JPH04152602A - Malleable fe-cr-co permanent magnet and manufacture thereof - Google Patents

Malleable fe-cr-co permanent magnet and manufacture thereof

Info

Publication number
JPH04152602A
JPH04152602A JP2280131A JP28013190A JPH04152602A JP H04152602 A JPH04152602 A JP H04152602A JP 2280131 A JP2280131 A JP 2280131A JP 28013190 A JP28013190 A JP 28013190A JP H04152602 A JPH04152602 A JP H04152602A
Authority
JP
Japan
Prior art keywords
permanent magnet
press
temperature
aging treatment
calibered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2280131A
Other languages
Japanese (ja)
Inventor
Yoshibumi Kimura
木村 義文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP2280131A priority Critical patent/JPH04152602A/en
Publication of JPH04152602A publication Critical patent/JPH04152602A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To make it possible to press-fit other members and to use the title permanent magnet as various kinds of sensors by a method wherein, after an aging treatment has been conducted on the press-fit expected section of the Fe-Cr-Co permanent magnet, malleability is given to the permanent magnet by conducting a heat-softening treatment at the temperature exceeding the re-aging temperature. CONSTITUTION:The large-calibered part 1b of a flat and cylindrical Fe-Cr-Co permanent magnet 1, on which a liquefying treatment and an aging treatment are conducted after it has been formed into the required shape, is dipped in a cooling container 11 containing a chemical solution and the like. A high frequency oscillation coil 12 is arranged on the outer circumferential part of the small-calibered part 1a, and a current of 100 to 200A or thereabout is applied to the coil 12 for 5 to 20 seconds. As a result, the small-calibered part 1a can be heated up to the temperature of liquefying treatment in a short period, and the large- calibered part 1b can be maintained at the aging treatment temperature or lower. The small- calibered part 1a of the heated part only is softened, malleability is given to it, press-fitting integration with other member can be made possible, and the intrinsic magnetic characteristics of the Fr-Cr-Co permanent magnet can be manifested by the large-calibered part 1b which is maintained in a cool state.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、Fe−Cr−Co系永久磁石を他の部材に
嵌入、圧入一体化して用いることが可能で、適用が容易
になり自動車用速度センサー等種々のセンサーなど、用
途を拡大できるFe−Cr−Co系永久磁石に係り、他
の部材への圧入予定部のみを時効処理温度を越える温度
で加熱軟化処理することにより、磁極形成部より低硬度
、展延性を付与したFe−Cr−Co系永久磁石とその
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Industrial Field of Application The present invention allows Fe-Cr-Co permanent magnets to be used by fitting and press-fitting them into other members, making it easy to apply them to speed sensors for automobiles. Regarding Fe-Cr-Co permanent magnets, which can be used in a wide range of applications, such as various sensors, by heating and softening only the part scheduled to be press-fitted into other parts at a temperature exceeding the aging treatment temperature, it is possible to reduce the temperature lower than the magnetic pole forming part. The present invention relates to a Fe-Cr-Co permanent magnet with hardness and malleability, and a method for manufacturing the same.

従来の技術 従来から永久磁石は各種のセンサーに用いられ、特にF
e−Cr−Co系永久磁石は、塑性加工や切削加工が容
易で成形性に優れていることから、複雑な形状や小型化
を要求される分野に多く用いられている。
Conventional technology Permanent magnets have traditionally been used in various types of sensors, especially F.
Since e-Cr-Co permanent magnets are easy to plastically work and cut and have excellent formability, they are often used in fields that require complex shapes and miniaturization.

例えば、第5図に示す如く、偏平筒状のFe−Cr−C
o系永久磁石が自動車用速度センサーに用いられている
For example, as shown in Fig. 5, a flat cylindrical Fe-Cr-C
O-based permanent magnets are used in automotive speed sensors.

すなわち、偏平円筒状のFe−Cr−Co系永久磁石(
1)は、車軸と連動して回転する軸(2)に固着した軸
受(3)内に配置される。
That is, a flat cylindrical Fe-Cr-Co permanent magnet (
1) is arranged in a bearing (3) fixed to a shaft (2) which rotates in conjunction with the axle.

軸受(3)は軸(2)に固着する内輪(3a)と鋼球(
3c)を介して他部材に固定される外輪(3b)とから
構成され、Fe−Cr−Co系永久磁石(1)は内輪(
3a)の外周面に、図示しないねじ止めあるいは接着剤
を使用して固定され、磁界検出センサー(4)はFe−
Cr−Co系永久磁石(1)の磁極面(外周面)に近接
配置されるように外輪(3b)に貫通固定される。
The bearing (3) consists of an inner ring (3a) fixed to the shaft (2) and steel balls (
The Fe-Cr-Co permanent magnet (1) is composed of an outer ring (3b) which is fixed to another member via a ring (3c), and an inner ring (3b).
3a) using screws or adhesive (not shown), and the magnetic field detection sensor (4) is made of Fe-
It is fixed through the outer ring (3b) so as to be disposed close to the magnetic pole face (outer peripheral surface) of the Cr-Co permanent magnet (1).

