許文献3では固相重合を行った例も開示されているが、単繊維繊度は51dtexと太く、特性組成の液晶ポリエステルを細繊度化した際の固相重合における、融着改善の技術については何ら示唆されていない。
技術情報協会編、「液晶ポリマーの改質と最新応用技術」(2006)(第235頁〜第256頁) 特開平1−229815号公報(第1頁) 特開2003−239137号公報(第1頁) 特開2006−89903号公報(第1頁)
Further, in solid phase polymerization in a package state, the specific surface area increases as the fineness of the single fiber becomes finer, so that the contact points between the single fibers increase and fusion occurs easily in the solid phase polymerization. Therefore, the fineness in the longitudinal direction of the fiber and the uniformity of the strength are further deteriorated as the fineness is reduced. Patent Document 3 discloses an example in which solid-phase polymerization is performed, but the single fiber fineness is as thick as 51 dtex. Regarding the technique for improving the fusion in the solid-phase polymerization when the liquid crystal polyester having a characteristic composition is made finer, Nothing is suggested.
Edited by Technical Information Association, “Modification of liquid crystal polymer and latest applied technology” (2006) (pages 235-256) JP-A-1-229815 (first page) JP 2003-239137 A (first page) JP 2006-89903 A (first page)

本発明の課題は高強度、高弾性率、優れた耐熱性、熱寸法安定性という固相重合した液晶ポリエステル繊維の特徴を損ねることなく、織密度の高密度化、厚みの低減を達成し、さらに製織性、織物品位を向上させることであり、このため単繊維繊度が細く、高強度であり、かつ繊維長手方向の均一性、耐摩耗性に優れた液晶ポリエステル繊維を提供することにある。   The object of the present invention is to achieve a high woven density and a reduced thickness without impairing the characteristics of solid-state polymerized liquid crystal polyester fibers such as high strength, high elastic modulus, excellent heat resistance, and thermal dimensional stability. Another object of the present invention is to provide a liquid crystal polyester fiber having improved single-fiber fineness, high strength, excellent uniformity in the longitudinal direction of the fiber, and excellent wear resistance.

本発明者等は、特定組成の液晶ポリエステルを用い、さらに溶融紡糸、固相重合などの製糸条件を改善することで上記した課題を解決できることを見出した。   The present inventors have found that the above-described problems can be solved by using a liquid crystal polyester having a specific composition and further improving the spinning conditions such as melt spinning and solid phase polymerization.

すなわち、本発明は下記構造単位(I)、(II)、(III)、(IV)および(V)からなる液晶ポリエステルからなり、下記条件1〜4を満たし、構造単位(I)が構造単位(I)、(II)および(III)の合計に対して40〜85モル%であり、構造単位(II)は構造単位(II)および(III)の合計に対して60〜90モル%であり、構造単位(IV)は構造単位(IV)および(V)の合計に対して40〜95モル%であることを特徴とする液晶ポリエステル繊維である。
以上
That is, the present invention is represented by the following structural units (I), (II), (III), a liquid crystal polyester consisting of (IV) and (V), meets the following conditions 1 to 4, structural units (I) is structure 40 to 85 mol% based on the sum of units (I), (II) and (III), and structural unit (II) is 60 to 90 mol% based on the sum of structural units (II) and (III) The structural unit (IV) is a liquid crystal polyester fiber characterized by being 40 to 95 mol% with respect to the total of the structural units (IV) and (V) .
that's all

Figure 0005098693
Figure 0005098693

条件1.示差熱量測定において、50℃から20℃/分の昇温条件で測定した際に観測される吸熱ピーク(Tm1)における融解熱量(ΔHm1)が、Tm1の観測後、Tm1+20℃の温度で5分間保持した後、20℃/分の降温条件で50℃まで一旦冷却し、再度20℃/分の昇温条件で測定した際に観測される吸熱ピーク(Tm2)における融解熱量(ΔHm2)に対して3.0倍以上。
条件2.Tm1におけるピーク半値幅が15℃未満。
条件3.単繊維繊度が18.0dtex以下。
条件4.強度が14.0cN/dtex以上かつ弾性率600cN/dtex以上。
Condition 1. In differential calorimetry, the heat of fusion (ΔHm1) at the endothermic peak (Tm1) observed when measured under the temperature rising condition from 50 ° C. to 20 ° C./min is held at a temperature of Tm1 + 20 ° C. for 5 minutes after the observation of Tm1. Then, the temperature is once cooled to 50 ° C. under a temperature lowering condition of 20 ° C./min, and 3 times the heat of fusion (ΔHm2) in the endothermic peak (Tm2) observed when measured again under the temperature rising condition of 20 ° C./min. More than 0 times.
Condition 2. The peak half-width at Tm1 is less than 15 ° C.
Condition 3. Single fiber fineness is 18.0 dtex or less.
Condition 4. The strength is 14.0 cN / dtex or more and the elastic modulus is 600 cN / dtex or more.

高強度、高弾性率、優れた耐熱性、熱寸法安定性という固相重合した液晶ポリエステル繊維からなる織物の特徴を損ねることなく、織密度の高密度化、厚みの低減を達成し、さらに製織性、織物品位を向上させることができ、特にフィルター、スクリーン印刷用紗に対し、性能向上のため織密度の高密度化(高メッシュ化)、紗厚の低減、開口部(オープニング)の大面積化、開口部の欠点減少、製織性向上が達成できる。   Weaving density is increased and thickness is reduced without impairing the characteristics of the woven fabric made of solid-state polymerized liquid crystal polyester fibers such as high strength, high elastic modulus, excellent heat resistance and thermal dimensional stability. And fabric quality can be improved, especially for filters and screen printing ridges. To improve performance, weaving density is increased (high mesh), ridge thickness is reduced, and opening (opening) is large. , Reduction of defects in the opening, and improvement of weaving can be achieved.

以下、本発明の液晶ポリエステル繊維について詳細に説明する。   Hereinafter, the liquid crystal polyester fiber of the present invention will be described in detail.

本発明で用いられる液晶ポリエステルとは、溶融時に異方性溶融相を形成し得るポリエステルであり、下記構造単位(I)、(II)、(III)、(IV)および(V)からなる。なお、本発明において構造単位とはポリマーの主鎖における繰り返し構造を構成し得る単位を指す。   The liquid crystalline polyester used in the present invention is a polyester capable of forming an anisotropic molten phase upon melting, and comprises the following structural units (I), (II), (III), (IV) and (V). In the present invention, the structural unit refers to a unit that can constitute a repeating structure in the main chain of the polymer.

Figure 0005098693
Figure 0005098693

本発明において重要な技術はこの5成分の組み合わせである。この組み合わせにより分子鎖は適切な結晶性と非直線性すなわち溶融紡糸可能な融点を有するようになる。したがってポリマーの融点と熱分解温度の間で設定される紡糸温度において良好な製糸性を有するようになり長手方向に均一な繊維が得られ、かつ適度な結晶性を有するため繊維の強度、弾性率を高めることができる。さらに本発明においては、構造単位(II)、(III)のような嵩高くなく、直線性の高いジオールからなる成分を組み合わせることが重要である。この成分を組み合わせることにより繊維中で分子鎖は秩序だった乱れの少ない構造を取ると共に、結晶性が過度に高まらず繊維軸垂直方向の相互作用も維持できる。これにより高い強度、弾性率に加えて優れた耐摩耗性も得られるのである。   An important technique in the present invention is a combination of these five components. This combination results in the molecular chain having the proper crystallinity and non-linearity, ie, a melt-spinnable melting point. Therefore, the fiber has good spinning performance at the spinning temperature set between the melting point of the polymer and the thermal decomposition temperature, and a uniform fiber can be obtained in the longitudinal direction. Can be increased. Furthermore, in the present invention, it is important to combine components composed of diols that are not bulky and have high linearity like the structural units (II) and (III). By combining these components, the molecular chains in the fiber have an ordered and less disturbed structure, and the crystallinity is not excessively increased and the interaction in the direction perpendicular to the fiber axis can be maintained. Thereby, in addition to high strength and elastic modulus, excellent wear resistance is also obtained.

本発明において、上記した構造単位(I)は構造単位(I)、(II)および(III)の合計に対して40〜85モル%が好ましく、より好ましくは65〜80モル%、さらに好ましくは68〜75モル%である。このような範囲とすることで結晶性を適切な範囲とすることができ高い強度、弾性率が得られ、かつ融点も溶融紡糸可能な範囲となる。   In the present invention, the above structural unit (I) is preferably 40 to 85 mol%, more preferably 65 to 80 mol%, still more preferably based on the total of the structural units (I), (II) and (III). 68 to 75 mol%. By setting it as such a range, crystallinity can be made into an appropriate range, high intensity | strength and an elasticity modulus are obtained, and melting | fusing point also becomes the range which can be melt-spun.

構造単位(II)は構造単位(II)および(III)の合計に対して60〜90モル%が好ましく、より好ましくは60〜80モル%、さらに好ましくは65〜75モル%である。このような範囲とすることで結晶性が過度に高まらず繊維軸垂直方向の相互作用も維持できるため耐摩耗性を高めることができる。   The structural unit (II) is preferably 60 to 90 mol%, more preferably 60 to 80 mol%, still more preferably 65 to 75 mol%, based on the total of the structural units (II) and (III). By setting it as such a range, since crystallinity does not become high too much and the interaction of a fiber axis perpendicular | vertical direction can be maintained, abrasion resistance can be improved.

構造単位(IV)は構造単位(IV)および(V)の合計に対して40〜95モル%が好ましく、より好ましくは50〜90モル%、さらに好ましくは60〜85モル%である。このような範囲とすることでポリマーの融点が適切な範囲となり、ポリマーの融点と熱分解温度の間で設定される紡糸温度において良好な製糸性を有するようになり単繊維繊度が細く、長手方向に均一な繊維が得られる。   The structural unit (IV) is preferably 40 to 95 mol%, more preferably 50 to 90 mol%, still more preferably 60 to 85 mol%, based on the total of the structural units (IV) and (V). By setting such a range, the melting point of the polymer becomes an appropriate range, and has a good spinning property at a spinning temperature set between the melting point of the polymer and the thermal decomposition temperature. Uniform fibers can be obtained.

本発明に用いる液晶ポリエステルの各構造単位の特に好ましい範囲は以下のとおりである。この範囲の中で上記した条件を満たすよう組成を調整することで本発明の液晶ポリエステル繊維が好適に得られる。
構造単位(I)45〜65モル%
構造単位(II)12〜18モル%
構造単位(III)3〜10モル%
構造単位(IV)5〜20モル%
構造単位(V)2〜15モル%
なお本発明で用いる液晶ポリエステルには上記構造単位以外に3,3’−ジフェニルジカルボン酸、2,2’−ジフェニルジカルボン酸などの芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジオン酸などの脂肪族ジカルボン酸、1,4−シクロヘキサンジカルボン酸などの脂環式ジカルボン酸、クロロハイドロキノン、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシジフェニルスルフィド、4,4’−ジヒドロキシベンゾフェノン等の芳香族ジオールおよびp−アミノフェノールなどを本発明の効果を損なわない5モル%程度以下の範囲で共重合させても良い。
Particularly preferred ranges of the respective structural units of the liquid crystal polyester used in the present invention are as follows. The liquid crystal polyester fiber of the present invention can be suitably obtained by adjusting the composition so as to satisfy the above conditions within this range.
Structural unit (I) 45-65 mol%
Structural unit (II) 12-18 mol%
Structural unit (III) 3 to 10 mol%
Structural unit (IV) 5-20 mol%
Structural unit (V) 2-15 mol%
In addition to the above structural units, the liquid crystalline polyester used in the present invention includes aromatic dicarboxylic acids such as 3,3′-diphenyldicarboxylic acid and 2,2′-diphenyldicarboxylic acid, adipic acid, azelaic acid, sebacic acid, and dodecanedioic acid. Aliphatic dicarboxylic acids such as 1, cycloaliphatic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, chlorohydroquinone, 4,4′-dihydroxydiphenyl sulfone, 4,4′-dihydroxydiphenyl sulfide, 4,4′-dihydroxybenzophenone An aromatic diol such as p-aminophenol and the like may be copolymerized within a range of about 5 mol% or less without impairing the effects of the present invention.

また本発明の効果を損なわない5重量%程度以下の範囲でポリエステル、ポリオレフィンやポリスチレンなどのビニル系重合体、ポリカーボネート、ポリアミド、ポリイミド、ポリフェニレンスルフィド、ポリフェニレンオキシド、ポリスルホン、芳香族ポリケトン、脂肪族ポリケトン、半芳香族ポリエステルアミド、ポリエーテルエーテルケトン、フッ素樹脂などのポリマーを添加しても良く、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ナイロン6、ナイロン66、ナイロン46、ナイロン6T、ナイロン9T、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリシクロヘキサンジメタノールテレフタレート、ポリエステル99Mなどが好適な例として挙げられる。なおこれらのポリマーを添加する場合、その融点は液晶ポリエステルの融点±30℃以内にすることが製糸性を損なわないために好ましい。   Further, in the range of about 5% by weight or less which does not impair the effects of the present invention, a vinyl polymer such as polyester, polyolefin or polystyrene, polycarbonate, polyamide, polyimide, polyphenylene sulfide, polyphenylene oxide, polysulfone, aromatic polyketone, aliphatic polyketone, Polymers such as semi-aromatic polyester amide, polyether ether ketone and fluororesin may be added. Polyphenylene sulfide, polyether ether ketone, nylon 6, nylon 66, nylon 46, nylon 6T, nylon 9T, polyethylene terephthalate, polypropylene Suitable are terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycyclohexanedimethanol terephthalate, polyester 99M, etc. And the like as. When these polymers are added, the melting point thereof is preferably within the melting point ± 30 ° C. of the liquid crystalline polyester so as not to impair the spinning property.

さらに本発明の効果を損なわない範囲内で、各種金属酸化物、カオリン、シリカなどの無機物や、着色剤、艶消剤、難燃剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤、結晶核剤、蛍光増白剤、末端基封止剤、相溶化剤等の各種添加剤を少量含有しても良い。   Furthermore, within the range not impairing the effects of the present invention, various metal oxides, kaolin, silica and other inorganic substances, colorants, matting agents, flame retardants, antioxidants, ultraviolet absorbers, infrared absorbers, crystal nucleating agents In addition, various additives such as a fluorescent brightening agent, a terminal group blocking agent, and a compatibilizing agent may be contained in a small amount.

本発明の液晶ポリエステル繊維のポリスチレン換算の重量平均分子量(以下、分子量と記載する)は25.0万以上150.0万以下が好ましい。25.0万以上の高い分子量を有することで高い強度、伸度、弾性率を有し織物性能が向上する他、特に細繊度化した際には衝撃吸収性が高まり高次工程での糸切れを抑制でき、耐摩耗性も向上する。また融点も高いため優れた耐熱性を有する。分子量は高いほどこれらの特性は向上するため、30.0万以上が好ましく、35.0万以上がより好ましい。分子量の上限は特に限定されないが、本発明で達し得る上限としては150.0万程度である。なお本発明で言う分子量とは実施例記載の方法により求められた値とする。   The polystyrene-equivalent weight average molecular weight (hereinafter referred to as molecular weight) of the liquid crystalline polyester fiber of the present invention is preferably from 25 million to 1550,000. Having a high molecular weight of 255,000 or more has high strength, elongation, and elastic modulus and improves textile performance. In particular, when the fineness is reduced, the shock absorption is increased and the yarn breaks in higher processes. And the wear resistance is improved. Moreover, since it has a high melting point, it has excellent heat resistance. Since these characteristics improve as the molecular weight increases, it is preferably 30 million or more, more preferably 350,000 or more. The upper limit of the molecular weight is not particularly limited, but the upper limit that can be reached in the present invention is about 1550,000. The molecular weight referred to in the present invention is a value determined by the method described in the examples.

本発明の繊維は、示差熱量測定において50℃から20℃/分の昇温条件で測定した際に観測される吸熱ピーク(Tm1)における融解熱量(ΔHm1)が、Tm1の観測後、Tm1+20℃の温度で5分間保持した後、20℃/分の降温条件で50℃まで一旦冷却し、再度20℃/分の昇温条件で測定した際に観測される吸熱ピーク(Tm2)における融解熱量(ΔHm2)に対して3.0倍以上であり、好ましくは4.0倍以上、より好ましくは6.0倍以上である。   In the fiber of the present invention, the heat of fusion (ΔHm1) at the endothermic peak (Tm1) observed when the temperature is measured at 50 ° C. to 20 ° C./min in differential calorimetry is Tm1 + 20 ° C. after the observation of Tm1. After being held at temperature for 5 minutes, it is once cooled to 50 ° C. under a temperature drop condition of 20 ° C./min, and the heat of fusion (ΔHm 2) at the endothermic peak (Tm 2) observed when measured again under a temperature rise condition of 20 ° C./min. ) Is 3.0 times or more, preferably 4.0 times or more, more preferably 6.0 times or more.

この測定法においてΔHm1は繊維の結晶化の程度(結晶化度)を表し、ΔHm2は繊維を構成する液晶ポリエステルが一度溶融し、冷却固化した後の再昇温過程で結晶化する程度を表す。ΔHm1がΔHm2に対し3.0倍以上あることで繊維の結晶化度は十分に高くなっており、高い強度、弾性率が得られる。ただし過度に結晶化度が高いと繊維の靭性が損なわれ加工性を悪化させるため、ΔHm1はΔHm2に対し15.0倍以下が好ましい。なお、本発明の液晶ポリエステル繊維においては上記した測定条件における昇温時および再昇温時の吸熱ピークは1つであるが、固相重合条件などによる構造変化によっては2つ以上のピークが観測されることがある。この場合のΔHm1は昇温過程での全ての吸熱ピークの融解熱量を合計した値とし、△Hm2は再昇温過程での全ての吸熱ピークの融解熱量を合計した値とする。   In this measurement method, ΔHm1 represents the degree of crystallization of the fiber (crystallinity), and ΔHm2 represents the degree to which the liquid crystal polyester constituting the fiber is crystallized in the process of re-heating after being once melted and cooled and solidified. When ΔHm1 is 3.0 times or more than ΔHm2, the degree of crystallinity of the fiber is sufficiently high, and high strength and elastic modulus can be obtained. However, if the crystallinity is excessively high, the toughness of the fiber is impaired and the workability is deteriorated. Therefore, ΔHm1 is preferably 15.0 times or less than ΔHm2. In the liquid crystalline polyester fiber of the present invention, there is one endothermic peak at the time of temperature increase and re-temperature increase under the above-described measurement conditions, but two or more peaks are observed depending on the structural change due to the solid phase polymerization conditions and the like. May be. In this case, ΔHm1 is a value obtained by summing the heat of fusion of all endothermic peaks in the temperature raising process, and ΔHm2 is a value obtained by summing the heat of fusion of all endothermic peaks in the reheating temperature process.

本発明を達成するための重要な技術はΔHm1を上記した範囲に制御することである。本発明の液晶ポリエステルは通常の紡糸条件で紡糸したのみではΔHm1が低く、強度、弾性率が十分に高いとは言えない。このためΔHm1を高めることが重要となり、これを効率よく達成するためには繊維を固相重合することが好ましく、生産性を高めるためには繊維をパッケージ状態で固相重合することがより好ましい。固相重合を施すことでΔHm1が大幅に増大し強度、弾性率が高まる。ΔHm1の絶対値は液晶ポリエステルの構成単位の組成により変化するが5.0J/g以上が好ましく、6.0J/g以上がより好ましく、7.0J/g以上がさらに好ましい。ΔHm1が大きいほど結晶化度が高く、繊維の強度、弾性率が増加、耐熱性が向上するため、織物など製品とした場合の力学特性、耐熱性を高めることができ、特に細繊度化した際の工程通過性を向上できる。ΔHm1の上限は特に限定されないが、本発明で達し得る上限としては20J/g程度である。   An important technique for achieving the present invention is to control ΔHm1 within the above-mentioned range. The liquid crystalline polyester of the present invention has a low ΔHm1 and cannot be said to have sufficiently high strength and elastic modulus only by spinning under normal spinning conditions. Therefore, it is important to increase ΔHm1, and in order to achieve this efficiently, it is preferable to solid-phase polymerize the fiber, and in order to increase productivity, it is more preferable to solid-phase polymerize the fiber in a packaged state. By applying solid phase polymerization, ΔHm1 is greatly increased, and the strength and elastic modulus are increased. The absolute value of ΔHm1 varies depending on the composition of the structural unit of the liquid crystal polyester, but is preferably 5.0 J / g or more, more preferably 6.0 J / g or more, and even more preferably 7.0 J / g or more. The larger ΔHm1, the higher the degree of crystallinity, the greater the strength and elastic modulus of the fiber, and the better the heat resistance. Therefore, the mechanical properties and heat resistance of products such as textiles can be improved, especially when the fineness is reduced. The process passability can be improved. The upper limit of ΔHm1 is not particularly limited, but the upper limit that can be achieved in the present invention is about 20 J / g.