以上の構成において、偏平円筒状Fe−Cr−Co系永
久磁石(1)の回転を磁界検出センサー(4)にて検出
し、直接的に自動車の速度を計測することが可能となる
In the above configuration, the rotation of the flat cylindrical Fe-Cr-Co permanent magnet (1) is detected by the magnetic field detection sensor (4), and the speed of the vehicle can be directly measured.

発明が解決しようとする課題 上記の如< Fe−Cr−Co系永久磁石は塑性加工や
切削加工が容易であるが、−旦時効処理を施した後は磁
石全体が硬化するため、これらの加工は要求される磁気
特性を得るための溶体化処理や時効処理を施す前に実施
されている。
Problems to be Solved by the Invention As mentioned above, Fe-Cr-Co permanent magnets are easy to plastically work and cut, but since the entire magnet hardens after being subjected to aging treatment, these processes are difficult. This is carried out before solution treatment or aging treatment to obtain the required magnetic properties.

時効処理後のFe−Cr−Co系永久磁石を、直接他部
材に嵌入あるいは圧入する事を想定した場合、第5図の
例では軸受(3)を構成する内輪(3a)に嵌入あるい
は圧入する場合、互いの寸法を所要寸法で高精度に仕上
げる必要がある。
When it is assumed that the aged Fe-Cr-Co permanent magnet will be directly fitted or press-fitted into another member, in the example shown in Fig. 5, it will be fitted or press-fitted into the inner ring (3a) constituting the bearing (3). In this case, it is necessary to finish each other to the required dimensions with high precision.

すなわち、必要以上に締めしろ(第5図の例で、(締め
しろ)=(内輪(3a)の外径)−(圧入前のFe−C
r−C。
In other words, the tightening allowance is more than necessary (in the example shown in Fig. 5, (tightening allowance) = (outside diameter of the inner ring (3a)) - (Fe-C before press-fitting)
r-C.

系永久磁石(1)の圧入部内径))が大きいと、嵌入あ
るいは圧入時にFe−Cr−Co系永久磁石が割れ、ま
た締めじろが小さいと要求される接合力が得られないこ
ととなる。
If the press-fitting part inner diameter of the permanent magnet (1) is large, the Fe-Cr-Co permanent magnet will break during fitting or press-fitting, and if the tightening margin is small, the required bonding force will not be obtained.

Fe−Cr−Co系永久磁石の当該内径精度は、一般に
成形時のプレスばらつきの他、特に溶体化処理、時効処
理等の熱処理時の変形により、あまり高精度に仕上げる
ことができず、従って工業規模の量産に際して、Fe−
Cr−Co系永久磁石を圧入により他部材と一体化する
ことは実施されていなかった。
In general, the internal diameter accuracy of Fe-Cr-Co permanent magnets cannot be finished to a very high degree of precision due to press variations during molding and deformation during heat treatment such as solution treatment and aging treatment. For large-scale mass production, Fe-
It has not been practiced to integrate Cr--Co permanent magnets with other members by press-fitting.

Fe−Cr−Co系永久磁石を他の部材と一体化するた
めには、前述の速度センサーの例の如く、部材にねじ止
めしたり、接着剤を使用して固定する必要があった。し
かし、これらの−本化方法は圧入方法と比較して非常に
煩雑であり、量産性に乏しく、またセンサ一部全体の重
量を増加させることになるので、これらの一体止技術の
改良が望まれていた。
In order to integrate the Fe-Cr-Co permanent magnet with another member, it is necessary to fix it to the member using screws or adhesive, as in the case of the speed sensor described above. However, compared to the press-fitting method, these methods are very complicated, are not suitable for mass production, and increase the weight of the entire sensor part, so it is desirable to improve these integral fixing techniques. It was rare.

この発明は、上述の問題点に鑑み、他の部材と圧入より
一体化できるFe−Cr−Co系永久磁石の提供を目的
としている。
In view of the above-mentioned problems, the present invention aims to provide a Fe--Cr--Co permanent magnet that can be integrated with other members by press-fitting.

課題を解決するための手段 この発明は、上記の問題点を解決することを目的に工大
予定部の性状について種々検討した結果、Fe−Cr−
Co系永久磁石の工大予定部を時効処理後、再度時効処
理温度を越える温度で加熱軟化処理して展延性を持たせ
ることにより、他部材との圧入を可能とするとともに、
他の部位は本来Fe−Cr−Co系永久磁石の有する磁
気特性を備え、種々のセンサーとして適用できることを
知見し、この発明を完成したものである。
Means for Solving the Problems This invention was developed as a result of various studies on the properties of the planned engineering college area with the aim of solving the above problems.
After aging the part of the Co-based permanent magnet intended for engineering, it is heated and softened again at a temperature exceeding the aging treatment temperature to make it malleable, making it possible to press-fit it into other parts.
The present invention was completed based on the finding that the other parts originally had the magnetic properties of a Fe-Cr-Co permanent magnet and could be applied as various sensors.

すなわち、この発明は、 他の部材に工大一体化するFe−Cr−Co系永久磁石
の工大予定部の硬度が、磁極形成部の硬度より低く、展
延性を有することを特徴とするFe−Cr−Co系永久
磁石である。
That is, the present invention provides an Fe-Cr-Co permanent magnet which is integrated into another member and is characterized in that the hardness of the intended part of the Fe-Cr-Co permanent magnet is lower than the hardness of the magnetic pole forming part and has malleability. -Co-based permanent magnet.