また本発明の繊維はTm1におけるピーク半値幅が15℃未満であり、好ましくは13℃未満である。この測定法におけるピーク半値幅は結晶の完全性を表し、半値幅が小さいほど結晶の完全性は高いと言える。結晶の完全性が高いことで繊維の強度、弾性率が増加、耐熱性が向上し、織物など製品とした場合の力学特性、耐熱性を高めることができ、特に細繊度化した際の工程通過性を向上できる。ピーク半値幅の下限も特に限定されないが、本発明で達し得る下限としては3℃程度である。   Further, the fiber of the present invention has a peak half width at Tm1 of less than 15 ° C, preferably less than 13 ° C. The peak half width in this measurement method represents the completeness of the crystal, and it can be said that the smaller the full width at half maximum, the higher the completeness of the crystal. High crystal integrity increases fiber strength and elastic modulus, improves heat resistance, and improves mechanical properties and heat resistance when made into textiles and other products, especially through finer process steps Can be improved. The lower limit of the peak half-value width is not particularly limited, but the lower limit that can be achieved in the present invention is about 3 ° C.

また本発明の繊維の融点(Tm1)は300℃以上が好ましく、310℃以上がより好ましく、320℃以上がさらに好ましい。このような高い融点を有することで耐熱性、熱寸法安定性が優れる。繊維の高融点化を達成するためには、高融点の液晶ポリエステルポリマーを製糸するなどの方法があるが、特に高い強度、弾性率を有し、さらに長手方向の均一性に優れる繊維を得るためには溶融紡糸した繊維を固相重合することが好ましい。   The melting point (Tm1) of the fiber of the present invention is preferably 300 ° C. or higher, more preferably 310 ° C. or higher, and further preferably 320 ° C. or higher. By having such a high melting point, heat resistance and thermal dimensional stability are excellent. In order to achieve a high melting point of the fiber, there are methods such as spinning a liquid crystal polyester polymer having a high melting point, in order to obtain a fiber having particularly high strength and elastic modulus and excellent longitudinal uniformity. For this, it is preferable to solid-phase polymerize melt-spun fibers.

またTm2は繊維を構成する液晶ポリエステルポリマーの融点が強く反映される。したがってTm2が高いほどポリマーの耐熱性は高く、本発明の繊維においてTm2は290℃以上が好ましく、より好ましくは310℃以上である。なお、Tm1、Tm2の上限は特に限定されないが、本発明で達し得る上限としては400℃程度である。   Tm2 strongly reflects the melting point of the liquid crystal polyester polymer constituting the fiber. Therefore, the higher the Tm2, the higher the heat resistance of the polymer. In the fiber of the present invention, Tm2 is preferably 290 ° C or higher, more preferably 310 ° C or higher. The upper limits of Tm1 and Tm2 are not particularly limited, but the upper limit that can be reached in the present invention is about 400 ° C.

本発明の繊維の単繊維繊度は18.0dtex以下である。単繊維繊度を18.0dtex以下と細くすることで、繊維のしなやかさが向上し繊維の加工性が向上する、表面積が増加するため接着剤などの薬液との密着性が高まると言った特性を有することに加え、モノフィラメントからなる紗とする場合は厚みを薄くできる、織密度を高くできる、オープニング(開口部の面積)を広くできるという利点を持つ。単繊維繊度は好ましくは10.0dtex以下であり、より好ましくは7.0dtex以下である。なお、単繊維繊度の下限は特に限定されないが、本発明で達し得る下限としては1.0dtex程度である。   The single fiber fineness of the fiber of the present invention is 18.0 dtex or less. By reducing the single fiber fineness to 18.0 dtex or less, the flexibility of the fiber is improved, the processability of the fiber is improved, and the surface area is increased, so that the adhesiveness with a chemical such as an adhesive is increased. In addition to having a monofilament made of monofilaments, there are advantages that the thickness can be reduced, the woven density can be increased, and the opening (area of the opening) can be widened. The single fiber fineness is preferably 10.0 dtex or less, more preferably 7.0 dtex or less. The lower limit of the single fiber fineness is not particularly limited, but the lower limit that can be achieved in the present invention is about 1.0 dtex.

また本発明の繊維の繊度変動率は30%以下が好ましく、より好ましくは20%以下、さらに好ましくは10%以下である。本発明で言う繊度変動率とは実施例記載の手法により測定された値を指す。繊度変動率が30%以下であることで長手方向の均一性が高まり、繊維の強力(強度と繊度の積)変動も小さくなるため、繊維製品の欠陥が減少する他、モノフィラメントの場合には直径変動が小さくなるため、紗とした際のオープニング(開口部の面積)の均一性が高まり紗の性能が向上できる。   The fineness variation rate of the fiber of the present invention is preferably 30% or less, more preferably 20% or less, and still more preferably 10% or less. The fineness fluctuation rate referred to in the present invention refers to a value measured by the method described in the examples. When the fineness variation rate is 30% or less, the uniformity in the longitudinal direction is increased, and the variation in fiber strength (product of strength and fineness) is also reduced. Since the variation is small, the uniformity of the opening (area of the opening) when the cocoon is made increases and the cocoon performance can be improved.

本発明の繊維の強度は14.0cN/dtex以上であり、18.0cN/dtex以上が好ましく、20.0cN/dtex以上がより好ましい。また弾性率は600cN/dtex以上であり、700cN/dtex以上がより好ましく、800cN/dtex以上がさらに好ましい。強度、弾性率の上限は特に限定されないが、本発明で達しえる上限としては強度30cN/dtex、弾性率1500cN/dtex程度である。なお本発明で言う強度とはJISL1013:1999記載の引張強さを指し、弾性率とは初期引張抵抗度のことを指す。強度、弾性率が高いことにより細繊度でも高い強力を発現させ得るため、繊維材料の軽量化、薄物化が達成できるほか、製織など高次加工工程での糸切れも抑制できる。本発明の繊維においてはΔHm1がΔHm2に対し3.0倍以上あることで高い強度、弾性率が得られる。   The strength of the fiber of the present invention is 14.0 cN / dtex or more, preferably 18.0 cN / dtex or more, and more preferably 20.0 cN / dtex or more. The elastic modulus is 600 cN / dtex or more, more preferably 700 cN / dtex or more, and still more preferably 800 cN / dtex or more. The upper limits of the strength and elastic modulus are not particularly limited, but the upper limits that can be achieved in the present invention are a strength of about 30 cN / dtex and an elastic modulus of about 1500 cN / dtex. The strength referred to in the present invention refers to the tensile strength described in JIS L1013: 1999, and the elastic modulus refers to the initial tensile resistance. Since high strength and elastic modulus can exhibit high strength even at fineness, the fiber material can be made lighter and thinner, and yarn breakage in higher processing steps such as weaving can be suppressed. In the fiber of the present invention, high strength and elastic modulus can be obtained when ΔHm1 is 3.0 times or more than ΔHm2.

また本発明の繊維の強力変動率は20%以下が好ましく、15%以下がより好ましい。なお本発明で言う強力とはJISL1013:1999記載の引張強さの測定における切断時の強さを指し、強力変動率とは実施例記載の手法により測定された値を指す。強力変動率が20%以下であることで長手方向の均一性が高まり、繊維の強力(強度と繊度の積)変動も小さくなるため、繊維製品の欠陥が減少する他、低強度部分に起因する高次加工工程での糸切れも抑制できる。   Further, the strength fluctuation rate of the fiber of the present invention is preferably 20% or less, and more preferably 15% or less. The strength referred to in the present invention refers to the strength at the time of cutting in the measurement of tensile strength described in JIS L1013: 1999, and the strength fluctuation rate refers to a value measured by the method described in the examples. When the strength variation rate is 20% or less, the uniformity in the longitudinal direction is increased, and the variation in fiber strength (the product of strength and fineness) is also reduced. It is also possible to suppress yarn breakage in the high-order processing step.

本発明の繊維の伸度は2.0%以上が好ましい。伸度が2.0%以上あることで繊維の衝撃吸収性が高まり、高次加工工程での工程通過性、取り扱い性に優れる。なお、伸度の上限は特に限定されないが、本発明で達し得る上限としては10%程度である。   The elongation of the fiber of the present invention is preferably 2.0% or more. When the elongation is 2.0% or more, the impact absorbability of the fiber is increased, and the process passability and the handleability in the high-order processing step are excellent. The upper limit of elongation is not particularly limited, but the upper limit that can be reached in the present invention is about 10%.

本発明の繊維の繊維軸垂直方向の圧縮弾性率(以下、圧縮弾性率と記載する)は1.00GPa以下が好ましく、0.50GPa以下がより好ましく、0.35GPa以下がさらに好ましい。圧縮弾性率が低いことで高次加工工程、あるいは織機で繊維がガイドや筬に押し付けられた際にその接触面積を広げ、荷重を分散する効果が発現する。この効果により繊維への押しつけ応力は低下し耐摩耗性は向上する。圧縮弾性率の下限は特に限定されないが、0.10GPa以上であれば繊維が押しつぶされて変形することはなく製品の品位を損ねない。なお本発明で言う圧縮弾性率とは実施例記載の手法により求められた値を指す。   The fiber of the present invention has a compressive modulus (hereinafter referred to as a compressive modulus) in the direction perpendicular to the fiber axis is preferably 1.00 GPa or less, more preferably 0.50 GPa or less, and further preferably 0.35 GPa or less. The low compressive elastic modulus provides an effect of spreading the load by spreading the contact area when the fiber is pressed against the guide or ridge by a high-order processing step or a loom. Due to this effect, the pressing stress on the fiber is lowered and the wear resistance is improved. The lower limit of the compression elastic modulus is not particularly limited, but if it is 0.10 GPa or more, the fiber is not crushed and deformed, and the quality of the product is not impaired. In addition, the compression elastic modulus said by this invention points out the value calculated | required by the method of an Example description.

本発明の繊維は熱膨張係数が好ましくは−20〜0ppm/℃、より好ましくは−10〜0ppm/℃である。本発明で言う熱膨張係数とは実施例記載の手法により測定された値を指す。本発明の繊維は熱膨張係数が負であり、かつ−20〜0ppm/℃という低い値を取ることから熱寸法安定性が高く、回路基板用基布、回路印刷用スクリーン紗など高い位置精度が要求される用途に好適に使用できる。   The fiber of the present invention preferably has a thermal expansion coefficient of -20 to 0 ppm / ° C, more preferably -10 to 0 ppm / ° C. The thermal expansion coefficient referred to in the present invention refers to a value measured by the method described in the examples. Since the fiber of the present invention has a negative coefficient of thermal expansion and takes a low value of -20 to 0 ppm / ° C., the thermal dimensional stability is high, and high positional accuracy such as a circuit board base fabric and a circuit printing screen wrinkle is obtained. It can be suitably used for required applications.

本発明の繊維の複屈折率(△n)は0.250以上0.450以下が好ましく、0.300以上0.400以下がより好ましい。△nがこの範囲であれば繊維軸方向の分子配向は十分に高く、高い強度、弾性率が得られる。   The birefringence (Δn) of the fiber of the present invention is preferably from 0.250 to 0.450, more preferably from 0.300 to 0.400. If Δn is within this range, the molecular orientation in the fiber axis direction is sufficiently high, and high strength and elastic modulus can be obtained.

本発明の繊維は広角X線回折において繊維軸に対し赤道線方向の2θ=18〜22°に観測されるピークの半値幅(Δ2θ)が1.8°未満であることが好ましく、1.6°以下がより好ましい。Δ2θが1.8°未満と小さいことで結晶の完全性は高く、強度、弾性率が高いため工程通過性が高まる。Δ2θの下限は特に限定されないが、下限としては0.8°程度である。なお本発明で言うΔ2θとは実施例記載の手法により求められた値を指す。   In the fiber of the present invention, the peak half-value width (Δ2θ) observed at 2θ = 18 to 22 ° in the equator direction with respect to the fiber axis in wide-angle X-ray diffraction is preferably less than 1.8 °. More preferably, it is less than When Δ2θ is as small as less than 1.8 °, the completeness of the crystal is high, and the strength and elastic modulus are high, so that the process passability is enhanced. The lower limit of Δ2θ is not particularly limited, but the lower limit is about 0.8 °. In the present invention, Δ2θ refers to a value obtained by the method described in the examples.

本発明の繊維には表面平滑性向上、耐摩耗性向上による工程通過性向上などのために油分が付着されていることが好ましく、油分付着量は繊維重量に対し0.1重量%以上が好ましい。なお本発明で言う油分付着量とは実施例記載の手法により求められた値を指す。油分は多いほどその効果は高まるため、0.5重量%以上がより好ましく、1.0重量%以上がさらに好ましい。ただし油分が多すぎると繊維同士の接着力が高まり解舒の際フィブリル化する、ガイドなどに油分が堆積し工程通過性が悪化するなどの問題を引き起こすため、10重量%以下が好ましく、6重量%以下がより好ましく、4重量%以下がさらに好ましい。   The fiber of the present invention is preferably attached with an oil component for the purpose of improving the surface smoothness and the process passability by improving the wear resistance, and the oil adhesion amount is preferably 0.1% by weight or more based on the fiber weight. . In addition, the oil adhesion amount said by this invention refers to the value calculated | required by the method of an Example description. Since the effect increases as the amount of oil increases, it is more preferably 0.5% by weight or more, and further preferably 1.0% by weight or more. However, if there is too much oil, the adhesive strength between fibers increases and fibrillation occurs during unraveling, causing problems such as accumulation of oil on the guide and deterioration of processability. % Or less is more preferable, and 4% by weight or less is more preferable.

また付着されている油剤種は繊維に一般的に使用されるものであれば特に制限はないが、液晶ポリエステル繊維に対しては、固相重合での融着防止と表面平滑性向上の両方の効果を併せ持つポリシロキサン系化合物を少なくとも用いることが好ましく、中でも繊維への塗布が容易である常温で液体状のポリシロキサン系化合物(いわゆるシリコーンオイル)、特に水エマルジョン化に適し環境負荷の低いポリジメチルシロキサン系化合物を含むことが特に好ましい。付着した油分にポリシロキサン系化合物を含むことの判定は、本発明においては実施例記載の方法で行う。   The attached oil agent type is not particularly limited as long as it is generally used for fibers, but for liquid crystal polyester fibers, both prevention of fusion in solid phase polymerization and improvement of surface smoothness are achieved. It is preferable to use at least a polysiloxane compound having an effect. Among them, a polysiloxane compound that is liquid at room temperature (so-called silicone oil) that can be easily applied to fibers, particularly polydimethyl which is suitable for water emulsification and has a low environmental impact. It is particularly preferable to include a siloxane compound. In the present invention, it is determined by the method described in the examples that the adhered oil contains a polysiloxane compound.

本発明の繊維の耐摩耗性は5秒以上が好ましく、10秒以上がより好ましい。本発明で言う耐摩耗性とは実施例記載の手法により測定された値を指す。耐摩耗性が5秒以上であることで液晶ポリエステル繊維の高次加工工程での擦過によるフィブリル発生が抑制でき長手方向の均一性、工程通過性が向上する。またモノフィラメントからなる紗においてはフィブリルが紗に織り込まれることによる開口部の目詰まりが抑制できる。   The abrasion resistance of the fiber of the present invention is preferably 5 seconds or more, and more preferably 10 seconds or more. The abrasion resistance referred to in the present invention refers to a value measured by the method described in the examples. When the wear resistance is 5 seconds or more, the generation of fibrils due to rubbing in the high-order processing step of the liquid crystal polyester fiber can be suppressed, and the uniformity in the longitudinal direction and the process passability are improved. Moreover, in the cocoon made of monofilament, clogging of the opening due to the fibrils being woven into the cocoon can be suppressed.

本発明の繊維は幅広いフィラメント数とすることができる。フィラメント数の上限は特にないが、繊維製品の薄物化、軽量化のためにはフィラメント数50以下が好ましく、20以下がより好ましい。本発明の繊維が特に適しているのはモノフィラメントである。モノフィラメントからなるフィルターや印刷用スクリーン紗の高性能化には織密度増加、オープニングエリアの増加が特に求められており、このためには細繊度化ならびに製織性確保のための高強度化が特に強く求められている。しかし細繊度化、高強度化だけであれば細繊度化液晶ポリエステル繊維を固相重合すれば得ることができるが、従来の液晶ポリエステルでは耐摩耗性に劣り、また細繊度化に伴う固重での融着増加により欠陥が発生するため長手方向の均一性、工程通過性に劣るものであった。本発明の繊維はポリマーの特性により製織に耐え得る耐摩耗性を有し、かつ長手方向の均一性に優れることで工程通過性も向上できるのである。   The fibers of the present invention can have a wide number of filaments. The upper limit of the number of filaments is not particularly limited, but the number of filaments is preferably 50 or less, and more preferably 20 or less, in order to make the fiber product thinner and lighter. The filaments of the present invention are particularly suitable for monofilaments. To improve the performance of monofilament filters and printing screens, it is particularly required to increase the weaving density and the opening area. For this purpose, the fineness and the strengthening to ensure weaving are particularly strong. It has been demanded. However, if it is only finer and stronger, it can be obtained by solid-phase polymerization of the finer liquid crystalline polyester fiber, but conventional liquid crystalline polyester is inferior in wear resistance, and the weight of the finer finer is increased. Defects are generated due to an increase in fusion of the film, so that the uniformity in the longitudinal direction and the process passability are poor. The fibers of the present invention have wear resistance that can withstand weaving due to the properties of the polymer, and can be improved in process passability by being excellent in longitudinal uniformity.

以下、本発明の液晶ポリエステル繊維の製造例を詳細に説明する。   Hereafter, the manufacture example of the liquid crystalline polyester fiber of this invention is demonstrated in detail.

本発明に用いる液晶ポリエステルの製造方法は公知の製造方法に準じて製造でき、例えば以下の製造方法が好ましく挙げられるが、この際、前述した構造単位(I)〜(V)が条件を満たすように各モノマーの使用量を調整する必要がある。   The production method of the liquid crystalline polyester used in the present invention can be produced according to a known production method. For example, the following production methods are preferable, and in this case, the structural units (I) to (V) described above satisfy the conditions. It is necessary to adjust the amount of each monomer used.

(1)p−アセトキシ安息香酸などのアセトキシカルボン酸および4,4’−ジアセトキシビフェニル、ジアセトキシベンゼンなどの芳香族ジヒドロキシ化合物のジアセチル化物とテレフタル酸、イソフタル酸などの芳香族ジカルボン酸から脱酢酸縮重合反応によって液晶性ポリエステルを製造する方法。   (1) Deacetic acid from acetoxycarboxylic acid such as p-acetoxybenzoic acid and diacetylated compounds of aromatic dihydroxy compounds such as 4,4′-diacetoxybiphenyl and diacetoxybenzene and aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid A method for producing a liquid crystalline polyester by a condensation polymerization reaction.

(2)p−ヒドロキシ安息香酸などのヒドロキシカルボン酸および4,4’−ジヒドロキシビフェニル、ハイドロキノンなどの芳香族ジヒドロキシ化合物とテレフタル酸、イソフタル酸などの芳香族ジカルボン酸に無水酢酸を反応させて、フェノール性水酸基をアシル化した後、脱酢酸重縮合反応によって液晶性ポリエステルを製造する方法。   (2) Hydroxycarboxylic acid such as p-hydroxybenzoic acid and aromatic dihydroxy compounds such as 4,4′-dihydroxybiphenyl and hydroquinone and aromatic dicarboxylic acid such as terephthalic acid and isophthalic acid are reacted with acetic anhydride to produce phenol. A method for producing a liquid crystalline polyester by deacetic acid polycondensation reaction after acylating a functional hydroxyl group.

(3)p−ヒドロキシ安息香酸などのヒドロキシカルボン酸のフェニルエステルおよび4,4’−ジヒドロキシビフェニル、ハイドロキノンなどの芳香族ジヒドロキシ化合物とテレフタル酸、イソフタル酸などの芳香族ジカルボン酸のジフェニルエステルから脱フェノール重縮合反応により液晶性ポリエステルを製造する方法。   (3) Dephenolization from phenyl esters of hydroxycarboxylic acids such as p-hydroxybenzoic acid and aromatic dihydroxy compounds such as 4,4′-dihydroxybiphenyl and hydroquinone and diphenyl esters of aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid A method for producing a liquid crystalline polyester by a polycondensation reaction.

(4)p−ヒドロキシ安息香酸などのヒドロキシカルボン酸およびテレフタル酸、イソフタル酸などの芳香族ジカルボン酸に所定量のジフェニルカーボネートを反応させて、それぞれジフェニルエステルとした後、4,4’−ジヒドロキシビフェニル、ハイドロキノンなどの芳香族ジヒドロキシ化合物を加え、脱フェノール重縮合反応により液晶性ポリエステルを製造する方法。   (4) A predetermined amount of diphenyl carbonate is reacted with a hydroxycarboxylic acid such as p-hydroxybenzoic acid and an aromatic dicarboxylic acid such as terephthalic acid or isophthalic acid to form a diphenyl ester, and then 4,4′-dihydroxybiphenyl. A method for producing a liquid crystalline polyester by dephenol polycondensation reaction by adding an aromatic dihydroxy compound such as hydroquinone.

なかでもp−ヒドロキシ安息香酸などのヒドロキシカルボン酸および4,4’−ジヒドロキシビフェニル、ハイドロキノンなどの芳香族ジヒドロキシ化合物、テレフタル酸、イソフタル酸などの芳香族ジカルボン酸に無水酢酸を反応させて、フェノール性水酸基をアシル化した後、脱酢酸重縮合反応によって液晶性ポリエステルを製造する方法が好ましい。さらに、4,4’−ジヒドロキシビフェニルおよびハイドロキノン等の芳香族ジヒドロキシ化合物の合計使用量とテレフタル酸およびイソフタル酸等の芳香族ジカルボン酸の合計使用量は、実質的に等モルである。無水酢酸の使用量は、p−ヒドロキシ安息香酸、4,4’−ジヒドロキシビフェニルおよびハイドロキノンのフェノール性水酸基の合計の1.12当量以下であることが好ましく、1.10当量以下であることがより好ましく、下限については1.0当量以上であることが好ましい。   Among them, hydroxycarboxylic acids such as p-hydroxybenzoic acid, aromatic dihydroxy compounds such as 4,4′-dihydroxybiphenyl and hydroquinone, and aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid are reacted with acetic anhydride to produce phenolic compounds. A method of producing a liquid crystalline polyester by deacetic acid polycondensation reaction after acylating a hydroxyl group is preferred. Furthermore, the total amount of aromatic dihydroxy compounds such as 4,4'-dihydroxybiphenyl and hydroquinone and the total amount of aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid are substantially equimolar. The amount of acetic anhydride used is preferably 1.12 equivalents or less, more preferably 1.10 equivalents or less of the total of the phenolic hydroxyl groups of p-hydroxybenzoic acid, 4,4′-dihydroxybiphenyl and hydroquinone. Preferably, the lower limit is 1.0 equivalent or more.

本発明で用いる液晶ポリエステルを脱酢酸重縮合反応により製造する際には、液晶ポリエステルが溶融する温度で減圧下反応させ、重縮合反応を完了させる溶融重合法が好ましい。例えば、所定量のp−ヒドロキシ安息香酸等のヒドロキシカルボン酸および4,4’−ジヒドロキシビフェニル、ハイドロキノン等の芳香族ジヒドロキシ化合物、テレフタル酸、イソフタル酸等の芳香族ジカルボン酸、無水酢酸を攪拌翼、留出管を備え、下部に吐出口を備えた反応容器中に仕込み、窒素ガス雰囲気下で攪拌しながら加熱し水酸基をアセチル化させた後、液晶性樹脂の溶融温度まで昇温し、減圧により重縮合し、反応を完了させる方法が挙げられる。アセチル化させる条件は、通常130〜300℃の範囲、好ましくは135〜200℃の範囲で通常1〜6時間、好ましくは140〜180℃の範囲で2〜4時間反応させる。重縮合させる温度は、液晶ポリエステルの溶融温度、例えば、250〜350℃の範囲であり、好ましくは液晶ポリエステルポリマーの融点+10℃以上の温度である。重縮合させるときの減圧度は通常13.3〜2660Paであり、好ましくは1330Pa以下、より好ましくは665Pa以下である。なお、アセチル化と重縮合は同一の反応容器で連続して行っても良いが、アセチル化と重縮合を異なる反応容器で行っても良い。   When the liquid crystalline polyester used in the present invention is produced by a deacetic acid polycondensation reaction, a melt polymerization method in which the polycondensation reaction is completed by reacting under reduced pressure at a temperature at which the liquid crystalline polyester melts is preferable. For example, a predetermined amount of a hydroxycarboxylic acid such as p-hydroxybenzoic acid and an aromatic dihydroxy compound such as 4,4′-dihydroxybiphenyl and hydroquinone, an aromatic dicarboxylic acid such as terephthalic acid and isophthalic acid, and an acetic anhydride stirring blade, Charged into a reaction vessel equipped with a distillation pipe and provided with a discharge port at the bottom, heated under stirring in a nitrogen gas atmosphere to acetylate the hydroxyl group, then raised to the melting temperature of the liquid crystalline resin, and reduced pressure A method of completing the reaction by polycondensation is mentioned. The conditions for the acetylation are usually 130 to 300 ° C., preferably 135 to 200 ° C., usually 1 to 6 hours, preferably 140 to 180 ° C. for 2 to 4 hours. The polycondensation temperature is the melting temperature of the liquid crystal polyester, for example, in the range of 250 to 350 ° C., and preferably the melting point of the liquid crystal polyester polymer + 10 ° C. or higher. The degree of pressure reduction during polycondensation is usually 13.3 to 2660 Pa, preferably 1330 Pa or less, more preferably 665 Pa or less. In addition, although acetylation and polycondensation may be performed continuously in the same reaction vessel, acetylation and polycondensation may be performed in different reaction vessels.

得られたポリマーは、それが溶融する温度で反応容器内を例えば、およそ0.1±0.05MPaに加圧し、反応容器下部に設けられた吐出口よりストランド状に吐出することができる。溶融重合法は均一なポリマーを製造するために有利な方法であり、ガス発生量がより少ない優れたポリマーを得ることができ、好ましい。   The obtained polymer can be pressurized in the reaction vessel to, for example, about 0.1 ± 0.05 MPa at a temperature at which it melts and discharged in a strand form from the discharge port provided at the lower portion of the reaction vessel. The melt polymerization method is an advantageous method for producing a uniform polymer, and an excellent polymer with less gas generation can be obtained, which is preferable.

本発明に用いる液晶ポリエステルを製造する際に、固相重合法により重縮合反応を完了させることも可能である。例えば、液晶ポリエステルポリマーまたはオリゴマーを粉砕機で粉砕し、窒素気流下または減圧下、液晶ポリエステルの融点(Tm)−5℃〜融点(Tm)−50℃(例えば、200〜300℃)の範囲で1〜50時間加熱し、所望の重合度まで重縮合し、反応を完了させる方法が挙げられる。   When producing the liquid crystalline polyester used in the present invention, the polycondensation reaction can be completed by a solid phase polymerization method. For example, the liquid crystal polyester polymer or oligomer is pulverized by a pulverizer, and the melting point (Tm) -5 ° C. to the melting point (Tm) −50 ° C. (for example, 200 to 300 ° C.) of the liquid crystal polyester under a nitrogen stream or reduced pressure. A method of heating for 1 to 50 hours, polycondensing to a desired degree of polymerization, and completing the reaction can be mentioned.

ただし紡糸においては、固相重合法により製造した液晶性樹脂をそのまま用いると、固相重合によって生じた高結晶化部分が未溶融で残り、紡糸パック圧の上昇や糸中の異物の原因となる可能性があるため、一度二軸押出機などで混練して(リペレタイズ)、高結晶化部分を完全に溶融することが好ましい。   However, in spinning, if the liquid crystalline resin produced by the solid phase polymerization method is used as it is, the highly crystallized portion generated by the solid phase polymerization remains unmelted, which causes an increase in spinning pack pressure and foreign matter in the yarn. Since there is a possibility, it is preferable that the highly crystallized portion is completely melted by kneading (repletizing) once with a twin screw extruder or the like.

上記液晶ポリエステルの重縮合反応は無触媒でも進行するが、酢酸第一錫、テトラブチルチタネート、酢酸カリウムおよび酢酸ナトリウム、三酸化アンチモン、金属マグネシウムなどの金属化合物を使用することもできる。   The polycondensation reaction of the liquid crystal polyester proceeds even without catalyst, but metal compounds such as stannous acetate, tetrabutyl titanate, potassium acetate and sodium acetate, antimony trioxide, and magnesium metal can also be used.

本発明に用いる液晶ポリエステルポリマーの融点は、溶融紡糸可能な温度範囲を広くするため好ましくは200〜370℃であり、より好ましくは250〜350℃であり、さらに好ましくは290〜340℃である。なお液晶ポリエステルポリマーの融点は実施例記載の方法で測定される値を指す。   The melting point of the liquid crystalline polyester polymer used in the present invention is preferably 200 to 370 ° C., more preferably 250 to 350 ° C., and further preferably 290 to 340 ° C. in order to widen the temperature range capable of melt spinning. In addition, melting | fusing point of a liquid crystalline polyester polymer points out the value measured by the method of an Example description.

本発明に用いる液晶ポリエステルポリマーの溶融粘度は、0.5〜200Pa・sが好ましく、特に1〜100Pa・sが好ましく、紡糸性の点から10〜50Pa・sがより好ましい。なお、この溶融粘度は、融点(Tm)+10℃の条件で、ずり速度1,000(1/s)の条件下で高化式フローテスターによって測定した値である。   The melt viscosity of the liquid crystalline polyester polymer used in the present invention is preferably 0.5 to 200 Pa · s, particularly preferably 1 to 100 Pa · s, and more preferably 10 to 50 Pa · s from the viewpoint of spinnability. The melt viscosity is a value measured with a Koka flow tester under the condition of melting point (Tm) + 10 ° C. and shear rate of 1,000 (1 / s).

本発明に用いる液晶ポリエステルのポリスチレン換算の重量平均分子量(以下、分子量と記載)は3.0万以上が好ましく、5.0万以上がより好ましい。分子量を3.0万以上とすることで紡糸温度において適切な粘度を持ち製糸性を高めることができ、分子量が高いほど得られる繊維の強度、伸度、弾性率は高まる。また分子量が高すぎると粘度が高くなり流動性が悪くなり、ついには流動しなくなるため分子量は25.0万未満が好ましく、15.0万未満がより好ましい。   The polystyrene equivalent weight average molecular weight (hereinafter referred to as molecular weight) of the liquid crystalline polyester used in the present invention is preferably 30,000 or more, and more preferably 50,000 or more. By setting the molecular weight to 30,000 or more, the spinning property can be improved with an appropriate viscosity at the spinning temperature, and the higher the molecular weight, the higher the strength, elongation and elastic modulus of the resulting fiber. On the other hand, if the molecular weight is too high, the viscosity becomes high, the fluidity is deteriorated, and finally the fluid does not flow. Therefore, the molecular weight is preferably less than 255,000, more preferably less than 150,000.

溶融紡糸において、液晶ポリエステルの溶融押出は公知の手法を用いることができるが、重合時に生成する秩序構造をなくすためにエクストルーダー型の押出機を用いることが好ましい。押し出されたポリマーは配管を経由しギアーポンプなど公知の計量装置により計量され、異物除去のフィルターを通過した後、口金へと導かれる。このときポリマー配管から口金までの温度(紡糸温度)は液晶ポリエステルの融点以上、熱分解温度とすることが好ましく、液晶ポリエステルの融点+10℃以上、400℃以下とすることがより好ましく、液晶ポリエステルの融点+20℃以上、370℃以下とすることがさらに好ましい。なお、ポリマー配管から口金までの温度をそれぞれ独立して調整することも可能である。この場合、口金に近い部位の温度をその上流側の温度より高くすることで吐出が安定する。   In melt spinning, a known method can be used for melt extrusion of liquid crystal polyester, but an extruder type extruder is preferably used in order to eliminate the ordered structure generated during polymerization. The extruded polymer is measured by a known measuring device such as a gear pump through a pipe, and after passing through a filter for removing foreign matter, is guided to a base. At this time, the temperature from the polymer pipe to the die (spinning temperature) is preferably not less than the melting point of the liquid crystal polyester and the thermal decomposition temperature, more preferably not less than the melting point of the liquid crystal polyester + 10 ° C. and not more than 400 ° C. More preferably, the melting point is 20 ° C. or higher and 370 ° C. or lower. It is also possible to independently adjust the temperature from the polymer pipe to the base. In this case, the discharge is stabilized by making the temperature of the part close to the base higher than the temperature on the upstream side.

本発明の液晶ポリエステル繊維を得るには、前述した構成単位からなる液晶ポリエステルポリマーを用い、細繊度、低繊度変動率の繊維を得るための紡糸条件の適正化が重要である。前述した構成単位からなる液晶ポリエステルポリマーは、融点と熱分解温度の温度差が大きいため幅広い紡糸温度にて紡糸可能であり、その紡糸温度における熱安定性も高いため製糸性が良好であり、さらに流動性も高く吐出後のポリマーの細化挙動が安定するため繊度変動が少なく、細繊度、低繊度変動率の繊維を得るには有利である。しかし18dtex以下という単繊維繊度の繊維を均一に得るためには、さらに吐出時の安定性、細化挙動の安定性を高める必要があり、工業的な溶融紡糸ではエネルギーコストの低減、生産性向上のため1つの口金に多数の口金孔を穿孔するため、それぞれの孔の吐出、細化を安定させる必要がある。   In order to obtain the liquid crystal polyester fiber of the present invention, it is important to optimize the spinning conditions in order to obtain a fiber having a fineness and a low fineness variation rate using the liquid crystal polyester polymer composed of the above-described structural units. The liquid crystalline polyester polymer composed of the above-mentioned structural units can be spun at a wide range of spinning temperatures because of the large temperature difference between the melting point and the thermal decomposition temperature, and has a high thermal stability at the spinning temperature. Since fluidity is high and the thinning behavior of the polymer after ejection is stable, there is little fluctuation in fineness, which is advantageous for obtaining fibers with fineness and low fineness fluctuation rate. However, in order to uniformly obtain fibers with a single fiber fineness of 18 dtex or less, it is necessary to further increase the stability during discharge and the stability of the thinning behavior. In industrial melt spinning, energy costs are reduced and productivity is improved. Therefore, in order to perforate many base holes in one base, it is necessary to stabilize the discharge and thinning of each hole.

これを達成するためには口金孔の孔径を小さくするとともに、ランド長(口金孔の孔径と同一の直管部の長さ)を長くすることが重要である。ただし孔径が過度に小さいと孔の詰まりが発生しやすくなるため直径0.03mm以上0.30mm以下が好ましく、0.05mm以上0.25mm以下がより好ましく、0.08mm以上0.20mm以下がさらに好ましい。ランド長は過度に長いと圧力損失が高くなるため、ランド長を孔径で除した商で定義されるL/Dが0.5以上3.0以下が好ましく0.8以上2.5以下がより好ましく、1.0以上2.0以下がさらに好ましい。また均一性を維持するために1つの口金の孔数は50孔以下が好ましく、40孔以下がより好ましく、20孔以下がさらに好ましい。なお、口金孔の直上に位置する導入孔は直径が口金孔径の5倍以上のストレート孔とすることが圧力損失を高めない点で好ましい。導入孔と口金孔の接続部分はテーパーとすることが異常滞留を抑制する上で好ましいが、テーパー部分の長さはランド長の2倍以下とすることが圧力損失を高めず、流線を安定させる上で好ましい。   In order to achieve this, it is important to reduce the diameter of the base hole and increase the land length (the length of the straight pipe portion equal to the diameter of the base hole). However, if the hole diameter is excessively small, clogging of the hole is likely to occur, so that the diameter is preferably 0.03 mm to 0.30 mm, more preferably 0.05 mm to 0.25 mm, and further preferably 0.08 mm to 0.20 mm. preferable. If the land length is excessively long, the pressure loss increases. Therefore, the L / D defined by the quotient obtained by dividing the land length by the hole diameter is preferably 0.5 or more and 3.0 or less, more preferably 0.8 or more and 2.5 or less. Preferably, it is 1.0 or more and 2.0 or less. In order to maintain uniformity, the number of holes in one die is preferably 50 holes or less, more preferably 40 holes or less, and even more preferably 20 holes or less. In addition, it is preferable that the introduction hole located immediately above the die hole is a straight hole having a diameter of 5 times or more the diameter of the die hole in terms of not increasing pressure loss. It is preferable to taper the connection part between the introduction hole and the base hole in order to suppress abnormal stagnation. However, the length of the taper part should be less than twice the land length without increasing pressure loss and stabilizing the streamline. This is preferable.

口金孔より吐出されたポリマーは保温、冷却領域を通過させ固化させた後、一定速度で回転するローラー(ゴデットローラー)により引き取られる。保温領域は過度に長いと製糸性が悪くなるため口金面から200mmまでとすることが好ましく、100mmまでとすることがより好ましい。保温領域は加熱手段を用いて雰囲気温度を高めることも可能であり、その温度範囲は100℃以上500℃以下が製糸性向上の点から好ましく、200℃以上400℃以下がより好ましい。冷却は不活性ガス、空気、水蒸気等を用いることができるが、平行あるいは環状に噴き出す空気流を用いることが環境負荷を低くする点から好ましい。   The polymer discharged from the base hole passes through a heat retaining and cooling region and solidifies, and is then taken up by a roller (godet roller) that rotates at a constant speed. If the heat-retaining region is excessively long, the yarn forming property is deteriorated, so that it is preferably up to 200 mm from the base surface, and more preferably up to 100 mm. In the heat retaining region, it is possible to increase the ambient temperature by using a heating means, and the temperature range is preferably 100 ° C. or higher and 500 ° C. or lower from the viewpoint of improving the spinning property, and more preferably 200 ° C. or higher and 400 ° C. or lower. For the cooling, an inert gas, air, water vapor, or the like can be used. However, it is preferable to use an air flow that is jetted in parallel or in an annular shape from the viewpoint of reducing the environmental load.

引き取り速度は生産性、単糸繊度の低減のため50m/分以上が好ましく、300m/分以上がより好ましく、500m/分以上がさらに好ましい。本発明に用いる液晶ポリエステルは紡糸温度において好適な曳糸性を有することから引き取り速度を高速にできる。上限は特に制限されないが、本発明に用いる液晶ポリエステルにおいては曳糸性の点から2000m/分程度となる。   The take-up speed is preferably 50 m / min or more, more preferably 300 m / min or more, and further preferably 500 m / min or more in order to reduce productivity and single yarn fineness. Since the liquid crystalline polyester used in the present invention has a suitable spinnability at the spinning temperature, the take-up speed can be increased. Although the upper limit is not particularly limited, the liquid crystal polyester used in the present invention is about 2000 m / min from the viewpoint of spinnability.