また、この発明は、 溶体化処理して時効処理した後、少なくとも磁極形成部
を時効処理温度以下に保持するとともに、他の部材に工
大一体化する工大予定部を時効処理温度を越える温度に
て加熱軟化処理し、上記工大予定部にのみ低硬度と展延
性を付与することを特徴とする展延性を有するFe−C
r−Co系永久磁石の製造方法である。
In addition, after solution treatment and aging treatment, this invention maintains at least the magnetic pole forming part at a temperature below the aging treatment temperature, and at the same time maintains the part intended for the engineering university to be integrated with other members at a temperature exceeding the aging treatment temperature. Fe-C having malleability, characterized in that it is heat-softened and imparts low hardness and malleability only to the above-mentioned engineering section.
This is a method for manufacturing an r-Co permanent magnet.

作  用 この発明は公知のいずれのFe−Cr−Co系永久磁石
にも採用できる。
Function The present invention can be applied to any known Fe-Cr-Co permanent magnet.

すなわち、主成分としては、3〜35wt% Co、1
0〜40wt%Cr、残部実質的にFeからなり、必要
によりNi、 Ti、 V、 W、 Zr、 Mo等の
添加元素を一種以上含有するものである。好ましくは、
10〜20wt%Co、25〜30wt%Cr、残部実
質的にFeがらなり、また必要により1wt%以下の添
加元素を一種以上含有するものである。
That is, the main components are 3 to 35 wt% Co, 1
It consists of 0 to 40 wt% Cr, the balance substantially Fe, and contains one or more additional elements such as Ni, Ti, V, W, Zr, Mo, etc., if necessary. Preferably,
It consists of 10 to 20 wt% Co, 25 to 30 wt% Cr, and the remainder substantially Fe, and if necessary, contains one or more additional elements of 1 wt% or less.

またこの発明において、Fe−Cr−Co系永久磁石の
形状は後述する一実施例に限定されるものでなく、用途
、他部材の形状等に応じて適宜選定するが、特に他部材
との圧入部は他部材の圧入部形状に応じて円筒状、角筒
状等の筒状とすることが望ましい。
In addition, in this invention, the shape of the Fe-Cr-Co permanent magnet is not limited to one embodiment described below, and may be appropriately selected depending on the application, the shape of other members, etc., but especially when press-fitting with other members. It is desirable that the part has a cylindrical shape, such as a cylindrical shape, a rectangular cylindrical shape, etc., depending on the shape of the press-fitted part of the other member.

通常、Fe−Cr−Co系永久磁石は要求される磁気特
性に応じて上記組成を選定し、溶解、造塊、熱間加工、
軟化処理、冷間加工の工程により所要形状に成形する。
Usually, Fe-Cr-Co permanent magnets have the above composition selected according to the required magnetic properties, and undergo melting, agglomeration, hot working,
It is molded into the desired shape through softening treatment and cold working processes.

こののち要求される磁気特性を実現するために溶体化処
理、時効処理を施すが、必要に応じて異方性磁石を得る
場合、時効処理の前に磁界中熱処理を施す。
Thereafter, solution treatment and aging treatment are performed to achieve the required magnetic properties, but if necessary, to obtain an anisotropic magnet, heat treatment in a magnetic field is performed before aging treatment.

この発明は上記工程を完了したのち、圧入予定部のみを
時効処理温度を越える温度で加熱して時効処理前の状態
に戻すことを特徴とする。
The present invention is characterized in that after the above steps are completed, only the portion to be press-fitted is heated at a temperature exceeding the aging treatment temperature to return it to the state before the aging treatment.

すなわち、時効処理温度を越える温度で加熱された部分
の磁気特性は著しく低下してしまうが、その反面時効処
理前の加工性を得ることができる。従って、上記圧入予
定部(加熱部)以外の部分は、本来要求される磁気特性
を維持するために時効処理温度以下に保持する必要があ
り、当該加熱部以外は後述する実施例で示す如く、各種
の冷媒等を用いて積極的に冷却することが望ましい。
That is, although the magnetic properties of the portion heated at a temperature exceeding the aging treatment temperature are significantly degraded, on the other hand, the workability before the aging treatment can be obtained. Therefore, the parts other than the part to be press-fitted (heated part) need to be kept below the aging treatment temperature in order to maintain the originally required magnetic properties. It is desirable to actively cool down using various refrigerants.

以上のことから加熱温度は時効処理温度を越える温度で
あれば、時効処理前の加工性を付与できるが、Fe−C
r−Co系永久磁石の組成範囲、圧入予定部の寸法形状
等に応じて軟化の度合も異なり、要求される展延性を得
るためには、締めしろ等を考慮して最適処理温度及び処
理時間を選定することが望まれる。
From the above, if the heating temperature exceeds the aging treatment temperature, the workability before aging treatment can be imparted, but Fe-C
The degree of softening varies depending on the composition range of the r-Co permanent magnet, the size and shape of the part to be press-fitted, etc., and in order to obtain the required malleability, the optimum processing temperature and processing time must be determined, taking into account tightening margins, etc. It is desirable to select

すなわち、処理温度が低いと長時間の処理が必要となり
あまり効率的でなく、また、工大予定部以外を時効処理
温度以下に長時間保持することも困難である。また、必
要以上に高温にすると他の部位を時効処理温度以下に保
持することが困難となるため、短時間で効率よく加熱軟
化処理するには加熱温度を溶体化処理温度と同温度とす
ることが望ましい。
That is, if the treatment temperature is low, a long treatment time is required, which is not very efficient, and it is also difficult to maintain the temperature at or below the aging treatment temperature for a long time in areas other than the area scheduled for engineering. In addition, if the temperature is higher than necessary, it will be difficult to maintain other parts below the aging treatment temperature, so in order to efficiently heat soften in a short time, the heating temperature should be the same as the solution treatment temperature. is desirable.