引き取り速度を吐出線速度で除した商で定義される紡糸ドラフトは1以上500以下とすることが好ましく、5以上200以下とすることがより好ましく、12以上100以下とすることがさらに好ましい。本発明に用いる液晶ポリエステルは好適な曳糸性を有することからドラフトを高くでき、細繊度化に有利である。   The spinning draft defined by the quotient obtained by dividing the take-off speed by the discharge linear speed is preferably 1 or more and 500 or less, more preferably 5 or more and 200 or less, and even more preferably 12 or more and 100 or less. Since the liquid crystalline polyester used in the present invention has suitable spinnability, the draft can be increased, which is advantageous for fineness.

溶融紡糸においてはポリマーの冷却固化から巻き取りまでの間に油剤を付与することが繊維の取り扱い性を向上させる上で好ましい。油剤は公知のものを使用できるが、高温での固相重合に耐え得るポリシロキサン系のシリコーンオイルなどを主体とした油剤を用いることがより好ましい。   In melt spinning, it is preferable to add an oil agent between the cooling and solidification of the polymer and the winding to improve the handleability of the fiber. As the oil agent, known oil agents can be used, but it is more preferable to use an oil agent mainly composed of polysiloxane-based silicone oil that can withstand solid-phase polymerization at high temperatures.

巻き取りは公知の巻き取り機を用いパーン、チーズ、コーンなどの形態のパッケージとすることができるが、巻き取り時にパッケージ表面にローラーが接触しないパーン巻きとすることが繊維に摩擦力を与えずフィブリル化させない点で好ましい。   Winding can be carried out using a known winder to form a package such as pirn, cheese, corn, etc. However, it is not necessary to make the wrapping so that the roller does not come into contact with the surface of the package during winding. It is preferable in that it is not fibrillated.

次に、本発明の繊維を得るためにはΔHm1を高める必要があり、これを効率よく達成するためには繊維を固相重合することが好ましい。固相重合はパッケージ状、カセ状、トウ状(例えば、金属網等にのせて行う)、あるいはローラー間で連続的に糸条として処理することも可能であるが、設備が簡素化でき、生産性も向上できる点からパッケージ状で行うことが好ましい。   Next, in order to obtain the fiber of the present invention, it is necessary to increase ΔHm1, and in order to achieve this efficiently, it is preferable to solid-phase polymerize the fiber. Solid-phase polymerization can be processed in the form of a package, cake, tow (for example, on a metal net), or as a continuous thread between rollers, but the equipment can be simplified and produced. It is preferable to carry out in the form of a package from the viewpoint of improving the properties.

パッケージ状で固相重合を行う場合、強度、弾性率を高めかつ繊維長手方向の繊度、強度の均一性を高めるためには単繊維繊度を細くした際に顕著となる融着を防止する技術が重要となる。   When performing solid-phase polymerization in the form of a package, in order to increase the strength and elastic modulus and increase the fineness in the longitudinal direction of the fiber and the uniformity of strength, there is a technology that prevents remarkable fusion when the single fiber fineness is reduced. It becomes important.

融着防止のためには固相重合を行う際の繊維パッケージの巻密度が重要であり、巻き崩れを防ぐために巻き密度を0.01g/cc以上とし、かつ融着を回避するためには巻き密度を0.30g/cc未満とすることが好ましい。ここで巻密度とは、パッケージ外寸法と心材となるボビンの寸法から求められるパッケージの占有体積Vf(cc)と繊維の重量Wf(g)からWf/Vfにより計算される値である。巻密度が小さいほどパッケージにおける繊維間の密着力が弱まり融着が抑制できるため、0.15g/cc以下が好ましく、巻密度が過度に小さいとパッケージが巻き崩れるため0.03g/cc以上とすることが好ましい。なお占有体積Vfはパッケージの外形寸法を実測するか、写真を撮影し写真上で外形寸法を測定し、パッケージが回転対称であることを仮定し計算することで求められる値であり、Wfは繊度と巻取長から計算される値、もしくは巻取前後での重量差により実測される値である。   In order to prevent fusion, the winding density of the fiber package at the time of solid phase polymerization is important. In order to prevent winding collapse, the winding density is 0.01 g / cc or more, and in order to avoid fusion, winding is not necessary. The density is preferably less than 0.30 g / cc. Here, the winding density is a value calculated by Wf / Vf from the occupied volume Vf (cc) of the package and the weight Wf (g) of the fiber obtained from the outside dimensions of the package and the dimensions of the bobbin that is the core material. The smaller the winding density, the weaker the adhesion between the fibers in the package and the suppression of fusion, so 0.15 g / cc or less is preferable, and if the winding density is excessively small, the package collapses and is 0.03 g / cc or more. It is preferable. The occupied volume Vf is a value obtained by actually measuring the outer dimension of the package or by taking a photograph and measuring the outer dimension on the photograph and assuming that the package is rotationally symmetric. Wf is the fineness And a value calculated from the winding length, or a value measured by a weight difference before and after winding.

このような巻密度が小さいパッケージは溶融紡糸における巻き取りで形成した場合には、設備生産性、生産効率化が向上するために望ましく、一方、溶融紡糸で巻き取ったパッケージを巻き返して形成した場合には、巻き張力を小さくすることができ、巻密度をより小さくできるため好ましい。巻き返しにおいては巻き張力を小さくするほど巻き密度は小さくできるので、巻き張力は0.15cN/dtex以下が好ましく、0.10cN/dtex以下がより好ましい。   When such a low winding density package is formed by winding in melt spinning, it is desirable to improve equipment productivity and production efficiency. On the other hand, a package wound by melt spinning is formed by rewinding. Is preferable because the winding tension can be reduced and the winding density can be further reduced. In the rewinding, the winding density can be reduced as the winding tension is reduced. Therefore, the winding tension is preferably 0.15 cN / dtex or less, and more preferably 0.10 cN / dtex or less.

巻き密度を低くするためにはパッケージ形状を整え巻き取り張力を安定化させるために通常用いられるコンタクトローラ等を用いず、繊維パッケージ表面を非接触の状態で巻き取ることや、溶融紡糸で巻き取られたパッケージから調速ローラーを介せず直接、速度制御された巻取機で巻き取ることも有効である。これらの場合、パッケージ形状を整えるためにはトラバースガイドと繊維の接点から繊維パッケージまでの距離(フリーレングス)を10mm以内とする方法が好ましく用いられる。さらに、巻き返し速度を500m/分以下、特に300m/分以下とすることも巻き密度を低くするために有効である。一方、巻き返し速度は生産性のためには高い方が有利であり、50m/分以上、特に100m/分以上とすることが好ましい。   In order to reduce the winding density, the surface of the fiber package is wound in a non-contact state or wound by melt spinning without using a contact roller or the like normally used to adjust the package shape and stabilize the winding tension. It is also effective to wind the package directly with a winder controlled in speed without using a speed control roller. In these cases, in order to adjust the package shape, a method in which the distance (free length) from the contact point between the traverse guide and the fiber to the fiber package is within 10 mm is preferably used. Furthermore, it is also effective to reduce the winding density by setting the winding speed to 500 m / min or less, particularly 300 m / min or less. On the other hand, a higher rewinding speed is advantageous for productivity, and it is preferably 50 m / min or more, particularly preferably 100 m / min or more.

また低張力巻き取りにおいても安定したパッケージを形成するためには巻き形態は両端にテーパーがついたテーパーエンド巻取とすることが好ましい。この際、テーパー角は60°以下が好ましく、45°以下がより好ましい。またテーパー角が小さい場合、繊維パッケージを大きくすることができず長尺の繊維が必要な場合には1°以上が好ましく、5°以上がより好ましい。なお本発明で言うテーパー角とは以下の式で定義される。さらに巻き取りにおいてはトラバース幅を時間に対し周期的に揺動させることで、取り扱い、解舒性に優れるパッケージが得られる。   Further, in order to form a stable package even in the case of low tension winding, the winding form is preferably a tapered end winding with both ends tapered. At this time, the taper angle is preferably 60 ° or less, and more preferably 45 ° or less. When the taper angle is small, the fiber package cannot be enlarged, and when long fibers are required, it is preferably 1 ° or more, and more preferably 5 ° or more. The taper angle referred to in the present invention is defined by the following equation. Furthermore, in winding, the traverse width is periodically swung with respect to time, whereby a package having excellent handling and unwinding properties can be obtained.

Figure 0005098693
Figure 0005098693

さらにパッケージ形成にはワインド数も重要である。ここで言うワインド数とはトラバースが半往復する間にスピンドルが回転する回数であり、トラバース半往復の時間(分)とスピンドル回転数(rpm)の積で定義され、ワインド数が高いことは綾角が小さいことを示す。ワインド数は小さい方が繊維間の接触面積が小さく融着回避には有利であるが、本発明で好適な巻取条件となる低張力、コンタクトロールなしなどの条件下においてはワインド数が高いほど端面での綾落ち、パッケージの膨らみが軽減でき、パッケージ形状が良好となる。これらの点からワインド数は2以上20以下が好ましく、5以上15以下がより好ましい。   Furthermore, the number of winds is also important for package formation. The number of winds referred to here is the number of times the spindle rotates during a half-reciprocation of the traverse, and is defined by the product of the time (minutes) of the traverse half-reciprocation and the spindle rotation speed (rpm). Indicates that the corner is small. The smaller the number of winds, the smaller the contact area between the fibers, which is advantageous for avoiding fusion. However, the higher the number of winds under the conditions such as low tension and no contact roll, which are preferable winding conditions in the present invention. Twill fall off at the end face and the swelling of the package can be reduced, and the package shape is improved. From these points, the wind number is preferably 2 or more and 20 or less, more preferably 5 or more and 15 or less.

繊維パッケージを形成するために用いられるボビンは円筒形状のものであればいかなるものでも良く、繊維パッケージとして巻き取る際に巻取機に取り付けこれを回転させることで繊維を巻き取り、パッケージを形成する。固相重合に際しては繊維パッケージをボビンと一体で処理することもできるが、繊維パッケージからボビンのみを抜き取って処理することもできる。ボビンに巻いたまま処理する場合、該ボビンは固相重合温度に耐える必要があり、アルミや真鍮、鉄、ステンレスなどの金属製であることが好ましい。またこの場合、ボビンには多数の穴の空いていることが、重合反応副生物を速やかに除去でき固相重合を効率的に行えるため好ましい。また繊維パッケージからボビンを抜き取って処理する場合には、ボビン外層に外皮を装着しておくことが好ましい。また、いずれの場合にもボビンの外層にはクッション材を巻き付け、その上に液晶ポリエステル溶融紡糸繊維を巻き取っていくことが好ましい。クッション材の材質は、有機繊維または金属繊維からなるフェルトが好ましく、厚みは0.1mm以上、20mm以下が好ましい。前述の外皮を該クッション材で代用することもできる。   The bobbin used to form the fiber package may be of any cylindrical shape, and when wound as a fiber package, it is attached to a winder and rotated to wind the fiber and form a package. . In the solid-phase polymerization, the fiber package can be processed integrally with the bobbin, but the bobbin alone can be extracted from the fiber package for processing. When the treatment is carried out while being wound around the bobbin, the bobbin needs to withstand the solid phase polymerization temperature, and is preferably made of a metal such as aluminum, brass, iron or stainless steel. Further, in this case, it is preferable that the bobbin has a large number of holes because the polymerization reaction by-products can be removed quickly and solid phase polymerization can be performed efficiently. Further, when the bobbin is extracted from the fiber package and processed, it is preferable to attach an outer skin to the bobbin outer layer. In any case, it is preferable that a cushion material is wound around the outer layer of the bobbin, and the liquid crystalline polyester melt-spun fiber is wound thereon. The cushion material is preferably felt made of organic fiber or metal fiber, and the thickness is preferably 0.1 mm or more and 20 mm or less. The aforementioned outer skin can be substituted with the cushion material.

繊維パッケージの繊維重量はいかなる重量でも良いが、生産性を考慮すると0.01kg以上、10kg以下が好ましい範囲である。なお、糸長としては1万m以上200万m以下が好ましい範囲である。   The fiber weight of the fiber package may be any weight, but is preferably 0.01 kg or more and 10 kg or less in consideration of productivity. The yarn length is preferably in the range of 10,000 m to 2 million m.

また、固相重合時の融着を防ぐため、繊維表面に油分を付着させることは好ましい実施形態である。これら成分の付着は溶融紡糸から巻き取りまでの間に行っても良いが、付着効率を高めるためには巻き返しの際に行う、あるいは溶融紡糸で少量を付着させ、巻き返しの際にさらに追加することが好ましい。   Moreover, in order to prevent the melt | fusion at the time of solid-phase polymerization, it is preferable embodiment to make an oil component adhere to the fiber surface. The adhesion of these components may be performed between melt spinning and winding, but in order to increase the adhesion efficiency, it is performed at the time of rewinding, or a small amount is adhered by melt spinning and further added at the time of rewinding. Is preferred.

油分付着方法はガイド給油法でも良いが、総繊度の細い繊維に均一に付着させるためには金属製あるいはセラミック製のキスロール(オイリングロール)による付着が好ましい。油分の成分としては固相重合での高温熱処理で揮発させないため耐熱性が高い方が良く、塩やタルク、スメクタイトなどの無機物質、フッ素系化合物、シロキサン系化合物(ジメチルポリシロキサン、ジフェニルポリシロキサン、メチルフェニルポリシロキサンなど)およびこれらの混合物などが好ましい。中でもシロキサン系化合物は固重での融着防止効果に加え、易滑性にも効果を示すため特に好ましい。   The oil adhering method may be a guide oiling method, but in order to uniformly adhere to fibers having a fine total fineness, adhesion by a metal or ceramic kiss roll (oiling roll) is preferable. As the oil component, it is better to have high heat resistance because it is not volatilized by high-temperature heat treatment in solid phase polymerization, and inorganic substances such as salt, talc, smectite, fluorine compounds, siloxane compounds (dimethylpolysiloxane, diphenylpolysiloxane, Methylphenyl polysiloxane and the like) and mixtures thereof are preferred. Of these, siloxane compounds are particularly preferred because they have an effect on slipperiness in addition to the effect of preventing fusion under solid weight.

これらの成分は固体付着、油分の直接塗布でも構わないが付着量を適正化しつつ均一塗布するためにはエマルジョン塗布が好ましく、安全性の点から水エマルジョンが特に好ましい。したがって成分としては水溶性あるいは水エマルジョンを形成しやすいことが望ましく、ジメチルポリシロキサンの水エマルジョンを主体とし、これに塩や水膨潤性のスメクタイトを添加した混合油剤が最も好ましい。   These components may be solid-coated or directly coated with oil, but emulsion coating is preferred for uniform coating while optimizing the amount of coating, and water emulsion is particularly preferred from the viewpoint of safety. Therefore, it is desirable that the component is water-soluble or easily form a water emulsion, and a mixed oil agent mainly composed of a water emulsion of dimethylpolysiloxane and a salt or water-swellable smectite added thereto is most preferable.

繊維への油分の付着量は融着抑制のためには多い方が好ましく、0.5重量%以上が好ましく、1.0重量%以上がより好ましい。一方、多すぎると繊維がべたつきハンドリングを悪化させる他、後工程で工程通過性を悪化させるため10.0重量%以下が好ましく、8.0重量%以下がより好ましく、6.0重量%以下が特に好ましい。なお繊維への油分付着量は実施例に記載した手法により求められる値を指す。   The amount of the oil adhering to the fiber is preferably large in order to suppress fusion, and is preferably 0.5% by weight or more, and more preferably 1.0% by weight or more. On the other hand, if the amount is too large, the fiber deteriorates the sticky handling, and also deteriorates the process passability in the subsequent step, so that it is preferably 10.0% by weight or less, more preferably 8.0% by weight or less, and 6.0% by weight or less. Particularly preferred. In addition, the oil adhesion amount to a fiber refers to the value calculated | required by the method described in the Example.

固相重合は窒素等の不活性ガス雰囲気中や、空気のような酸素含有の活性ガス雰囲気中または減圧下で行うことが可能であるが、設備の簡素化および繊維あるいは付着物の酸化防止のため窒素雰囲気下で行うことが好ましい。この際、固相重合の雰囲気は露点が−40℃以下の低湿気体が好ましい。   Solid-phase polymerization can be carried out in an inert gas atmosphere such as nitrogen, an oxygen-containing active gas atmosphere such as air, or under reduced pressure, but it can simplify equipment and prevent oxidation of fibers or deposits. Therefore, it is preferable to carry out in a nitrogen atmosphere. At this time, the atmosphere of the solid phase polymerization is preferably a low-humidity gas having a dew point of −40 ° C. or less.

固相重合温度は、固相重合に供する液晶ポリエステル繊維の融点−60℃以上であることが好ましい。なお最高到達温度はTm1(℃)未満とすることが融着防止のために好ましい。このような融点近傍の高温とすることで固相重合が速やかに進行し、ΔHm1が増加し、強度、弾性率が向上する。また固相重合の進行と共に液晶ポリエステル繊維の融点は上昇するため、固相重合温度は順次高めることができる。なお固相重合温度を時間に対し段階的にあるいは連続的に高めることは、融着を防ぐと共に固相重合の時間効率を高めることができ、より好ましい。ただしこの場合においても固相重合での最高到達温度は熱処理後の繊維のTm1−60(℃)以上Tm1(℃)未満とすることが固相重合速度を高めかつ融着を防止できる点から好ましい。   The solid phase polymerization temperature is preferably not lower than the melting point of the liquid crystalline polyester fiber subjected to solid phase polymerization at −60 ° C. It is preferable that the maximum temperature is less than Tm1 (° C.) in order to prevent fusion. By setting the temperature close to the melting point, solid phase polymerization proceeds rapidly, ΔHm1 increases, and strength and elastic modulus are improved. In addition, since the melting point of the liquid crystal polyester fiber increases with the progress of the solid phase polymerization, the solid phase polymerization temperature can be sequentially increased. Increasing the solid-phase polymerization temperature stepwise or continuously with respect to time is more preferable because it can prevent fusion and increase the time efficiency of solid-phase polymerization. However, also in this case, it is preferable that the maximum temperature achieved in the solid phase polymerization is Tm1-60 (° C.) or higher and less than Tm1 (° C.) of the fiber after heat treatment from the viewpoint of increasing the solid phase polymerization rate and preventing fusion. .

固相重合時間は、△Hm1を十分に高く、Tm1でのピーク半値幅を小さくするためには最高到達温度で5時間以上が好ましく、10時間以上がより好ましい。上限は特に制限されないが△Hm1増加、ピーク半値幅減少の効果は経過時間と共に飽和するため100時間程度で十分である。   The solid phase polymerization time is preferably 5 hours or more at the highest temperature and more preferably 10 hours or more in order to sufficiently increase ΔHm1 and reduce the peak half-value width at Tm1. The upper limit is not particularly limited, but the effect of increasing ΔHm1 and decreasing the peak half-value width is saturated with the elapsed time, so about 100 hours is sufficient.

固相重合後のパッケージはそのまま製品として供することもできるが、製品運搬効率を高めるために固相重合後のパッケージを再度巻き返し巻き密度を高めることが好ましい。固相重合後の巻き返しにおいてはその解舒が重要であり、解舒による固相重合パッケージの崩れを防ぎ、さらに軽微な融着を剥がす際のフィブリル化を抑制するために固相重合パッケージを回転させながら、回転軸と垂直方向(繊維周回方向)に糸を解舒する、いわゆる横取りにより解舒することが好ましく、さらに固相重合パッケージの回転は自由回転ではなく積極駆動により回転させることが解舒時の張力をより低減でき、フィブリル化を抑制できる点で好ましい。   The package after the solid phase polymerization can be used as a product as it is, but it is preferable to rewind the package after the solid phase polymerization and increase the winding density again in order to increase the product transport efficiency. In unwinding after solid-phase polymerization, unraveling is important. In order to prevent the solid-phase polymerization package from collapsing due to unraveling, and to suppress fibrillation when peeling light fusion, the solid-phase polymerization package is rotated. It is preferable to unwind the yarn in the direction perpendicular to the rotation axis (fiber wrapping direction) by so-called pre-cutting, and it is further understood that the rotation of the solid-state polymerization package is not positively rotated but actively driven. This is preferable in that the tension during drought can be further reduced and fibrillation can be suppressed.

固相重合を行った繊維から油分を除去することは好ましい実施形態である。固相重合での融着抑制に対しては無機物質やフッ素系化合物、シロキサン系化合物などの油分付着量が多いほど効果が高いものの、固相重合以降の工程や製織工程では油分が多すぎるとガイド、筬への堆積による工程通過性の悪化、堆積物の製品への混入による欠点生成などを招くため油分付着量は必要最低限まで低下させた方が好ましい。このため固相重合前に付着させた油分を固相重合後に除去することで融着抑制、長手方向の均一性向上と工程通過性向上を両立できる。   It is a preferred embodiment to remove the oil from the fiber subjected to solid state polymerization. Although the effect is higher as the amount of adhesion of oil such as inorganic substances, fluorine-based compounds, and siloxane-based compounds increases for the suppression of fusion in solid-phase polymerization, if there is too much oil in the processes after solid-phase polymerization and weaving processes It is preferable to reduce the oil adhesion amount to the minimum necessary because it causes deterioration of process passability due to deposition on the guide and soot, and generation of defects due to mixing of the deposit into the product. For this reason, by removing the oil component adhering before solid-phase polymerization after solid-phase polymerization, it is possible to achieve both fusion suppression, improvement in uniformity in the longitudinal direction and improvement in process passability.

油分除去方法は特に制限はなく、繊維を連続的に走行させながら布や紙で拭き取る方法などが挙げられるが、繊維に力学的な負荷を与えず除去効率を高められる点で油分が溶解あるいは分散できる液体に繊維を浸す方法が好ましい。この時、繊維を連続的に走行させつつ液体に浸しても良く、繊維をパッケージの状態で液体に浸しても良い。連続走行させながら除去する方法では繊維長手方向に均一な除去ができる他、設備を簡素化できる。パッケージの状態で除去する方法では単位時間当たりの処理量が増加するため生産性に優れる。   The oil removal method is not particularly limited, and examples include a method of wiping with a cloth or paper while continuously running the fiber, but the oil is dissolved or dispersed in that the removal efficiency can be improved without giving a mechanical load to the fiber. A method in which the fiber is immersed in a liquid that can be formed is preferable. At this time, the fibers may be immersed in the liquid while running continuously, or the fibers may be immersed in the liquid in a package state. In the method of removing while continuously running, the removal can be performed uniformly in the longitudinal direction of the fiber, and the equipment can be simplified. The removal method in the package state is excellent in productivity because the processing amount per unit time increases.

除去に用いる液体は、環境負荷を低減するために水とすることが好ましい。液体の温度は高い方が除去効率を高めることができ、40℃以上が好ましく、60℃以上がより好ましい。ただし温度が高すぎる場合には液体の蒸発が著しくなるため、液体の沸点−10℃以下が好ましく、沸点−20℃以下がより好ましい。さらに液体への界面活性剤の添加、液体の気泡あるいは超音波振動、液流の付与、液体中に浸されている繊維への振動の付与などは油分の液体への溶解あるいは分散速度を高める上で特に好ましい。   The liquid used for removal is preferably water in order to reduce the environmental load. The higher the temperature of the liquid, the higher the removal efficiency. The temperature is preferably 40 ° C. or higher, more preferably 60 ° C. or higher. However, when the temperature is too high, the evaporation of the liquid becomes remarkable, and therefore the boiling point of the liquid is preferably −10 ° C. or lower, more preferably the boiling point −20 ° C. or lower. Furthermore, addition of surfactants to liquids, liquid bubbles or ultrasonic vibrations, application of liquid flow, application of vibrations to fibers immersed in the liquid, etc. can increase the dissolution or dispersion rate of oil in the liquid. Is particularly preferable.

油分除去の程度は目的に応じ適宜調整されるが、高次加工工程や製織工程での繊維の工程通過性向上、耐摩耗性向上のため油分をある程度残すことは工程簡略化の上で好ましい。また油分をほとんど除去した後に、異なる種類の油分を付与することも好ましい実施形態である。   Although the degree of oil removal is appropriately adjusted according to the purpose, it is preferable to leave oil to some extent to improve the processability and wear resistance of the fibers in the higher processing and weaving processes. It is also a preferred embodiment to apply a different kind of oil after removing most of the oil.

最終的な繊維への油分付着量は繊維重量に対し0.1重量%以上が好ましい。なお本発明で言う油分付着量とは実施例記載の手法により求められた値を指す。油分は多いほど工程通過性向上、耐摩耗性向上の効果は高まるため、0.5重量%以上がより好ましく、1.0重量%以上がさらに好ましい。ただし油分が多すぎると繊維同士の接着力が高まり、走行張力が不安定になる、ガイドなどに油分が堆積し工程通過性が悪化し、時には製品に混入し欠点となるなどの問題を引き起こすため、10重量%以下が好ましく、6重量%以下がより好ましく、4重量%以下がさらに好ましい。このとき油分にポリジメチルシロキサン系化合物を含むことが工程通過性向上、耐摩耗性向上のため特に好ましい。付着した油分にポリシロキサン系化合物を含むことの判定は、本発明においては実施例記載の方法で行う。   The final oil adhesion amount to the fiber is preferably 0.1% by weight or more based on the fiber weight. In addition, the oil adhesion amount said by this invention refers to the value calculated | required by the method of an Example description. As the oil content increases, the effect of improving process passability and wear resistance increases, so 0.5% by weight or more is more preferable, and 1.0% by weight or more is more preferable. However, if too much oil is present, the adhesive strength between fibers will increase, running tension will become unstable, oil will accumulate on the guide and the process will deteriorate, and sometimes it will be mixed into the product and cause defects. It is preferably 10% by weight or less, more preferably 6% by weight or less, and further preferably 4% by weight or less. In this case, it is particularly preferable that the oil contains a polydimethylsiloxane compound for improving process passability and wear resistance. In the present invention, it is determined by the method described in the examples that the adhered oil contains a polysiloxane compound.

本発明の液晶ポリエステル繊維は高強度、高弾性率、高耐熱性、高熱寸法安定性の特徴を保持しながら、単繊維繊度が低減、耐摩耗性が改善されたものであり、一般産業用資材、土木・建築資材、スポーツ用途、防護衣、ゴム補強資材、電気材料(特に、テンションメンバーとして)、音響材料、一般衣料等の分野で広く用いられる。有効な用途としては、スクリーン紗、フィルター、ロープ、ネット、魚網、コンピューターリボン、プリント基板用基布、抄紙用のカンバス、エアーバッグ、飛行船、ドーム用等の基布、ライダースーツ、釣糸、各種ライン(ヨット、パラグライダー、気球、凧糸)、ブラインドコード、網戸用支持コード、自動車や航空機内各種コード、電気製品やロボットの力伝達コード等が挙げられ、特に有効な用途として工業資材用織物等に用いるモノフィラメント、中でもフィルター用メッシュ織物や印刷用スクリーン紗が挙げられる。   The liquid crystalline polyester fiber of the present invention has high strength, high elastic modulus, high heat resistance, and high thermal dimensional stability, and has a reduced single fiber fineness and improved wear resistance. Widely used in fields such as civil engineering and construction materials, sports applications, protective clothing, rubber reinforcement materials, electrical materials (especially as tension members), acoustic materials, and general clothing. Effective applications include screen kites, filters, ropes, nets, fishnets, computer ribbons, printed circuit board base fabrics, paper canvases, air bags, airships, dome base fabrics, rider suits, fishing lines, various lines (Yachts, paragliders, balloons, kites), blind cords, support cords for screen doors, various cords for automobiles and aircraft, power transmission cords for electrical products and robots, etc. Examples of the monofilament used include a mesh fabric for a filter and a screen for printing.

以下、実施例により本発明を詳細に説明するが、本発明はこれにより何ら限定されるものではない。なお、本発明の各種特性の評価は次の方法で行った。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by this. The various characteristics of the present invention were evaluated by the following methods.

(1)ポリスチレン換算の重量平均分子量(分子量)
溶媒としてペンタフルオロフェノール/クロロホルム=35/65(重量比)の混合溶媒を用い、液晶ポリエステルの濃度が0.04〜0.08重量/体積%となるように溶解させGPC測定用試料とした。なお、室温24時間の放置でも不溶物がある場合は、さらに24時間静置し、上澄み液を試料とした。これを、Waters社製GPC測定装置を用いて測定し、ポリスチレン換算により重量平均分子量(Mw)を求めた。
カラム:ShodexK−806M 2本、K−802 1本
検出器:示差屈折率検出器RI(2414型)
温度 :23±2℃
流速 :0.8mL/分
注入量:200μL
(2)液晶ポリエステル繊維のTm1、Tm1におけるピーク半値幅、ΔHm1、Tc、ΔHc、Tm2、ΔHm2、液晶ポリエステルポリマーの融点
繊維の熱分析はTA instruments社製DSC2920により示差熱量測定を行い、50℃から20℃/分の昇温条件で測定した際に観測される吸熱ピークの温度をTm1(℃)とし、Tm1におけるピーク半値幅(℃)、融解熱量(ΔHm1)(J/g)を測定した。
(1) Weight average molecular weight in terms of polystyrene (molecular weight)
A mixed solvent of pentafluorophenol / chloroform = 35/65 (weight ratio) was used as a solvent, and the solution was dissolved so that the concentration of liquid crystal polyester was 0.04 to 0.08 weight / volume% to obtain a sample for GPC measurement. In addition, when there was an insoluble matter even after standing at room temperature for 24 hours, the mixture was left still for 24 hours, and the supernatant was used as a sample. This was measured using a GPC measuring apparatus manufactured by Waters, and the weight average molecular weight (Mw) was determined by polystyrene conversion.
Column: 2 Shodex K-806M, 1 K-802 Detector: Differential refractive index detector RI (type 2414)
Temperature: 23 ± 2 ° C
Flow rate: 0.8 mL / min Injection volume: 200 μL
(2) Tm1, Tm1 peak half width of liquid crystal polyester fiber, ΔHm1, Tc, ΔHc, Tm2, ΔHm2, melting point of liquid crystal polyester polymer Thermal analysis of the fiber was performed by DSC2920 manufactured by TA instruments, and differential calorimetry was performed from 50 ° C. The temperature of the endothermic peak observed when measured under a temperature rising condition of 20 ° C./min was Tm1 (° C.), and the peak half-value width (° C.) and heat of fusion (ΔHm1) (J / g) at Tm1 were measured.

続いて、Tm1の観測後、Tm1+20℃の温度で5分間保持した後、20℃/分の降温条件で測定した際に観測される発熱ピークの温度をTc(℃)とし、Tcにおける結晶化熱量(ΔHc)(J/g)を測定した。続けて50℃まで冷却し、再度20℃/分の昇温条件で測定した際に観測される吸熱ピークをTm2とし、Tm2における融解熱量(ΔHm2)(J/g)を測定した。   Subsequently, after observing Tm1, the temperature of Tm1 + 20 ° C. is maintained for 5 minutes, and the temperature of the exothermic peak observed when measured under a temperature drop condition of 20 ° C./min is defined as Tc (° C.). (ΔHc) (J / g) was measured. Subsequently, the mixture was cooled to 50 ° C., and the endothermic peak observed when the temperature was again measured at 20 ° C./min was defined as Tm2, and the heat of fusion (ΔHm2) (J / g) at Tm2 was measured.

なお、参考例に示した液晶ポリエステルポリマーについてはTm1の観測後、Tm1+20℃の温度で5分間保持した後、20℃/分の降温条件で50℃まで一旦冷却し、再度20℃/分の昇温条件で測定した際に観測される吸熱ピークをTm2とし、Tm2をもってポリマーの融点とした。   In addition, about the liquid crystalline polyester polymer shown in the reference example, after observing Tm1, it was held at a temperature of Tm1 + 20 ° C. for 5 minutes, then cooled to 50 ° C. under a temperature decreasing condition of 20 ° C./minute, and again increased to 20 ° C./minute. The endothermic peak observed when measured under temperature conditions was defined as Tm2, and Tm2 was defined as the melting point of the polymer.

(3)単繊維繊度および繊度変動率
検尺機にて繊維を100mカセ取りし、その重量(g)を100倍し、1水準当たり10回の測定を行い平均値を繊度(dtex)とした。これをフィラメント数で除した商を単繊維繊度(dtex)とした。繊度変動率は繊度の10回の平均値からの最大もしくは最小値の差の絶対値のうち、いずれか大きい方の値を用いて下式により算出した。
繊度変動率(%)=((|最大値もしくは最小値−平均値|/平均値)×100)
(4)強度、伸度、弾性率および強力変動率
JIS L1013:1999記載の方法に準じて、試料長100mm、引張速度50mm/分の条件で、オリエンテック社製テンシロンUCT−100を用い1水準当たり10回の測定を行い、平均値を強力(cN)、強度(cN/dtex)、伸度(%)、弾性率(cN/dtex)とした。強力変動率は強力の10回の平均値からの最大もしくは最小値の差の絶対値のうち、いずれか大きい方の値を用いて下式により算出した。
強力変動率(%)=((|最大値もしくは最小値−平均値|/平均値)×100)
(5)熱膨張係数
島津製作所社製TMA−50を用い、処理加重0.03cN/dtexを繊維軸方向に与え40℃から250℃まで5℃/分の速度で昇温した際の50℃での試料長L0と100℃での試料長L1を用いて下式で計算した。
熱膨張係数(ppm/℃)=((L0−L1)/(L0×50))×10
(6)繊維軸垂直方向の圧縮弾性率(圧縮弾性率)
単繊維1本をセラミックス製等の剛性の高いステージに静置し、圧子の辺を繊維とほぼ平行とした状態で、下記条件において直径方向に圧子を用いて圧縮負荷を一定の試験速度で加え、荷重−変位曲線を得た後、次式から繊維軸垂直方向の圧縮弾性率を算出した。
(3) Single fiber fineness and fineness variation rate 100 m of fiber was removed with a measuring machine, the weight (g) was multiplied by 100, and 10 measurements per level were performed, and the average value was defined as fineness (dtex). . The quotient obtained by dividing this by the number of filaments was defined as the single fiber fineness (dtex). The fineness variation rate was calculated by the following equation using the larger one of the absolute values of the difference between the maximum value and the minimum value from the average value of 10 finenesses.
Fineness fluctuation rate (%) = ((| maximum value or minimum value−average value | / average value) × 100)
(4) Strength, elongation, elastic modulus, and strength fluctuation rate According to the method described in JIS L1013: 1999, using Tensilon UCT-100 manufactured by Orientec Co., Ltd. under the conditions of a sample length of 100 mm and a tensile speed of 50 mm / min. The measurement was performed 10 times per average, and the average value was defined as strength (cN), strength (cN / dtex), elongation (%), and elastic modulus (cN / dtex). The strength fluctuation rate was calculated by the following formula using the larger one of the absolute values of the differences between the maximum and minimum values from the average value of 10 strengths.
Strong fluctuation rate (%) = ((| maximum or minimum value−average value | / average value) × 100)
(5) Thermal expansion coefficient At 50 ° C when TMA-50 manufactured by Shimadzu Corporation was used and a processing load of 0.03 cN / dtex was applied in the fiber axis direction and the temperature was increased from 40 ° C to 250 ° C at a rate of 5 ° C / min. The sample length L0 and the sample length L1 at 100 ° C. were used for calculation according to the following formula.
Thermal expansion coefficient (ppm / ° C.) = ((L0−L1) / (L0 × 50)) × 10 6
(6) Compression modulus in the direction perpendicular to the fiber axis (compression modulus)
Place a single fiber on a highly rigid stage such as ceramic, and apply a compression load at a constant test speed using the indenter in the diameter direction under the following conditions with the side of the indenter approximately parallel to the fiber. After obtaining the load-displacement curve, the compression elastic modulus in the direction perpendicular to the fiber axis was calculated from the following equation.

なお測定に当たっては、装置系の変形量の補正を行うため試料を置かない状態で荷重−変位曲線を得て、これを直線近似して荷重に対する装置の変形量を算出し、試料を置いて荷重−変位曲線を測定した際の各々のデータ点の変位から、その荷重に対する装置の変形量を減じて試料そのものの変位を求め、これを以下の算出に用いた。   In the measurement, in order to correct the deformation amount of the device system, a load-displacement curve is obtained without placing the sample, and this is approximated by a straight line to calculate the deformation amount of the device with respect to the load. -From the displacement of each data point when the displacement curve was measured, the amount of deformation of the apparatus with respect to the load was subtracted to obtain the displacement of the sample itself, which was used for the following calculation.

算出に当たっては、荷重−変位曲線で線形性が成立する2点での荷重と変位を用いて圧縮弾性率を算出した。その低荷重側の点は荷重をかけた初期では圧子がサンプル全面にあたっていない可能性があるため、荷重約30mNの点とした。ただしここで定めた低荷重点が非線形領域内の場合には、降伏点を通過するように荷重−変位曲線に沿って低荷重側に直線を引き、その直線と変位のずれが0.1μm以内となる最小荷重の点とした。また高荷重側は荷重約100mNの点とした。なお高荷重側の点が降伏点荷重を超える場合には、低荷重側の点を通過するように荷重−変位曲線に沿って高荷重側に直線を引き、その直線との変位のずれが0.1μm以内となる最大荷重の点を高荷重側の点とした。なお下式中のlは500μmとして計算を行い、単繊維半径は試験前に光学顕微鏡を用いて試料の直径を10回測定し、これを平均して求めた平均直径を1/2にした値を用いた。また荷重−変位曲線は試料1水準について5回測定し、圧縮弾性率も5回算出し、これを平均したものを圧縮弾性率とした。   In the calculation, the compression elastic modulus was calculated using the load and displacement at two points where linearity is established in the load-displacement curve. The point on the low load side is a point where the load is about 30 mN because there is a possibility that the indenter does not hit the entire surface of the sample at the initial stage when the load is applied. However, when the low load point determined here is in the non-linear region, a straight line is drawn on the low load side along the load-displacement curve so as to pass the yield point, and the deviation between the straight line and the displacement is within 0.1 μm. The minimum load point is The high load side was a point with a load of about 100 mN. When the point on the high load side exceeds the yield point load, a straight line is drawn on the high load side along the load-displacement curve so as to pass the point on the low load side, and the displacement deviation from that line is zero. The point of maximum load within 1 μm was taken as the point on the high load side. In addition, l in the following formula is calculated as 500 μm, and the single fiber radius is a value obtained by measuring the diameter of the sample 10 times using an optical microscope before the test and halving the average diameter obtained by averaging this. Was used. Further, the load-displacement curve was measured 5 times for the sample 1 level, the compression elastic modulus was also calculated 5 times, and the average of these was taken as the compression elastic modulus.