通常、溶体化処理温度は850℃〜1300℃程度であ
り、また時効処理温度は500℃〜750℃の範囲で多
段処理を施す。それぞれ処理時間は溶体化処理は10分
〜1.5時間、時効処理は5時間〜40時間程度である
。また必要に応じて時効処理前に600°C〜750℃
の範囲で30分〜1.5時間程度の磁界中熱処理を施す
Usually, the solution treatment temperature is about 850°C to 1300°C, and the aging treatment temperature is in the range of 500°C to 750°C, and multistage treatment is performed. The treatment time for each treatment is approximately 10 minutes to 1.5 hours for solution treatment and approximately 5 hours to 40 hours for aging treatment. In addition, if necessary, 600°C to 750°C before aging treatment.
Heat treatment is performed in a magnetic field for about 30 minutes to 1.5 hours within the range of .

この発明において、時効処理温度とは、磁界中熱処理の
有無を問わず、時効処理の最終温度をもって定義する。
In this invention, the aging treatment temperature is defined as the final temperature of the aging treatment, regardless of the presence or absence of heat treatment in a magnetic field.

すなわち、溶体化処理後例えば750℃から500℃の
間で多段に温度を低下させて時効処理を実施した場合、
この発明における時効処理温度は最終温度となる500
℃とする。
That is, when aging treatment is performed by lowering the temperature in multiple stages, for example between 750°C and 500°C after solution treatment,
The aging treatment temperature in this invention is 500°C, which is the final temperature.
℃.

上記の部分加熱に際しては種々の方法が採用できるが、
加熱部分の形状寸法、加熱温度、加熱部以外の冷却方法
等を考慮して選定することが望ましい。特に伝熱加熱方
法を採用すると、必要部分以外の温度も時効処理温度を
越える温度に加熱されやすいため、後述の実施例に示す
如く高周波誘導加熱方法を採用することが望ましい。
Various methods can be adopted for the above partial heating, but
It is desirable to make a selection in consideration of the shape and dimensions of the heated part, the heating temperature, the method of cooling other parts than the heated part, etc. In particular, when a heat transfer heating method is adopted, the temperature of parts other than the required portions is likely to be heated to a temperature exceeding the aging treatment temperature. Therefore, it is desirable to employ a high frequency induction heating method as shown in Examples described later.

この発明の製造方法によって得られたFe−Cr−C。Fe-Cr-C obtained by the production method of the present invention.

系永久磁石は、上記所要部位の部分的な加熱により、圧
入予定部の硬度が磁極形成部の硬度より小さくなること
によって、圧入予定部の展延性が磁極形成部の展延性よ
りすぐれ、他部材への圧入が可能になる。
In the system permanent magnet, the hardness of the part to be press-fitted becomes smaller than that of the magnetic pole forming part by partial heating of the above-mentioned required parts, so that the malleability of the part to be press-fitted is superior to that of the magnetic pole forming part, and it is difficult to use other parts. It becomes possible to press fit into the

本発明者の実験によれば、組成、熱処理条件等によって
多少異なるが、磁極形成部の硬度がHv400〜450
程度であるのに対し、圧入部の硬度をHv200〜35
0程度に調整することが可能であった。
According to the inventor's experiments, the hardness of the magnetic pole forming part is between Hv400 and Hv450, although it varies somewhat depending on the composition, heat treatment conditions, etc.
However, the hardness of the press-fit part is Hv200~35
It was possible to adjust it to about 0.

また、このような硬度とすることによって、該圧入予定
部の展延性は著しく向上し、後述する実施例に示す測定
法によれば、1%以上の伸びを有することが確認でき、
また、圧入の際の圧力も比較的小さく、効率良い圧入が
可能になる。
In addition, by setting such hardness, the malleability of the part to be press-fitted is significantly improved, and according to the measurement method shown in the examples described later, it was confirmed that it has an elongation of 1% or more,
Furthermore, the pressure during press-fitting is relatively small, allowing efficient press-fitting.

図面による開示 第1図a、bはこの発明による展延性筒状圧入予定部を
有するFe−Cr−Co系永久磁石の一実施例を示す部
分縦断面説明図と平面説明図である。
Disclosure by Drawings FIGS. 1a and 1b are a partial longitudinal sectional view and a plan view showing an embodiment of a Fe-Cr-Co permanent magnet having a malleable cylindrical press-fit portion according to the present invention.

第2図、第3図は第1図に示したFe−Cr−Co系永
久磁石の製造方法の一実施例を示す部分縦断面説明図で
ある。
FIGS. 2 and 3 are partial vertical cross-sectional explanatory views showing an embodiment of the method for manufacturing the Fe-Cr-Co permanent magnet shown in FIG.