Figure 0005098693
Figure 0005098693

装置 :Instron社製超精密材料試験機Model5848
圧子 :ダイヤモンド製平面圧子(1辺500μmの正方形)
試験速度 :50μm/分
サンプリング速度 :0.1秒
データ処理システム:Instron社製“Merlin”
測定雰囲気 :室温大気中(23±2℃、50±5%RH)
(7)広角X線回折でのピーク半値幅(Δ2θ)
繊維を4cmに切り出し、その20mgを秤量し試料とした。測定は繊維軸方向に対し赤道線方向に行い、その条件は下記とした。このとき2θ=18〜22°に観測されるピークの半値幅(Δ2θ)を測定した。
X線発生装置 :理学電気社製4036A2型
X線源 :CuKα線(Niフィルター使用)
出力 :40kV−20mA
ゴニオメーター:理学電気社製2155D型
スリット :2mmφ−1°−1°
検出器 :シンチレーションカウンター
計数記録装置 :理学電気社製RAD−C型
測定範囲 :2θ=5〜60°
ステップ :0.05°
積算時間 :2秒
(8)耐摩耗性
2.45cN/dtex(2.5g重/dtex)の荷重をかけた繊維を垂直に垂らし、繊維に対して垂直になるように直径3.8mmの硬質クロム梨地加工金属棒ガイド(湯浅糸道工業(株)製棒ガイド)を接触角2.7°で押し付け、ストローク長30mm、ストローク速度600回/分でガイドを繊維軸方向に擦過させ、実体顕微鏡観察を行い、棒ガイド上もしくは繊維表面上に白粉またはフィブリルの発生が確認されるまでの秒数を測定し、7回の測定のうち最大値および最小値を除いた5回の平均値を求め耐摩耗性とした。なお耐摩耗性評価はマルチフィラメントでも同様の試験法で行った。
Apparatus: Instron super precision material testing machine Model 5848
Indenter: Diamond flat indenter (square with a side of 500 μm)
Test speed: 50 μm / min Sampling speed: 0.1 second Data processing system: “Merlin” manufactured by Instron
Measurement atmosphere: At room temperature in air (23 ± 2 ° C., 50 ± 5% RH)
(7) Peak half-width (Δ2θ) in wide-angle X-ray diffraction
The fiber was cut into 4 cm, 20 mg of the fiber was weighed and used as a sample. The measurement was performed in the equator direction with respect to the fiber axis direction, and the conditions were as follows. At this time, the half width (Δ2θ) of the peak observed at 2θ = 18 to 22 ° was measured.
X-ray generator: Rigaku Denki 4036A2 type X-ray source: CuKα ray (using Ni filter)
Output: 40kV-20mA
Goniometer: Rigaku Denki 2155D type slit: 2mmφ-1 ° -1 °
Detector: Scintillation counter counting recording device: RAD-C type measurement range manufactured by Rigaku Corporation: 2θ = 5-60 °
Step: 0.05 °
Integration time: 2 seconds (8) Abrasion resistance A fiber loaded with a load of 2.45 cN / dtex (2.5 g weight / dtex) is hung vertically and is hard with a diameter of 3.8 mm so as to be perpendicular to the fiber. Press the chrome-satin-finished metal rod guide (bar guide manufactured by Yuasa Yindo Kogyo Co., Ltd.) at a contact angle of 2.7 °, and rub the guide in the fiber axis direction at a stroke length of 30 mm and a stroke speed of 600 times / min. Observe and measure the number of seconds until the occurrence of white powder or fibrils is confirmed on the rod guide or on the fiber surface, and obtain the average value of 5 times excluding the maximum and minimum values from the 7 measurements. Wear resistance. The abrasion resistance was evaluated by the same test method for multifilaments.

(9)複屈折率(△n)
偏光顕微鏡(OLYMPUS社製BH−2)を用いコンペンセーター法により試料1水準当たり5回の測定を行い、平均値として求めた。
(9) Birefringence (Δn)
Using a polarizing microscope (BLY-2 manufactured by OLYMPUS), measurement was performed 5 times per one sample level by the compensator method, and the average value was obtained.

(10)油分付着量、ポリシロキサン系化合物付着の判定
100mg以上の繊維を採取し、60℃にて10分間乾燥させた後の重量を測定し(W0)、繊維重量に対し100倍以上の水にドデシルベンゼンスルホン酸ナトリウムを繊維重量に対し2.0重量%添加した溶液に繊維を浸漬させ、室温にて20分超音波洗浄し、洗浄後の繊維を水洗し、60℃にて10分間乾燥させた後の重量を測定し(W1)、次式により油分付着量を算出した。
(油分付着量(重量%))=(W0−W1)×100/W1
またポリシロキサン系化合物付着の判定は超音波洗浄後の溶液を採取し、これをIR測定し、ドデシルベンゼンスルホン酸ナトリウムのスルホン酸基に由来する1150〜1250cm−1のピーク強度に対しポリシロキサンに由来する1050〜1150cm−1のピーク強度が0.1倍以上あればポリシロキサンが繊維に付着していると判断した。
(10) Judgment of oil adhesion amount and polysiloxane compound adhesion 100 mg or more of fibers were collected and weighed after drying for 10 minutes at 60 ° C. (W0), and water more than 100 times the fiber weight. The fiber was immersed in a solution containing 2.0% by weight of sodium dodecylbenzenesulfonate added to the fiber, ultrasonically washed at room temperature for 20 minutes, the washed fiber was washed with water, and dried at 60 ° C. for 10 minutes. The weight after the measurement was measured (W1), and the oil adhesion amount was calculated by the following formula.
(Amount of oil adhering (weight%)) = (W0−W1) × 100 / W1
In addition, the determination of polysiloxane compound adhesion was obtained by collecting a solution after ultrasonic cleaning, performing IR measurement, and determining the polysiloxane against the peak intensity of 1150 to 1250 cm −1 derived from the sulfonic acid group of sodium dodecylbenzenesulfonate. If the derived peak intensity of 1050 to 1150 cm −1 was 0.1 times or more, it was judged that the polysiloxane adhered to the fiber.

(11)走行張力、走行応力
東レ・エンジニアリング社製テンションメーター(MODEL TTM−101)を用いて測定した。また、極低張力用には上記テンションメーターを改造したフルスケール5g、精度0.01g測定可能な張力計を用いた。計測した走行張力は単位を換算し、処理後繊維の繊度で除してcN/dtexの単位として走行応力とした。
(11) Running tension and running stress Measured using a tension meter (MODEL TTM-101) manufactured by Toray Engineering. In addition, a tension meter capable of measuring a full scale of 5 g and an accuracy of 0.01 g was used for the extremely low tension. The measured traveling tension was converted into a unit and divided by the fineness of the treated fiber to obtain the traveling stress as a unit of cN / dtex.

(12)製織性、織物特性評価
レピア織機にて経糸に13dtexのポリエステルモノフィラメントを用い、織密度を経、緯とも100本/インチ(2.54cm)、打ち込み速度を100回/分として緯打ち込み試織を行った。この時、幅180cm、織長さ100cmの試織における給糸口(セラミックガイド)へのフィブリル、スカムの堆積から工程通過性を評価し、糸切れによる停台回数から製織性を評価し、織物開口部へのフィブリル、スカムの混入個数から織物品位を評価した。それぞれの判断基準を下記する。なお織り上がった織物の厚みはピーコック社製ダイアルシックネスゲージを用い測定した。
(12) Evaluation of weaving properties and fabric characteristics Using a rapier loom with 13 dtex polyester monofilament for warp, weaving density, weft 100 weighs per inch (2.54 cm), and weaving speed 100 times / min. Weaved. At this time, the process passability was evaluated from the fibril and scum accumulation on the yarn feeder (ceramic guide) in the trial weaving with a width of 180 cm and a weaving length of 100 cm, and the weaving property was evaluated from the number of stops due to yarn breakage. The quality of the fabric was evaluated from the number of mixed fibrils and scum. The criteria for each are described below. The thickness of the woven fabric was measured using a dial thickness gauge manufactured by Peacock.

<工程通過性>
製織後も目視にてフィブリル、スカムの堆積が認められない;優良(◎)
製織後にフィブリル、スカムは認められるが繊維走行には支障なし;良好(○)
製織後にフィブリル、スカムが認められ、繊維走行張力が増加する;不合格(△)
製織中にフィブリル、スカムが認められ、試織を停止した;不良(×)
製織性
<製織性>
停台0回;優良(◎)、停台1〜2回;合格(○)
停台3〜5回;不合格(△)、停台6回以上;不良(×)
また織物のフィブリル混入個数から織物品位を評価した。判断基準を下記する。
<Process passability>
Even after weaving, no fibril or scum accumulation is observed; excellent (◎)
Fibrils and scum are observed after weaving, but there is no hindrance to fiber running; good (○)
Fibrils and scum are observed after weaving, and fiber running tension increases; reject (△)
Fibrils and scum were observed during weaving, and trial weaving was stopped; defective (×)
Weaving <Weaving>
Stop 0 times; Excellent (◎), Stop 1 to 2 times; Pass (○)
Stop 3 to 5 times; Fail (△), Stop 6 times or more; Defect (x)
In addition, the quality of the fabric was evaluated from the number of fibrils mixed in the fabric. The criteria are as follows.

<織物品位>
0個;優良(◎)、1〜2個;良好(○)、3〜5個;不合格(△)、6個以上;不良(×)
参考例1
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸870重量部、4,4’−ジヒドロキシビフェニル327重量部、ハイドロキノン89重量部、テレフタル酸292重量部、イソフタル酸157重量部および無水酢酸1433重量部(フェノール性水酸基合計の1.08当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、330℃まで4時間で昇温した。
<Textile grade>
0; Excellent (◎), 1-2; Good (◯), 3-5; Fail (△), 6 or more; Poor (x)
Reference example 1
In a 5 L reaction vessel equipped with a stirring blade and a distillation tube, 870 parts by weight of p-hydroxybenzoic acid, 327 parts by weight of 4,4′-dihydroxybiphenyl, 89 parts by weight of hydroquinone, 292 parts by weight of terephthalic acid, 157 parts by weight of isophthalic acid Then, 1433 parts by weight of acetic anhydride (1.08 equivalent of the total phenolic hydroxyl groups) was added, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, followed by reaction at 145 ° C. for 2 hours. Then, it heated up to 330 degreeC in 4 hours.

重合温度を330℃に保持し、1.5時間で1.0mmHg(133Pa)に減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を1.0kg/cm(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。 The polymerization temperature was maintained at 330 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) in 1.5 hours, the reaction was continued for another 20 minutes, and the polycondensation was completed when the torque reached 15 kgcm. Next, the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand-like material via a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.

参考例2
攪拌翼、留出管を備えた5Lの反応容器に p−ヒドロキシ安息香酸829重量部と4,4’−ジヒドロキシビフェニル570重量部、テレフタル酸374重量部、イソフタル酸124重量部及び無水酢酸1337重量部(フェノール性水酸基合計の1.08モル当量)を攪拌翼、留出管を備えた反応容器に仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、360℃まで4時間で昇温した。
Reference example 2
In a 5 L reaction vessel equipped with a stirring blade and a distillation tube, 829 parts by weight of p-hydroxybenzoic acid, 570 parts by weight of 4,4′-dihydroxybiphenyl, 374 parts by weight of terephthalic acid, 124 parts by weight of isophthalic acid, and 1337 parts by weight of acetic anhydride 1 part (1.08 mole equivalent of total phenolic hydroxyl groups) was charged into a reaction vessel equipped with a stirring blade and a distillation tube, and the temperature was raised from room temperature to 145 ° C. over 30 minutes while stirring in a nitrogen gas atmosphere. The reaction was carried out at 2 ° C. for 2 hours. Then, it heated up to 360 degreeC in 4 hours.

重合温度を360℃に保持し、1.5時間で1.0mmHg(133Pa)に減圧し、更に5分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を1.0kg/cm(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。 The polymerization temperature was maintained at 360 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) in 1.5 hours, and the reaction was continued for another 5 minutes. When the torque reached 15 kgcm, the polycondensation was completed. Next, the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand-like material via a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.

参考例3
攪拌翼、留出管を備えた5Lの反応容器に p−ヒドロキシ安息香酸907重量部と6−ヒドロキシ−2−ナフトエ酸457重量部及び無水酢酸946重量部(フェノール性水酸基合計の1.03モル当量)を攪拌翼、留出管を備えた反応容器に仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、325℃まで4時間で昇温した。
Reference example 3
In a 5 L reaction vessel equipped with a stirring blade and a distillation tube, 907 parts by weight of p-hydroxybenzoic acid, 457 parts by weight of 6-hydroxy-2-naphthoic acid, and 946 parts by weight of acetic anhydride (1.03 mol of the total phenolic hydroxyl group) Equivalent) was charged into a reaction vessel equipped with a stirring blade and a distillation tube, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, and then the reaction was carried out at 145 ° C. for 2 hours. Then, it heated up to 325 degreeC in 4 hours.

重合温度を325℃に保持し、1.5時間で1.0mmHg(133Pa)に減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を1.0kg/cm(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。 The polymerization temperature was maintained at 325 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) in 1.5 hours, the reaction was continued for another 20 minutes, and the polycondensation was completed when the torque reached 15 kgcm. Next, the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand-like material via a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.

参考例4
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸808重量部、4,4’−ジヒドロキシビフェニル411重量部、ハイドロキノン104重量部、テレフタル酸314重量部、イソフタル酸209重量部および無水酢酸1364重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、300℃まで4時間で昇温した。
Reference example 4
In a 5 L reaction vessel equipped with a stirring blade and a distillation tube, 808 parts by weight of p-hydroxybenzoic acid, 411 parts by weight of 4,4′-dihydroxybiphenyl, 104 parts by weight of hydroquinone, 314 parts by weight of terephthalic acid, 209 parts by weight of isophthalic acid Then, 1364 parts by weight of acetic anhydride (1.10 equivalents of the total phenolic hydroxyl groups) was charged, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, followed by reaction at 145 ° C. for 2 hours. Then, it heated up to 300 degreeC in 4 hours.

重合温度を300℃に保持し、1.5時間で1.0mmHg(133Pa)に減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を1.0kg/cm(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。 The polymerization temperature was maintained at 300 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) in 1.5 hours, and the reaction was continued for another 20 minutes. When the torque reached 15 kgcm, the polycondensation was completed. Next, the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand-like material via a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.

参考例5
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸323重量部、4,4’−ジヒドロキシビフェニル436重量部、ハイドロキノン109重量部、テレフタル酸359重量部、イソフタル酸194重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、325℃まで4時間で昇温した。
Reference Example 5
In a 5 L reaction vessel equipped with a stirring blade and a distillation tube, 323 parts by weight of p-hydroxybenzoic acid, 436 parts by weight of 4,4′-dihydroxybiphenyl, 109 parts by weight of hydroquinone, 359 parts by weight of terephthalic acid, 194 parts by weight of isophthalic acid Then, 1011 parts by weight of acetic anhydride (1.10 equivalents of total phenolic hydroxyl groups) was added, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, followed by reaction at 145 ° C. for 2 hours. Then, it heated up to 325 degreeC in 4 hours.

重合温度を325℃に保持し、1.5時間で1.0mmHg(133Pa)に減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を1.0kg/cm(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。 The polymerization temperature was maintained at 325 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) in 1.5 hours, the reaction was continued for another 20 minutes, and the polycondensation was completed when the torque reached 15 kgcm. Next, the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand-like material via a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.

参考例6
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸895重量部、4,4’−ジヒドロキシビフェニル168重量部、ハイドロキノン40重量部、テレフタル酸135重量部、イソフタル酸75重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、365℃まで4時間で昇温した。
Reference Example 6
895 parts by weight of p-hydroxybenzoic acid, 168 parts by weight of 4,4′-dihydroxybiphenyl, 40 parts by weight of hydroquinone, 135 parts by weight of terephthalic acid, 75 parts by weight of isophthalic acid in a 5 L reaction vessel equipped with a stirring blade and a distillation tube Then, 1011 parts by weight of acetic anhydride (1.10 equivalents of total phenolic hydroxyl groups) was added, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, followed by reaction at 145 ° C. for 2 hours. Then, it heated up to 365 degreeC in 4 hours.

重合温度を365℃に保持し、1.5時間で1.0mmHg(133Pa)に減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を1.0kg/cm(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。 The polymerization temperature was maintained at 365 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) in 1.5 hours, the reaction was continued for another 20 minutes, and the polycondensation was completed when the torque reached 15 kgcm. Next, the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand-like material via a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.

参考例7
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸671重量部、4,4’−ジヒドロキシビフェニル235重量部、ハイドロキノン89重量部、テレフタル酸224重量部、イソフタル酸120重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、340℃まで4時間で昇温した。
Reference Example 7
In a 5 L reaction vessel equipped with a stirring blade and a distillation tube, 671 parts by weight of p-hydroxybenzoic acid, 235 parts by weight of 4,4′-dihydroxybiphenyl, 89 parts by weight of hydroquinone, 224 parts by weight of terephthalic acid, 120 parts by weight of isophthalic acid Then, 1011 parts by weight of acetic anhydride (1.10 equivalents of total phenolic hydroxyl groups) was added, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, followed by reaction at 145 ° C. for 2 hours. Then, it heated up to 340 degreeC in 4 hours.

重合温度を340℃に保持し、1.5時間で1.0mmHg(133Pa)に減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を1.0kg/cm(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。 The polymerization temperature was maintained at 340 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) in 1.5 hours, and the reaction was continued for another 20 minutes. When the torque reached 15 kgcm, the polycondensation was completed. Next, the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand-like material via a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.

参考例8
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸671重量部、4,4’−ジヒドロキシビフェニル335重量部、ハイドロキノン30重量部、テレフタル酸224重量部、イソフタル酸120重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、305℃まで4時間で昇温した。
Reference Example 8
In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 671 parts by weight of p-hydroxybenzoic acid, 335 parts by weight of 4,4′-dihydroxybiphenyl, 30 parts by weight of hydroquinone, 224 parts by weight of terephthalic acid, 120 parts by weight of isophthalic acid Then, 1011 parts by weight of acetic anhydride (1.10 equivalents of total phenolic hydroxyl groups) was added, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, followed by reaction at 145 ° C. for 2 hours. Then, it heated up to 305 degreeC in 4 hours.

重合温度を305℃に保持し、1.5時間で1.0mmHg(133Pa)に減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を1.0kg/cm(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。 The polymerization temperature was maintained at 305 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) in 1.5 hours, the reaction was continued for another 20 minutes, and the polycondensation was completed when the torque reached 15 kgcm. Next, the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand-like material via a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.

参考例9
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸671重量部、4,4’−ジヒドロキシビフェニル268重量部、ハイドロキノン69重量部、テレフタル酸314重量部、イソフタル酸30重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、355℃まで4時間で昇温した。
Reference Example 9
In a 5 L reaction vessel equipped with a stirring blade and a distillation tube, 671 parts by weight of p-hydroxybenzoic acid, 268 parts by weight of 4,4′-dihydroxybiphenyl, 69 parts by weight of hydroquinone, 314 parts by weight of terephthalic acid, 30 parts by weight of isophthalic acid Then, 1011 parts by weight of acetic anhydride (1.10 equivalents of total phenolic hydroxyl groups) was added, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, followed by reaction at 145 ° C. for 2 hours. Then, it heated up to 355 degreeC in 4 hours.

重合温度を355℃に保持し、1.5時間で1.0mmHg(133Pa)に減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を1.0kg/cm(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。 The polymerization temperature was maintained at 355 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) in 1.5 hours, and the reaction was continued for another 20 minutes. When the torque reached 15 kgcm, the polycondensation was completed. Next, the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand-like material via a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.

参考例10
攪拌翼、留出管を備えた5Lの反応容器にp−ヒドロキシ安息香酸671重量部、4,4’−ジヒドロキシビフェニル268重量部、ハイドロキノン69重量部、テレフタル酸150重量部、イソフタル酸194重量部および無水酢酸1011重量部(フェノール性水酸基合計の1.10当量)を仕込み、窒素ガス雰囲気下で攪拌しながら室温から145℃まで30分で昇温した後、145℃で2時間反応させた。その後、310℃まで4時間で昇温した。
Reference Example 10
In a 5 L reaction vessel equipped with a stirring blade and a distillation pipe, 671 parts by weight of p-hydroxybenzoic acid, 268 parts by weight of 4,4′-dihydroxybiphenyl, 69 parts by weight of hydroquinone, 150 parts by weight of terephthalic acid, 194 parts by weight of isophthalic acid Then, 1011 parts by weight of acetic anhydride (1.10 equivalents of total phenolic hydroxyl groups) was added, and the temperature was raised from room temperature to 145 ° C. over 30 minutes with stirring in a nitrogen gas atmosphere, followed by reaction at 145 ° C. for 2 hours. Then, it heated up to 310 degreeC in 4 hours.