第1図に示すこの発明のFe−Cr−Co系永久磁石(
1)は、第5図に示す自動車用速度センサーに用いるも
ので扁平円筒状からなり、すぐれた展延性を有し他部材
との正大予定部となる小径部(1a)と、要求される磁
気特性を有し外周面に複数の磁極を形成する大径部(1
b)とからなっている。小径部(1a)は後述する方法
により硬さはHv250程度であり、また、0.3%以
上の伸びを有する。
The Fe-Cr-Co permanent magnet of the present invention shown in Fig. 1 (
1) is used in the automobile speed sensor shown in Fig. 5, and is made of a flat cylindrical shape, and has a small diameter part (1a) that has excellent malleability and is the expected size with other parts, and a required magnetic field. A large diameter part (1
b) It consists of. The small diameter portion (1a) has a hardness of about Hv250 according to a method described later, and has an elongation of 0.3% or more.

かかる性状を有するFe−Cr−Co系永久磁石(1)
は、第5図に示す如〈従来のねじ等を使用することなく
、直接軸受(3)を構成する内輪(3a)に割れを発生
させずに圧入されて軸(2)に装着される。
Fe-Cr-Co permanent magnet (1) having such properties
As shown in FIG. 5, the inner ring (3a) constituting the bearing (3) is directly press-fitted onto the shaft (2) without using any conventional screws or the like without causing any cracks.

この発明によるFe−Cr−Co系永久磁石(1)の製
造方法を第2図、第3図に基づいて詳述する。
The method for manufacturing the Fe-Cr-Co permanent magnet (1) according to the present invention will be described in detail with reference to FIGS. 2 and 3.

公知の方法で所要形状に成形されたのち、溶体化処理、
時効処理が施された偏平円筒状Fe−Cr−C。
After being formed into the desired shape using a known method, solution treatment is performed.
Flat cylindrical Fe-Cr-C that has been subjected to aging treatment.

系永久磁石(1)は、その大径部(1b)を第2図に示
す如く、水、薬剤等の冷媒(10)を入れた冷却容器(
11)内に浸漬させ、露出させた小径部(1a)の外周
部には、高周波発振用コイル(12)が配置され、該コ
イル(12)にl00A〜200A程度の電流を5秒〜
20秒程度の間通電することによって小径部(1a)を
短時間で溶体化処理温度以上に加熱することができ、大
径部(1b)を時効処理温度以下に保持できる。第2図
の構成では加熱時に冷媒(10)が気化して冷却能力が
低下しないよう冷却容器(11)内に冷媒(10)を連
続的に供給できる構成とすることが望ましい。また、コ
イル(12)はパイプ状として水冷できる構成となって
いる。
As shown in Fig. 2, the large diameter part (1b) of the system permanent magnet (1) is located in a cooling container (10) containing a refrigerant (10) such as water or medicine.
11) A high frequency oscillation coil (12) is placed on the outer periphery of the exposed small diameter portion (1a), and a current of about 100A to 200A is applied to the coil (12) for 5 seconds to
By applying electricity for about 20 seconds, the small diameter portion (1a) can be heated to a temperature higher than the solution treatment temperature in a short time, and the large diameter portion (1b) can be maintained at a temperature lower than the aging treatment temperature. In the configuration shown in FIG. 2, it is desirable to have a configuration in which the refrigerant (10) can be continuously supplied into the cooling container (11) so that the refrigerant (10) does not vaporize during heating and reduce the cooling capacity. Further, the coil (12) is configured to be pipe-shaped and can be water-cooled.

また第3図の構成では、偏平円筒状Fe−Cr−Co系
永久磁石(1)の大径部(1b)を、内部に複数の配水
孔(21)を有し人出ロバイブ(22に22)を通して
冷却水が供給される銅合金製冷却板(20)の円形溝部
(23)内に配置し、小径部(1a)の外周部には高周
波発振用コイル(12)を配置しである。
In addition, in the configuration shown in FIG. 3, the large diameter part (1b) of the flat cylindrical Fe-Cr-Co permanent magnet (1) has a plurality of water distribution holes (21) inside, and a man-made vibrator (22 in 22). ), and a high-frequency oscillation coil (12) is placed on the outer periphery of the small diameter portion (1a).

第2図、第3図に示す如く、偏平円筒状Fe−Cr−C
As shown in Figures 2 and 3, the flat cylindrical Fe-Cr-C
.

系永久磁石(1沖圧入予定部、すなわち小径部(1a)
を時効処理温度を越える温度(上記においては溶体化処
理温度)に加熱すると同時に、他の部位、すなわち大径
部(1b)を時効処理温度以下に保持しておけば、加熱
部の小径部(1a)のみが軟化して展延性を付与され、
他部材との圧入一体化が可能となり、冷却保持した大径
部(1b)は本来Fe−Cr−Co系永久磁石の有する
磁気特性を発現させることができる。
System permanent magnet (1 off-shore press-fit planned part, i.e. small diameter part (1a)
If the other parts, namely the large diameter part (1b), are heated to a temperature exceeding the aging treatment temperature (solution treatment temperature in the above case) and at the same time kept below the aging treatment temperature, the small diameter part (1b) of the heated part ( Only 1a) is softened and given malleability,
Press-fit integration with other members is possible, and the cooled and maintained large diameter portion (1b) can exhibit the magnetic properties originally possessed by Fe-Cr-Co permanent magnets.