重合温度を310℃に保持し、1.5時間で1.0mmHg(133Pa)に減圧し、更に20分間反応を続け、トルクが15kgcmに到達したところで重縮合を完了させた。次に反応容器内を1.0kg/cm(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズした。 The polymerization temperature was maintained at 310 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) in 1.5 hours, the reaction was continued for another 20 minutes, and the polycondensation was completed when the torque reached 15 kgcm. Next, the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand-like material via a die having one circular discharge port having a diameter of 10 mm, and pelletized by a cutter.

参考例1〜10で得られた液晶性ポリエステルの特性を表1に示す。なおいずれの樹脂もホットステージにて窒素雰囲気下で昇温加熱し、試料の透過光を偏光下で観察したところ光学的異方性(液晶性)が確認された。また、溶融粘度は高化式フローテスターを用い、融点+10℃の温度にて、剪断速度1000/sで測定した。   The characteristics of the liquid crystalline polyester obtained in Reference Examples 1 to 10 are shown in Table 1. Each resin was heated and heated in a nitrogen atmosphere on a hot stage, and when the transmitted light of the sample was observed under polarized light, optical anisotropy (liquid crystallinity) was confirmed. The melt viscosity was measured using a Koka flow tester at a melting point of + 10 ° C. and a shear rate of 1000 / s.

Figure 0005098693
Figure 0005098693

実施例1
参考例1の液晶ポリエステルを用い、160℃、12時間の真空乾燥を行った後、大阪精機工作株式会社製φ15mm単軸エクストルーダーにて(ヒーター温度290〜340℃)溶融押し出しし、ギアーポンプで計量しつつ紡糸パックにポリマーを供給した。このときのエクストルーダー出から紡糸パックまでの紡糸温度は345℃とした。紡糸パックでは金属不織布フィルター(渡辺義一製作所社製WLF−10)を用いてポリマーを濾過し、孔径0.13mm、ランド長0.26mmの孔を5個有する口金より吐出量3.0g/分(単孔あたり0.6g/分)でポリマーを吐出した。吐出したポリマーは40mmの保温領域を通過させた後、環状冷却風により糸条の外側から冷却し固化させ、その後、ポリジメチルシロキサンを主成分とする油剤を付与し5フィラメントともに1200m/分の第1ゴデットロールに引き取った。このときの紡糸ドラフトは32である。これを同じ速度である第2ゴデットロールを介した後、5フィラメント中の4本はサクションガンにて吸引し、残り1本を、ダンサーアームを介しパーンワインダー(巻取パッケージに接触するコンタクトロール無し)を用いてパーンの形状に巻き取った。約100分の巻取時間中、糸切れは発生せず製糸性は良好であった。得られた紡糸繊維の特性を表2に示す。
Example 1
After vacuum drying at 160 ° C. for 12 hours using the liquid crystalline polyester of Reference Example 1, it was melt extruded with a φ15 mm single-screw extruder (heater temperature 290 to 340 ° C.) manufactured by Osaka Seiki Co., Ltd. and measured with a gear pump. However, the polymer was supplied to the spinning pack. The spinning temperature from the extruder to the spinning pack at this time was 345 ° C. In the spinning pack, the polymer is filtered using a metal nonwoven fabric filter (WLF-10 manufactured by Watanabe Yoshikazu Co., Ltd.), and the discharge rate is 3.0 g / min from a die having five holes with a hole diameter of 0.13 mm and a land length of 0.26 mm ( The polymer was discharged at a rate of 0.6 g / min per single hole. The discharged polymer is allowed to pass through a 40 mm heat-retaining region, and then cooled and solidified from the outside of the yarn with an annular cooling air. Thereafter, an oil containing polydimethylsiloxane as a main component is applied, and all the 5 filaments are 1200 m / min. I took it to 1 godet roll. The spinning draft at this time is 32. After passing this through the second godet roll at the same speed, four of the five filaments are sucked with a suction gun, and the remaining one is a pirn winder through the dancer arm (no contact roll contacting the winding package). Was wound up into the shape of a pan. During the winding time of about 100 minutes, yarn breakage did not occur and the yarn making property was good. The properties of the obtained spun fiber are shown in Table 2.

この紡糸繊維パッケージから繊維を縦方向(繊維周回方向に対し垂直方向)に解舒し、調速ローラーを介さず、速度を一定とした巻取機(神津製作所社製ET−68S調速巻取機)にて200m/分で巻き返しを行った。なお、巻き返しの心材にはステンレス製の穴あきボビンにケブラーフェルト(目付280g/m、厚み1.5mm)を巻いたものを用い、巻き返し時の張力は0.10cN/dtexとし、巻き量は12万mすなわち0.06kgとした。さらにパッケージ形態はテーパー角20°のテーパーエンド巻きとし、テーパー幅調整機構の改造によりトラバース幅を常に揺動させるようにし、コンタクトロールを用いず、またトラバースガイドと繊維の接点を繊維パッケージから5mmとした。さらにポリジメチルシロキサン(東レ・ダウコーニング社製SH200)が5.0重量%の水エマルジョンを油剤とし、巻取機前で梨地仕上げのステンレスロールを用い給油を行った。このようにして巻き上がったパッケージの巻密度は0.14g/cc、油分付着量は4.4重量%であった。 A winding machine (ET-68S controlled winding by Kozu Seisakusho Co., Ltd.) that unwinds fibers from the spun fiber package in the longitudinal direction (perpendicular to the fiber circulation direction) and keeps the speed constant without using a speed control roller. Machine) at 200 m / min. In addition, as the core material for rewinding, a stainless steel perforated bobbin wound with Kevlar felt (weight per unit: 280 g / m 2 , thickness 1.5 mm), the tension at the time of rewinding was 0.10 cN / dtex, and the winding amount was It was 120,000 m, that is, 0.06 kg. Furthermore, the package form is a taper end winding with a taper angle of 20 °, the traverse width is always oscillated by modifying the taper width adjusting mechanism, no contact roll is used, and the traverse guide and fiber contact point is 5 mm from the fiber package. did. Further, polydimethylsiloxane (SH200 manufactured by Toray Dow Corning Co., Ltd.) was used as an oil agent with a 5.0% by weight water emulsion, and lubrication was performed using a satin finish stainless steel roll before the winder. The wound density of the package wound up in this way was 0.14 g / cc, and the oil adhesion amount was 4.4% by weight.

これを、密閉型オーブンを用い、室温から240℃までは約30分で昇温し、240℃にて3時間保持した後、4℃/時間で295℃まで昇温し、さらに295℃で15時間保持する条件にて固相重合を行った。なお雰囲気は除湿窒素を流量25NL/分にて供給し、庫内が加圧にならないよう排気口より排気させた。   Using a closed oven, the temperature was raised from room temperature to 240 ° C. in about 30 minutes, held at 240 ° C. for 3 hours, then raised to 295 ° C. at 4 ° C./hour, and further at 295 ° C. for 15 hours. Solid state polymerization was performed under the condition of maintaining the time. The atmosphere was supplied with dehumidified nitrogen at a flow rate of 25 NL / min, and exhausted from the exhaust port so that the interior was not pressurized.

こうして得られた固相重合パッケージをインバーターモーターにより回転できる送り出し装置に取り付け、繊維を横方向(繊維周回方向)に給糸速度約200m/分で送り出しつつ巻取機(神津製作所社製ET型調速巻取機)にて巻き取ったところ、ガイドには油分が付着したものの糸切れなく全量の解舒が可能であった。この繊維をさらに解舒しつつ、浴長1000mmの水槽に室温(25℃)の水を張り、かつ水槽内に設置した気泡発生装置を用いて水槽内をバブリングさせた洗浄装置を100m/分の速度で通過させた。さらに、その後連続してポリエーテル化合物を主体とする平滑剤とラウリルアルコールを主体とする乳化剤の水エマルジョン(エマルジョン濃度4重量%)を仕上げ油剤とし、巻取機前で梨地仕上げのステンレスロールを用い給油を行った(表3)。   The solid phase polymerization package thus obtained is attached to a feeding device that can be rotated by an inverter motor, and a winder (ET type manufactured by Kozu Seisakusho Co., Ltd.) is fed while feeding the fibers in the transverse direction (fiber circulation direction) at a yarn feeding speed of about 200 m / min. As a result, it was possible to unwind the entire amount without breaking the yarn, although oil was adhered to the guide. While further unwinding this fiber, a washing device in which a water bath having a bath length of 1000 mm was filled with water at room temperature (25 ° C.) and bubbled inside the water bath using a bubble generator installed in the water bath was 100 m / min. Passed at speed. In addition, a smoothing agent composed mainly of a polyether compound and a water emulsion of an emulsifier mainly composed of lauryl alcohol (emulsion concentration 4% by weight) are used as finishing oils, and a stainless steel roll with a satin finish is used before the winder. Refueling was performed (Table 3).

得られた液晶ポリエステル繊維の物性を表4に示す(固重後繊維物性)。固相重合された液晶ポリエステル繊維の特徴である高分子量、高強度、高弾性率、高融点、高ΔHm1を持ち、かつ5.1dtexの細繊度ながら繊度変動率、強力変動率が小さく長手方向の均一性も優れていることが分かる。なお、この液晶ポリエステル繊維の熱膨張係数は−7ppm/℃であり優れた熱寸法安定性を有していた。また△nは0.35であり高い配向を有していた。   The physical properties of the obtained liquid crystal polyester fiber are shown in Table 4 (fiber physical properties after solid weight). It has a high molecular weight, high strength, high elastic modulus, high melting point, high ΔHm1, which is a characteristic of solid-state polymerized liquid crystal polyester fiber, and has a fineness variation rate and strength variation rate that are small in the longitudinal direction with a fineness of 5.1 dtex. It can be seen that the uniformity is also excellent. The liquid crystalline polyester fiber had a thermal expansion coefficient of -7 ppm / ° C. and excellent thermal dimensional stability. Further, Δn was 0.35 and had a high orientation.

この液晶ポリエステル繊維を用いて試織評価を行った。その結果も表4に記載しているが、工程通過性、製織性は優良であり、紗厚の薄い織物が得られた。織物内にはフィブリルが1個認められたが品位は良好であった。このように本発明の特定組成の液晶ポリエステルからなる細繊度化した固相重合繊維であれば、工程通過性、製織性、織物品位に優れることが分かる。   Trial fabric evaluation was performed using this liquid crystal polyester fiber. Although the result is also described in Table 4, the process-passing property and weaving property are excellent, and a thin woven fabric was obtained. One fibril was found in the fabric, but the quality was good. Thus, it can be seen that a finely-solidified solid-phase polymerized fiber made of a liquid crystal polyester having a specific composition of the present invention is excellent in process passability, weaving property, and textile quality.

Figure 0005098693
Figure 0005098693

Figure 0005098693
Figure 0005098693

Figure 0005098693
Figure 0005098693

実施例2〜4
吐出量、口金孔径、ランド長、紡糸速度を表2に示した条件とすること以外は実施例1と同様の方法で溶融紡糸を行った。なお実施例2では口金下に100mmの加熱筒(保温領域100mm)を設け、この温度を200℃とした。実施例2では巻取開始時に糸切れが1度発生したが、再度巻き取ると100分の巻取が可能であった。なお実施例3、4では240分の巻取を行ったが製糸性は良好であった。
Examples 2-4
Melt spinning was carried out in the same manner as in Example 1 except that the discharge amount, the nozzle hole diameter, the land length, and the spinning speed were set as shown in Table 2. In Example 2, a 100 mm heating cylinder (insulating region 100 mm) was provided under the base, and this temperature was 200 ° C. In Example 2, thread breakage occurred once at the start of winding, but when it was wound again, winding for 100 minutes was possible. In Examples 3 and 4, winding for 240 minutes was performed, but the yarn forming property was good.

これらを巻き返し速度、巻量を表3に示す条件とすること以外は実施例1と同様の方法で巻き返し、固相重合および解舒を行った。この際の巻張力、巻密度、油分付着量は表3に示すとおりである。実施例2では糸切れが1回発生したが、全量の巻き返しが可能であった。また解舒後の繊維は実施例1と同様の方法で洗浄、仕上げ油剤付与を行った。このようにして得られた繊維の物性を表4に示す。参考例1の液晶ポリエステルを用い、紡糸条件を調整することで単糸繊度が細く、繊度変動率が小さい均一な繊維が得られ、ΔHm1/ΔHm2が3.0以上かつTm1でのピーク半値幅が15℃未満であることで高い強度と弾性率、優れた熱寸法安定性を有し、耐摩耗性にも優れた繊維が得られることが分かる。   Rewinding was performed in the same manner as in Example 1 except that the rewinding speed and the winding amount were the conditions shown in Table 3, and solid phase polymerization and unwinding were performed. The winding tension, winding density, and oil adhesion amount at this time are as shown in Table 3. In Example 2, thread breakage occurred once, but the entire amount could be wound. The unwound fiber was washed and applied with a finishing oil in the same manner as in Example 1. Table 4 shows the physical properties of the fibers thus obtained. By using the liquid crystalline polyester of Reference Example 1 and adjusting the spinning conditions, a uniform fiber having a fine single yarn fineness and a small fineness variation rate is obtained, and ΔHm1 / ΔHm2 is 3.0 or more and the peak half width at Tm1 is It can be seen that when the temperature is less than 15 ° C., a fiber having high strength and elastic modulus, excellent thermal dimensional stability, and excellent wear resistance can be obtained.

また、試織評価結果も表4に示す。実施例2では給糸口付近にフィブリルが堆積したものの工程通過性良好、また製織中に停台が1回発生したものの製織性は良好、織物内にフィブリルが2個あったものの織物品位も良好であり、実施例3、4では工程通過性、製織性とも優良、織物内のフィブリルも1個であり織物品位も良好であった。このように本発明の液晶ポリエステル繊維を用いることで製織性は良好であり、織物厚みは薄くすることができ、織物品位も良好であることが分かる。   Table 4 also shows the results of evaluation of trial fabrics. In Example 2, although fibrils were accumulated near the yarn feeder, the process passing property was good, the weaving property was good even though one stop occurred during weaving, and the fabric quality was good even though there were two fibrils in the fabric. In Examples 3 and 4, both the process passability and the weaving property were excellent, the number of fibrils in the fabric was one, and the quality of the fabric was also good. Thus, it can be seen that by using the liquid crystal polyester fiber of the present invention, weaving property is good, the fabric thickness can be reduced, and the fabric quality is also good.

実施例5、6
吐出量、口金孔数を表2に示す条件とすること以外は実施例1と同様の条件で溶融紡糸を行い、10フィラメントをまとめて巻き取り、紡糸繊維を得た(実施例5)。また吐出量、口金孔数を表2に示す条件としたこと以外は実施例1と同様の条件で溶融紡糸を行い、36フィラメントをまとめて巻き取り、紡糸繊維を得た(実施例6)。得られた繊維の物性を表2に示す。製糸性は良好であり約100分の巻取が可能であった。これを、巻量を表3に示した条件とすること以外は実施例1と同様の方法で巻き返し、固相重合、解舒を行った。この際の巻張力、巻密度、油分付着量は表3に示すとおりである。次に、解舒後のパッケージ全体を、40℃の温水に界面活性剤0.05体積%を加えた溶液で満たされた超音波洗浄機に浸し、15分の超音波洗浄を6回行った。その後、パッケージを乾燥させない状態で繊維を解舒しつつ、実施例1と同様の手法で洗浄、仕上げ油剤付与を行った。このようにして得られた繊維の物性を表4に示す。マルチフィラメントであっても単糸繊度が細く、繊度変動率が小さい均一な繊維が得られ、高い強度と弾性率を有し、耐摩耗性にも優れた繊維が得られることが分かる。
Examples 5 and 6
Except for setting the discharge amount and the number of nozzle holes as shown in Table 2, melt spinning was performed under the same conditions as in Example 1, and 10 filaments were rolled up to obtain a spun fiber (Example 5). Also, melt spinning was performed under the same conditions as in Example 1 except that the discharge amount and the number of nozzle holes were set as shown in Table 2, and 36 filaments were rolled up to obtain a spun fiber (Example 6). Table 2 shows the physical properties of the obtained fiber. The spinning property was good, and it was possible to wind up about 100 minutes. This was wound up in the same manner as in Example 1 except that the winding amount was the conditions shown in Table 3, and solid phase polymerization and unwinding were performed. The winding tension, winding density, and oil adhesion amount at this time are as shown in Table 3. Next, the entire package after unwinding was immersed in an ultrasonic cleaner filled with a solution obtained by adding 0.05% by volume of a surfactant to warm water at 40 ° C., and subjected to ultrasonic cleaning for 15 minutes 6 times. . Thereafter, the fibers were unwound in a state where the package was not dried, and washing and finishing oil application were performed in the same manner as in Example 1. Table 4 shows the physical properties of the fibers thus obtained. It can be seen that even if it is a multifilament, it is possible to obtain a uniform fiber having a small single yarn fineness and a small variation in fineness, a fiber having high strength and elastic modulus, and excellent wear resistance.

この繊維を用いた試織評価結果を表4に示す。工程通過性、製織性とも優良、織物内のフィブリルも2個であり織物品位も良好であった。   Table 4 shows the results of evaluation of the test fabric using this fiber. The process-passing property and weaving property were both excellent, the number of fibrils in the fabric was two, and the fabric quality was also good.

このように本発明の特定組成の液晶ポリエステルからなる固相重合繊維であれば、マルチフィラメントでも工程通過性、製織性、織物品位に優れることが分かる。   Thus, it can be seen that the solid-phase polymerized fiber made of the liquid crystalline polyester having the specific composition of the present invention is excellent in process passability, weaving property, and textile quality even with a multifilament.

比較例1
参考例3の液晶ポリエステルを用い、紡糸温度を325℃とすること以外は実施例3と同様の方法で溶融紡糸を行った。製糸性は良好であり200分の巻取が可能であった。
Comparative Example 1
Using the liquid crystalline polyester of Reference Example 3, melt spinning was performed in the same manner as in Example 3 except that the spinning temperature was 325 ° C. The spinning property was good, and it was possible to wind up for 200 minutes.

これを、固相重合の最終到達温度を表3に示した条件とすること以外は実施例3と同様の方法で巻き返し、固相重合、解舒、洗浄を行った。この際の巻張力、巻密度、油分付着量は表3に示すとおりである。得られた繊維物性を表4に記載しているが、耐摩耗性が2秒と悪いことが分かる。このことから参考例3の液晶ポリエステルでは単糸繊度、ΔHm1/ΔHm2、Tm1でのピーク半値幅および強度、弾性率の点では優れた特性を有する繊維が得られるが、樹脂特性の影響により耐摩耗性に劣ると言える。   This was rewound by the same method as in Example 3 except that the final reached temperature of solid phase polymerization was set to the conditions shown in Table 3, and solid phase polymerization, unraveling, and washing were performed. The winding tension, winding density, and oil adhesion amount at this time are as shown in Table 3. The obtained fiber physical properties are listed in Table 4. It can be seen that the abrasion resistance is as bad as 2 seconds. From this, the liquid crystalline polyester of Reference Example 3 provides fibers having excellent properties in terms of single yarn fineness, ΔHm1 / ΔHm2, peak half width and strength at Tm1, and modulus of elasticity. It can be said that it is inferior.

この繊維を用いた試織評価結果を表4に示す。織物厚みは薄くすることができるものの、給糸口にフィブリルが堆積し、また製織中に停台が6回発生したため途中で試織を中止した。織長さ30cm程度しか試織できなかったが、その中にフィブリルは10個以上あり織物品位は不良であった。   Table 4 shows the results of evaluation of the test fabric using this fiber. Although the thickness of the woven fabric can be reduced, fibrils were accumulated at the yarn feeder, and 6 stops were generated during weaving. Although weaving was only possible with a weaving length of about 30 cm, 10 or more fibrils were present, and the quality of the fabric was poor.

このように本発明の組成を満たさない液晶ポリエステルの固相重合繊維では、耐摩耗性に劣るためか工程通過性、製織性、織物品位に劣ることが分かる。   Thus, it can be seen that the liquid crystalline polyester solid-phase-polymerized fibers that do not satisfy the composition of the present invention are inferior in wear resistance or inferior in process passability, weaving property and textile quality.