実施例 10.3wt%Co、26wt%Cr、0.4wt%T
i、残部実質的にFeとなるよう原料を配合し、溶解、
造塊、熱間加工、軟化処理、冷間加工によって、第1図
に示す如く扁平円筒状のFe−Cr−Co系永久磁石素
材を得た。
Example 10.3wt%Co, 26wt%Cr, 0.4wt%T
i. Blend the raw materials so that the remainder is substantially Fe, and dissolve;
By agglomeration, hot working, softening treatment, and cold working, a flat cylindrical Fe-Cr-Co permanent magnet material was obtained as shown in FIG.

その後、920℃x60分の溶体化処理に引き続き、7
50°C〜500℃×30時間の多段処理からなる時効
処理を施して等方性の偏平円筒状Fe−Cr−Co系永
久磁石を得た。
Then, following solution treatment at 920°C for 60 minutes,
An aging treatment consisting of a multistage treatment of 50°C to 500°C for 30 hours was performed to obtain an isotropic flat cylindrical Fe-Cr-Co permanent magnet.

さらに第2図に示す方法により、高周波発振用コイル(
12)に15OAの電流を15秒間通電して小径部(1
a)を加熱した。この時小径部(1a)の温度は950
’Cであった。
Furthermore, by the method shown in Fig. 2, a high-frequency oscillation coil (
12) for 15 seconds to apply a current of 15OA to the small diameter part (1
a) was heated. At this time, the temperature of the small diameter part (1a) is 950
'C.

一方、大径部(1b)はアイスノン(商標)からなる冷
媒(10)中に浸漬し、時効処理温度以下に保持した。
On the other hand, the large diameter portion (1b) was immersed in a refrigerant (10) made of Icenon (trademark) and maintained at a temperature below the aging treatment temperature.

加熱終了時の大径部(1b)の温度は200℃以下であ
った。
The temperature of the large diameter portion (1b) at the end of heating was 200°C or less.

以上の方法によって狙い寸法が厚さ0.8mm、小径部
の内径48.1mm、高34mm、大径部の内径55m
m、高さ5mmの複数の偏平円筒状Fe−Cr−Co系
永久磁石を得た。
By the above method, the target dimensions are: thickness 0.8 mm, small diameter part inner diameter 48.1 mm, height 34 mm, and large diameter part inner diameter 55 m.
A plurality of flat cylindrical Fe-Cr-Co permanent magnets each having a height of 5 mm and a height of 5 mm were obtained.

また、上記の加熱処理を施すことなく他の条件をすべて
この発明の偏平円筒状Fe−Cr−Co系永久磁石と同
様としたFe−Cr−Co系永久磁石を比較例として複
数個作成した。
In addition, a plurality of Fe-Cr-Co permanent magnets were prepared as comparative examples without performing the above-mentioned heat treatment and under all other conditions similar to those of the flat cylindrical Fe-Cr-Co permanent magnet of the present invention.

これら各々のFe−Cr−Co系永久磁石を第4図に示
す圧入試験を実施し、この発明の効果を確認した。
Each of these Fe-Cr-Co permanent magnets was subjected to a press-fitting test as shown in FIG. 4, and the effects of the present invention were confirmed.

すなわち、磁石支持台(30)の上面に、上記偏平円筒
状Fe−Cr−Co系永久磁石(1)を載置し、内径(
Dl)を有する該磁石小径部(1a)に外径寸法(Do
)が異なる種々の円柱部材(31)をプレス先端部(3
2)にて圧入し、割れ発生状況を調査した。
That is, the flat cylindrical Fe-Cr-Co permanent magnet (1) is placed on the upper surface of the magnet support (30), and the inner diameter (
The small diameter portion (1a) of the magnet has an outer diameter (Do
) with different cylindrical members (31) are pressed at the tip end (3
2), and the occurrence of cracks was investigated.

ユニで、Fe−Cr−Co系永久磁石(1)の小径部(
1a)内径(Dl)は図示の如く、先端部の寸法とし各
々X方向、Y方向の測定値の平均値とした。通常、図示
の如き形状のFe−Cr−Co系永久磁石(1)をプレ
ス成形した場合、小計部先端部の寸法が最も小さくなる
Uni, the small diameter part of the Fe-Cr-Co permanent magnet (1)
1a) As shown in the figure, the inner diameter (Dl) is the dimension of the tip, and is the average value of the measured values in the X direction and the Y direction, respectively. Normally, when a Fe-Cr-Co permanent magnet (1) having the shape shown in the figure is press-molded, the size of the tip of the subtotal part is the smallest.

円柱部材(1b)の外径寸法(DO)を徐々に変化させ
、圧入予定部の前記小径部(1a)に割れが発生する時
の円柱部材の最大外径寸法(Dmax)を測定し、小径
部(1a)の伸びを確認した。
The outer diameter dimension (DO) of the cylindrical member (1b) is gradually changed, and the maximum outer diameter dimension (Dmax) of the cylindrical member when a crack occurs in the small diameter portion (1a) of the planned press-fitting part is measured. The elongation of part (1a) was confirmed.

ここで伸びは、Dmax −Dlを締めしろとした場伸
び(%)=(Dmax−DI)/DIXnX100とす
る。
Here, elongation is assumed to be elongation (%)=(Dmax-DI)/DIXnX100 when Dmax-Dl is the tightening margin.

この発明の製造方法によって得られたFe−Cr−C。Fe-Cr-C obtained by the production method of the present invention.

系永久磁石(1)は1%以上伸びを有し、割れを発生す
ることなく要求される接合力が得られた。
The system permanent magnet (1) had an elongation of 1% or more, and the required bonding force was obtained without cracking.

なお、使用した試料の寸法は、 Dmax −Dl = 150〜165pmであった。The dimensions of the sample used are Dmax - Dl = 150 to 165 pm.

しかし、圧入予定部に所定の加熱処理を施さなかった比
較例の試料は、いずれも正大時に割れてしまった。
However, all of the samples of comparative examples in which the predetermined heat treatment was not performed on the part to be press-fitted cracked at full size.

また、この発明の製造方法によって得られるFe−Cr
−Co系永久磁石(1)の小径部(1a)の硬度は、い
ずれもHv250〜260程度であり、大径部(1b)
の硬度はHv385〜400程度であった。
Moreover, Fe-Cr obtained by the manufacturing method of the present invention
The hardness of the small diameter part (1a) of the -Co permanent magnet (1) is about Hv250 to 260, and the hardness of the large diameter part (1b)
The hardness was about Hv385-400.

さらに、大径部(1b)に形成された磁極部の磁気特性
(表面Bg)を測定したところ、この発明の磁石と比較
例とも同様な磁気特性が示された。
Furthermore, when the magnetic properties (surface Bg) of the magnetic pole part formed in the large diameter part (1b) were measured, similar magnetic properties were shown for both the magnet of the present invention and the comparative example.

発明の効果 一般にFe−Cr−Co系永久磁石を工業的に量産する
と、プレスばらつき、熱処理時の変形等により圧入予定
部の小径部(1a)の内径(Dl)寸法のばらつきは一
層大きくなり、実質的な締めじろに大きなばらつきが発
生し、また、圧入相手の他部材の外径寸法にもばらつき
が発生することから、量産規模で割れを発生することな
く Fe−Cr−Co系永久磁石に圧入方法を採用する
ためには、所要の圧入予定部に大きな展延性が要求され
る。
Effects of the Invention In general, when Fe-Cr-Co permanent magnets are industrially mass-produced, the variation in the inner diameter (Dl) of the small diameter portion (1a) of the part to be press-fitted becomes even larger due to press variations, deformation during heat treatment, etc. Because there are large variations in the actual tightening margin and variations in the outer diameter of other parts to be press-fitted, it is possible to use Fe-Cr-Co permanent magnets without cracking on a mass production scale. In order to employ the press-fitting method, the desired press-fitting area is required to have great malleability.

実施例に示す如く、この発明のFe−Cr−Co系永久
磁石は圧入予定部の伸びが大きく、大きな締めじろを採
ることができる。実施例においては小径部(1a)の内
径(Dl)を平均値で求めているが、そのばらつきは5
μm〜30pm程度であった。
As shown in the examples, the Fe-Cr-Co permanent magnet of the present invention has a large elongation at the press-fitting portion, and can have a large tightening margin. In the example, the inner diameter (Dl) of the small diameter portion (1a) is determined as an average value, but the variation is 5.
It was about μm to 30 pm.

この発明は、Fe−Cr−Co系永久磁石の一部、すな
わち圧入予定部にのみ展延性を持たせたことにより、他
部材との一体化手段として圧入方法を採用することが可
能で適用範囲を広げることができ、また圧入方法を採用
できることから、永久磁石形状を単純化でき、ねじ止め
や接着作業がなくなり量産性を向上させ、装置の軽量化
を達成することができる。
In this invention, only a part of the Fe-Cr-Co permanent magnet, that is, the part to be press-fitted, has malleability, so that it is possible to adopt a press-fitting method as a means of integrating with other parts, and the applicable range is as follows. Since the magnet can be expanded and a press-fitting method can be used, the shape of the permanent magnet can be simplified, eliminating the need for screwing or gluing, improving mass productivity and reducing the weight of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a、bはこの発明による展延性筒状部を有するF
e−Cr−Co系永久磁石の一実施例を示す部分縦断説
明図と平面説明図である。 第2図、第3図は第1図に示したF6−Cr−Co系永
久磁石の製造方法の一実施例を示す加熱冷却装置の部分
縦断面説明図である。 第4図は第1図に示したFe−Cr−Co系永久磁石の
効果を確認する試験方法に用いる治具の説明図である。 第5図はFe−Cr−Co系永久磁石を用いた自動車用
速度センサーを示す部分縦断面説明図である。 ’J−−Fe−Cr−Co系永久磁石、1a・・・小径
部、1b・・・大径部、2・・・軸、3・・・軸受、3
a・・・内輪、3b・・外輪、3c・・・鋼球、4・・
磁界検出センサー、10・・・冷媒、11・・・冷却容
器、12・・・高周波発振用コイル、20・・・冷却板
、21・・・配水孔、22・・・パイプ、23・・・円
形溝部、3o・・磁石支持台、31・・・円柱部材、3
2・・・プレス先端部
FIGS. 1a and 1b show an F having a malleable cylindrical part according to the present invention.
FIG. 2 is a partial vertical cross-sectional view and a plan view showing an example of an e-Cr-Co permanent magnet. FIGS. 2 and 3 are partial longitudinal cross-sectional explanatory views of a heating and cooling device showing an embodiment of the method for manufacturing the F6-Cr-Co permanent magnet shown in FIG. 1. FIG. 4 is an explanatory diagram of a jig used in a test method for confirming the effect of the Fe-Cr-Co permanent magnet shown in FIG. FIG. 5 is a partial vertical cross-sectional explanatory view showing a speed sensor for an automobile using a Fe-Cr-Co permanent magnet. 'J--Fe-Cr-Co permanent magnet, 1a...small diameter part, 1b...large diameter part, 2...shaft, 3...bearing, 3
a...Inner ring, 3b...Outer ring, 3c...Steel ball, 4...
Magnetic field detection sensor, 10... Refrigerant, 11... Cooling container, 12... High frequency oscillation coil, 20... Cooling plate, 21... Water distribution hole, 22... Pipe, 23... Circular groove, 3o... Magnet support, 31... Cylindrical member, 3
2...Press tip