比較例2
実施例1で得られた紡糸繊維を、固相重合を行わないままで液晶ポリエステル繊維として評価した。試織に供した繊維物性として表4に記載するが単糸繊度および繊度変動率には優れているが、強度、弾性率が低く、Tm1が低いため耐熱性に劣り、熱膨張係数は−21ppm/℃と熱寸法安定性に劣るものであった。これらのことから参考例1の液晶ポリエステルを用い、単糸繊度を細く、繊度変動率を小さくしてもΔHm1/ΔHm2が3.0未満、Tm1のピーク半値幅が15℃以上ならば液晶ポリエステル繊維としては魅力に乏しいものであると言える。
Comparative Example 2
The spun fiber obtained in Example 1 was evaluated as a liquid crystal polyester fiber without performing solid phase polymerization. Although it is described in Table 4 as the fiber physical properties subjected to the test weaving, it is excellent in single yarn fineness and fineness fluctuation rate, but has low strength and elastic modulus, low Tm1 and poor heat resistance, and a thermal expansion coefficient of -21 ppm. / ° C. and poor thermal dimensional stability. From these facts, the liquid crystal polyester fiber of Reference Example 1 is used, and even if the single yarn fineness is thin, even if the fineness variation rate is small, ΔHm1 / ΔHm2 is less than 3.0 and the peak half-value width of Tm1 is 15 ° C. or more. It can be said that it is not attractive.

この繊維を用い実施例1と同様に試織評価を試みたが、織機に入る時点で糸切れし、製織は不能であった。本発明の特定組成の液晶ポリエステルであっても固相重合を施していなければ強度、伸度が低いため製織はできない。   Trial weave evaluation was attempted using this fiber in the same manner as in Example 1. However, the yarn was broken when entering the loom, and weaving was impossible. Even the liquid crystalline polyester of the specific composition of the present invention cannot be woven because it has low strength and elongation unless it is subjected to solid phase polymerization.

比較例3
実施例1と同様に溶融紡糸を行う際、巻取ボビンをステンレス製穴あきボビンとし、これに直接6万m巻き取った。この巻取におけるテーパー角、ワインド数、巻張力、巻密度を表3に示す。これを巻き返すことなく実施例1と同様の方法で固相重合を行った。得られた固相重合パッケージを実施例1と同様の手法で解舒したところ、解舒速度200m/分で糸切れが多発し、50m/分でも糸切れが多発したため全量の解舒はできなかった。
Comparative Example 3
When melt spinning was performed in the same manner as in Example 1, the take-up bobbin was a stainless-made perforated bobbin, and was wound directly on this by 60,000 m. Table 3 shows the taper angle, wind number, winding tension, and winding density in this winding. Solid phase polymerization was performed in the same manner as in Example 1 without rewinding this. When the obtained solid phase polymerization package was unwound by the same method as in Example 1, yarn breakage frequently occurred at a unwinding speed of 200 m / min, and yarn breakage occurred frequently even at 50 m / min. It was.

得られた繊維の特性を表4に示すが、高分子量、高融点、高ΔHm1等の固相重合された液晶ポリエステル繊維の特徴は発現しているが、固重時の融着により繊度変動率が増加、強力変動率が大きく増加し長手方向の均一性が悪化し、強度、弾性率の値も低下していることが分かる。   The characteristics of the obtained fiber are shown in Table 4. Although the characteristics of the liquid crystal polyester fiber subjected to solid phase polymerization such as high molecular weight, high melting point, and high ΔHm1 are expressed, the fluctuation rate of fineness due to fusion at the time of solid weight It can be seen that the increase in strength, the rate of change in strength greatly increases, the uniformity in the longitudinal direction deteriorates, and the values of strength and elastic modulus also decrease.

得られた解舒後の固重繊維を用いて、実施例1と同様の方法で試織を行った。その結果を表4に記載しているが、給糸口にフィブリルが堆積し、また製織中に停台が6回発生したため途中で試織を中止した。織長さ5cm程度しか試織できなかったが、その中にフィブリルは10個以上あり織物品位は不良であった。   Trial weaving was carried out in the same manner as in Example 1 using the obtained solid fiber after unwinding. The results are shown in Table 4. Since fibrils were accumulated at the yarn feeder and the stop was generated six times during weaving, the trial weaving was stopped halfway. Although weaving was only possible with a weaving length of about 5 cm, 10 or more fibrils were present, and the quality of the fabric was poor.

このように本発明の組成を満たす液晶ポリエステルの固相重合繊維であっても、長手方向の均一性に劣る場合には強度が低く、耐摩耗性に劣るため工程通過性、製織性、織物品位に劣ることが分かる。   Thus, even in the case of the solid phase polymerized fiber of the liquid crystalline polyester satisfying the composition of the present invention, when the longitudinal uniformity is inferior, the strength is low, and the abrasion resistance is inferior, so the process passability, weaving property, textile quality It turns out that it is inferior to.

比較例4
参考例2の液晶ポリエステルを用い、紡糸温度を370℃とすること以外は実施例3と同様の方法で溶融紡糸を行った。しかし巻取開始後1分程度で糸切れが発生し、その後は巻き取ることもできない状態となったため繊維が得られなかった。参考例2の液晶ポリエステルは、その樹脂特性のため単糸繊度が細い繊維を得ることが困難であると言える。
Comparative Example 4
Using the liquid crystalline polyester of Reference Example 2, melt spinning was performed in the same manner as in Example 3 except that the spinning temperature was 370 ° C. However, the yarn breakage occurred about 1 minute after the start of winding, and after that, the fiber could not be wound, so that no fiber was obtained. It can be said that the liquid crystalline polyester of Reference Example 2 has difficulty in obtaining fibers with a fine single yarn fineness due to its resin characteristics.

比較例5
特許文献3の比較例8にならい、吐出孔径0.5mm、ランド長0.5mmである口金孔を1個有する口金を用い、さらに吐出量、紡糸速度を表5に示す条件とすること以外は実施例1と同様の方法で溶融紡糸を行った。巻取開始後、糸切れが2回発生し製糸性は劣るものであった(表5)。これを、テーパー角、巻量を変更すること以外は実施例1と同様の方法で巻き返した(表6)。固相重合は実施例1と同一の条件では強度が十分に高まらない(16cN/dtex程度)ことが分かったため、最高到達温度で45時間処理した。得られた固相重合パッケージを実施例1と同様の手法で解舒した結果も表6に記載しており、比較例5では2回の糸切れが発生した。また解舒後の繊維は実施例1と同様の方法で洗浄、仕上げ油剤付与を行った。このようにして得られた繊維の物性を表7に示すが単繊維繊度が大きく、また強力変動率も大きいことが分かる。さらに強力変動率が大きいためか耐摩耗性にも劣ることが分かる。
Comparative Example 5
According to Comparative Example 8 of Patent Document 3, except that a nozzle having one nozzle hole having a discharge hole diameter of 0.5 mm and a land length of 0.5 mm is used, and the discharge amount and spinning speed are set to the conditions shown in Table 5. Melt spinning was performed in the same manner as in Example 1. After the start of winding, thread breakage occurred twice and the yarn-making property was poor (Table 5). This was rolled back in the same manner as in Example 1 except that the taper angle and the winding amount were changed (Table 6). Since it was found that the solid-phase polymerization did not sufficiently increase in strength under the same conditions as in Example 1 (about 16 cN / dtex), it was treated at the highest temperature for 45 hours. The results of unraveling the obtained solid phase polymerization package by the same method as in Example 1 are also shown in Table 6. In Comparative Example 5, two yarn breaks occurred. The unwound fiber was washed and applied with a finishing oil in the same manner as in Example 1. The physical properties of the fibers thus obtained are shown in Table 7. It can be seen that the single fiber fineness is large and the strength fluctuation rate is also large. It can also be seen that the wear resistance is inferior due to the large fluctuation rate of strength.

この繊維を用い、実施例1と同様の方法で試織を行った。その結果も表7に記載しているが、給糸口にフィブリルが堆積し張力が増加し、製織においても停台が4回発生した。また織物にもフィブリルが5個認められ、不合格であった。   Using this fiber, trial weaving was performed in the same manner as in Example 1. The results are also shown in Table 7. As a result, fibrils accumulated at the yarn feeder and the tension increased, and there were four stops in weaving. Moreover, five fibrils were recognized also in the textile fabric, and it failed.

このように本発明の特定組成の液晶ポリエステルからなる固相重合繊維であっても単繊維繊度が大きい場合には長手方向の均一性を高めることが難しく工程通過性、製織性、織物品位に劣ることが分かる。   As described above, even in the case of the solid-phase polymerized fiber made of the liquid crystal polyester having the specific composition of the present invention, it is difficult to improve the uniformity in the longitudinal direction when the single fiber fineness is large, and the process passability, weaving property, and textile quality are inferior. I understand that.

Figure 0005098693
Figure 0005098693

Figure 0005098693
Figure 0005098693

Figure 0005098693
Figure 0005098693

実施例7〜13
参考例4〜10の液晶ポリエステルを用い、紡糸温度を表5に示す条件とすること以外は実施例3と同様の方法で溶融紡糸を行った。実施例9では糸切れが1回発生したものの、その他では発生せず製糸性は良好であった。得られた繊維の特性を表5に示す。
Examples 7-13
Using the liquid crystalline polyesters of Reference Examples 4 to 10, melt spinning was performed in the same manner as in Example 3 except that the spinning temperature was set as shown in Table 5. In Example 9, although thread breakage occurred once, it did not occur in other cases, and the yarn-making property was good. The properties of the obtained fiber are shown in Table 5.

これらの繊維をテーパー角、巻量を表6に示す条件とすること以外は実施例1と同様の方法で巻き返し、最高到達温度を表6記載の条件とすること以外は実施例1と同様の方法で固相重合、解舒を行った。解舒時に糸切れは発生しなかった。その後、実施例1と同様の手法で洗浄、仕上げ油剤付与を行った(表6)。   These fibers were rewound by the same method as in Example 1 except that the taper angle and the winding amount were set to the conditions shown in Table 6, and the same as in Example 1 except that the maximum reached temperature was set to the conditions described in Table 6. Solid state polymerization and unwinding were carried out by this method. No thread breakage occurred during unwinding. Thereafter, washing and finishing oil application were performed in the same manner as in Example 1 (Table 6).

得られた繊維物性を表7に記載しているが、参考例4〜10の液晶ポリエステルを用いても単糸繊度が細く、繊度変動率が小さい均一な繊維が得られ、ΔHm1/ΔHm2が3.0以上かつ、Tm1のピーク半値幅が15℃未満であることで高い強度と弾性率を有し、優れた熱寸法安定性、耐摩耗性を有する繊維が得られることが分かる。   The obtained fiber properties are listed in Table 7. Even when the liquid crystal polyesters of Reference Examples 4 to 10 were used, uniform fibers having a small single yarn fineness and a small variation in fineness were obtained, and ΔHm1 / ΔHm2 was 3 It can be seen that a fiber having high strength and elastic modulus and excellent thermal dimensional stability and wear resistance can be obtained when the peak half-width of Tm1 is less than 15 ° C.

これらの繊維を用い、実施例1と同様の方法で試織を行った。その結果も表7に記載しており、工程通過性、製織性、織物品位とも優良あるいは良好であった。   Using these fibers, trial weaving was performed in the same manner as in Example 1. The results are also shown in Table 7, and the process passability, weaving property and fabric quality were excellent or good.

このように本発明の特定組成の液晶ポリエステルからなる固相重合繊維であれば、組成比率が異なっても工程通過性、製織性、織物品位に優れることが分かる。   Thus, it can be seen that the solid-phase polymerized fiber made of the liquid crystalline polyester having a specific composition of the present invention is excellent in process passability, weaving property and textile quality even if the composition ratio is different.

Claims (5)

下記構造単位(I)、(II)、(III)、(IV)および(V)からなる液晶ポリエステルからなり、下記条件1〜4を満たし、構造単位(I)が構造単位(I)、(II)および(III)の合計に対して40〜85モル%であり、構造単位(II)は構造単位(II)および(III)の合計に対して60〜90モル%であり、構造単位(IV)は構造単位(IV)および(V)の合計に対して40〜95モル%であることを特徴とする液晶ポリエステル繊維。
Figure 0005098693
条件1.示差熱量測定において、50℃から20℃/分の昇温条件で測定した際に観測される吸熱ピーク(Tm1)における融解熱量(ΔHm1)が、Tm1の観測後、Tm1+20℃の温度で5分間保持した後、20℃/分の降温条件で50℃まで一旦冷却し、再度20℃/分の昇温条件で測定した際に観測される吸熱ピーク(Tm2)における融解熱量(ΔHm2)に対して3.0倍以上。
条件2.Tm1におけるピーク半値幅が15℃未満。
条件3.単繊維繊度が18.0dtex以下。
条件4.強度が14.0cN/dtex以上かつ弾性率600cN/dtex以上。
Following structural units (I), (II), (III), (IV) and a liquid crystal polyester consisting of (V), meets the following conditions 1 to 4, structural units (I) is a structural unit (I), 40 to 85 mol% with respect to the sum of (II) and (III), structural unit (II) is 60 to 90 mol% with respect to the sum of structural units (II) and (III), (IV) is 40-95 mol% with respect to the sum total of structural unit (IV) and (V), The liquid crystalline polyester fiber characterized by the above-mentioned.
Figure 0005098693
Condition 1. In differential calorimetry, the heat of fusion (ΔHm1) at the endothermic peak (Tm1) observed when measured under the temperature rising condition from 50 ° C. to 20 ° C./min is held at a temperature of Tm1 + 20 ° C. for 5 minutes after the observation of Tm1. Then, the temperature is once cooled to 50 ° C. under a temperature lowering condition of 20 ° C./min, and 3 times the heat of fusion (ΔHm2) in the endothermic peak (Tm2) observed when measured again under the temperature rising condition of 20 ° C./min. More than 0 times.
Condition 2. The peak half-width at Tm1 is less than 15 ° C.
Condition 3. Single fiber fineness is 18.0 dtex or less.
Condition 4. The strength is 14.0 cN / dtex or more and the elastic modulus is 600 cN / dtex or more.
ポリシロキサン系化合物が繊維に付着されており、繊維に対する付着物の重量が0.1重量%以上、10.0重量%以下であることを特徴とする請求項1記載の液晶ポリエステル繊維。 Polysiloxane compound are attached to the fibers, the weight of the deposit with respect to the fiber 0.1 wt% or more, liquid crystal polyester fiber according to claim 1 Symbol placement is equal to or less than 10.0 wt%. 繊度変動率が30%以下であり、かつ強力変動率が20%以下であることを特徴とする請求項1または請求項2記載の液晶ポリエステル繊維。 The liquid crystal polyester fiber according to claim 1 or 2 , wherein the fineness variation rate is 30% or less and the strength variation rate is 20% or less. 請求項1〜いずれか1項記載の液晶ポリエステル繊維からなる印刷用スクリーン紗。 Claim 1-3 printing screen gauze comprising a liquid crystal polyester fiber according to any one. 請求項1〜いずれか1項記載の液晶ポリエステル繊維からなるフィルター用メッシュ織物。 A mesh fabric for a filter comprising the liquid crystalline polyester fiber according to any one of claims 1 to 3 .
JP2008046408A 2007-02-28 2008-02-27 Liquid crystal polyester fiber Active JP5098693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008046408A JP5098693B2 (en) 2007-02-28 2008-02-27 Liquid crystal polyester fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007048992 2007-02-28
JP2007048992 2007-02-28
JP2008046408A JP5098693B2 (en) 2007-02-28 2008-02-27 Liquid crystal polyester fiber

Publications (2)

Publication Number Publication Date
JP2008240229A JP2008240229A (en) 2008-10-09
JP5098693B2 true JP5098693B2 (en) 2012-12-12

Family

ID=39911895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008046408A Active JP5098693B2 (en) 2007-02-28 2008-02-27 Liquid crystal polyester fiber

Country Status (1)

Country Link
JP (1) JP5098693B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201030087A (en) * 2008-10-30 2010-08-16 Solvay Advanced Polymers Llc Power LED device with a reflector made of aromatic polyester and/or wholly aromatic polyester
JP5327109B2 (en) * 2009-03-23 2013-10-30 東レ株式会社 Liquid crystalline polyester fiber and winding package
MY156834A (en) * 2009-09-30 2016-03-31 Polyplastics Co Liquid-crystalline polymer and molded articles
JP5914927B2 (en) * 2011-11-21 2016-05-11 住友化学株式会社 Textile manufacturing materials and fibers
JP6183210B2 (en) * 2011-12-27 2017-08-23 東レ株式会社 Liquid crystalline polyester multifilament
JP2014005550A (en) * 2012-06-21 2014-01-16 Teijin Ltd Para-wholly aromatic copolyamide fiber bundle
US9850343B2 (en) 2013-07-31 2017-12-26 Toray Industries, Inc. Method for producing liquid crystalline polyester, and liquid crystalline polyester
JP6647749B2 (en) 2014-09-05 2020-02-14 Mcppイノベーション合同会社 Method for producing filament for molding three-dimensional printer and molded article of crystalline soft resin
JP6088620B2 (en) * 2015-10-19 2017-03-01 住友化学株式会社 Textile manufacturing materials and fibers
JP6753110B2 (en) * 2016-03-30 2020-09-09 東レ株式会社 Liquid crystal polyester multifilament, its manufacturing method and higher-order processed products

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3185358B2 (en) * 1992-05-27 2001-07-09 東レ株式会社 Melt spinning method of liquid crystal polyester
JPH09256240A (en) * 1996-03-22 1997-09-30 Toray Ind Inc Heat-treatment of liquid-crystalline aromatic polyester filament fiber
JPH11269737A (en) * 1998-03-16 1999-10-05 Kuraray Co Ltd Monofilament and screen gauze therefrom
JP2004019021A (en) * 2002-06-14 2004-01-22 Toray Ind Inc Liquid-crystalline polyester for fiber and its fiber
EP1760104B1 (en) * 2004-06-22 2019-01-02 Toray Industries, Inc. Liquid-crystalline resin, process for producing the same, composition of liquid-crystalline resin, and molded article
JP4720306B2 (en) * 2004-08-25 2011-07-13 東レ株式会社 Liquid crystalline resin fiber and method for producing the same

Also Published As

Publication number Publication date
JP2008240229A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP5098693B2 (en) Liquid crystal polyester fiber
JP5286827B2 (en) Liquid crystal polyester fiber
US9169578B2 (en) Liquid crystalline polyester fiber and process for production of the same
US9011743B2 (en) Liquid crystal polyester fibers and method for producing the same
JP5327109B2 (en) Liquid crystalline polyester fiber and winding package
JP6183210B2 (en) Liquid crystalline polyester multifilament
WO2012132851A1 (en) Liquid crystal polyester fibers and method for producing same
JP5470930B2 (en) Method for producing liquid crystal polyester fiber
JP5428271B2 (en) Method for producing liquid crystal polyester fiber
JP5098692B2 (en) Method for producing liquid crystal polyester fiber
JP5320756B2 (en) Method for producing liquid crystal polyester fiber
JP4983689B2 (en) Method for producing liquid crystal polyester fiber
JP2010242246A (en) Method for producing liquid crystal polyester fiber
JP5298597B2 (en) Method for producing liquid crystal polyester fiber
JP5239439B2 (en) Liquid crystal polyester fiber and method for producing the same
JP2013133575A (en) Liquid crystal polyester multifilament for filament separation
JP5187224B2 (en) Method for producing molten liquid crystalline polyester fiber
JP5327116B2 (en) Liquid crystal polyester fiber and method for producing the same
JP6617626B2 (en) Liquid crystal polyester multifilament and method for producing the same
JP5239454B2 (en) Liquid crystal polyester fiber and method for producing the same
JP5115471B2 (en) Liquid crystalline polyester fiber and method for producing the same
WO2019146620A1 (en) Woven mesh fabric comprising liquid-crystal polyester fibers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5098693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3