Claims (1)

【特許請求の範囲】 1 他の部材に圧入一体化するFe−Cr−Co系永久磁石
の圧入予定部の硬度が、磁極形成部の硬度より低く、展
延性を有することを特徴とするFe−Cr−Co系永久
磁石。 2 溶体化処理して時効処理した後、少なくとも磁極形成部
を時効処理温度以下に保持するとともに、他の部材に圧
入一体化する圧入予定部を時効処理温度を越える温度に
て加熱軟化処理し、上記圧入予定部にのみ低硬度と展延
性を付与することを特徴とする展延性を有するFe−C
r−Co系永久磁石の製造方法。
[Scope of Claims] 1. An Fe-Cr-Co permanent magnet that is press-fitted into another member and is characterized in that the hardness of the part to be press-fitted is lower than the hardness of the magnetic pole forming part and has malleability. Cr-Co permanent magnet. 2. After solution treatment and aging treatment, at least the magnetic pole forming part is maintained at a temperature below the aging treatment temperature, and the part to be press-fitted to be integrated into another member is heated and softened at a temperature exceeding the aging treatment temperature, Fe-C having malleability characterized by imparting low hardness and malleability only to the portion to be press-fitted.
A method for manufacturing an r-Co permanent magnet.
JP2280131A 1990-10-17 1990-10-17 Malleable fe-cr-co permanent magnet and manufacture thereof Pending JPH04152602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2280131A JPH04152602A (en) 1990-10-17 1990-10-17 Malleable fe-cr-co permanent magnet and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2280131A JPH04152602A (en) 1990-10-17 1990-10-17 Malleable fe-cr-co permanent magnet and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04152602A true JPH04152602A (en) 1992-05-26

Family

ID=17620769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2280131A Pending JPH04152602A (en) 1990-10-17 1990-10-17 Malleable fe-cr-co permanent magnet and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04152602A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033844A (en) * 2003-05-15 2005-02-03 Aichi Steel Works Ltd Motor and its casing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033844A (en) * 2003-05-15 2005-02-03 Aichi Steel Works Ltd Motor and its casing

Similar Documents

Publication Publication Date Title
EP2444200B1 (en) Method for manufacturing coil spring
US6093268A (en) Corrective tempering method for rolling elements
AU654179B2 (en) Procedure for production of vehicle wheels
JPH0331425A (en) Manufacture of roll bearing member
JP4661409B2 (en) Bearing unit outer member, bearing unit
JPH04152602A (en) Malleable fe-cr-co permanent magnet and manufacture thereof
CN114592113A (en) Micro steel ball for inducing martensite phase to generate and cryogenic treatment process
JP2006289394A (en) METHOD FOR MANUFACTURING RING MADE OF Mn-Cu ALLOY
JPH11140543A (en) Production of bearing ring
CN110735081B (en) Iron-chromium-cobalt semi-hard magnetic alloy and preparation method thereof
JP2007107059A (en) Method for manufacturing base material having excellent cold forgeability
JP2002363641A (en) Method for spheroidizing carbon steel by using ecap method
CN109161649A (en) IF steel for superhard martensite steel method
US7387694B2 (en) Method of making a hardened steel part, especially a roll load-bearing steel part
KR101934761B1 (en) Manufacturing method of compressor pulley for vehicle
JPH09242763A (en) Manufacture of rolling bearing
CN112496219A (en) Manufacturing and processing method of 4J32 alloy ring piece
JP2000087117A (en) Method for joining valve shaft of solenoid valve to sintered movable iron core
JP2000145964A (en) Martensitic stainless steel part and manufacture therefor
JP3588262B2 (en) Composite molding method
US20070204703A1 (en) Material for magneto-elastic transducer
JPH09122805A (en) Ring, its production and gear using ring
JPS62142042A (en) Production of shaft component
JP2615844B2 (en) Permanent magnet rotor
EP3795272A1 (en) Nut-shaped fcc magnet and method for manufacturing the same