JP2006289394A - METHOD FOR MANUFACTURING RING MADE OF Mn-Cu ALLOY - Google Patents

METHOD FOR MANUFACTURING RING MADE OF Mn-Cu ALLOY Download PDF

Info

Publication number
JP2006289394A
JP2006289394A JP2005110686A JP2005110686A JP2006289394A JP 2006289394 A JP2006289394 A JP 2006289394A JP 2005110686 A JP2005110686 A JP 2005110686A JP 2005110686 A JP2005110686 A JP 2005110686A JP 2006289394 A JP2006289394 A JP 2006289394A
Authority
JP
Japan
Prior art keywords
ring
alloy
subjected
alloy material
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005110686A
Other languages
Japanese (ja)
Inventor
Kenji Watabe
健司 渡部
Yoichiro Kitamura
陽一郎 北村
Tomoyuki Takahashi
知之 高橋
Naoya Sato
直也 佐藤
Hiroaki Yoshida
広明 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2005110686A priority Critical patent/JP2006289394A/en
Publication of JP2006289394A publication Critical patent/JP2006289394A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which can economically manufacture a ring having excellent dimensional accuracy from an Mn-Cu alloy material. <P>SOLUTION: In the method for manufacturing the ring from the Mn-Cu alloy material, the Mn-Cu alloy material is processed by cold forging, comprising swaging, forming, and punching so as to get a ring material, and then the ring material is processed by cold rolling to obtain the ring having a required size. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はMn−Cu系合金製リングの製造方法に関し、更に詳しくはMn−Cu系合金材料から塑性加工によりリングを製造する方法の改良に関する。   The present invention relates to a method for producing an Mn—Cu alloy ring, and more particularly to an improvement in a method for producing a ring from a Mn—Cu alloy material by plastic working.

従来、合金材料、例えば合金製丸棒の切断物からリングを製造する場合、該切断物を据え込み、成形及び打ち抜きの熱間鍛造に供して所要の大きさのリングとする方法が知られている(例えば特許文献1参照)。また従来、合金製リング素材からリングを製造する場合、該合金製リング素材を冷間転造(Cold Ring Forming、略称CRF)に供して所要の大きさのリングとする方法も知られている(例えば特許文献2参照)。   Conventionally, when a ring is manufactured from a cut piece of an alloy material, for example, an alloy round bar, a method is known in which the cut piece is placed and subjected to hot forging for forming and punching to obtain a ring of a required size. (For example, refer to Patent Document 1). Also, conventionally, when a ring is manufactured from an alloy ring material, a method is also known in which the alloy ring material is subjected to cold rolling (CRF) to obtain a ring of a required size ( For example, see Patent Document 2).

しかし、合金材料を前記のような熱間鍛造に供して所要の大きさのリングとする従来法には、該合金材料が鉄系合金材料である場合には比較的問題は少ないが、該合金材料がMn−Cu系合金材料である場合には、鉄系合金材料に比べて熱間鍛造の可能な温度範囲が狭いこともあるため、これを前記のような据え込み、成形及び打ち抜きの熱間鍛造に供して所要の大きさのリングとすること自体が難しく、熱間鍛造するための相応の熱処理設備とその管理が必要であり、また打ち抜き屑が多く発生するために歩留まりが低く、とりわけ得られるリングの寸法精度が悪いという問題がある。またMn−Cu系合金材料、例えばMn−Cu系合金製丸棒の切断物を熱間鍛造に供してリング素材とした後、該リング素材を冷間転造に供して所要の大きさのリングとすることも考えられるが、この場合には相応の改善がみられるものの、依然として相応の熱処理設備とその管理が必要であり、また得られるリングの寸法精度も悪いという問題がある。
特開平10−118737号公報 特開2001−9552号公報
However, the conventional method in which the alloy material is subjected to hot forging as described above to form a ring of a required size has relatively few problems when the alloy material is an iron-based alloy material. When the material is a Mn-Cu alloy material, the temperature range in which hot forging can be performed may be narrower than that of an iron alloy material. It is difficult to make a ring of the required size by subjecting it to hot forging, and it is necessary to have a suitable heat treatment facility for hot forging and its management, and because a lot of punching waste is generated, the yield is low, especially There is a problem that the dimensional accuracy of the obtained ring is poor. Further, a ring material of a required size is obtained by subjecting a cut piece of a Mn-Cu alloy material, for example, a round bar made of Mn-Cu alloy, to hot forging to form a ring material, and then subjecting the ring material to cold rolling. In this case, although there is a corresponding improvement, there is still a problem that a corresponding heat treatment facility and its management are still necessary, and the dimensional accuracy of the resulting ring is poor.
JP-A-10-118737 Japanese Patent Laid-Open No. 2001-9552

本発明が解決しようとする課題は、Mn−Cu系合金材料から寸法精度のよいリングを経済的に製造することができる方法を提供する処にある。   The problem to be solved by the present invention is to provide a method capable of economically producing a ring with good dimensional accuracy from an Mn—Cu based alloy material.

前記の課題を解決する本発明は、Mn−Cu系合金材料からリングを製造する方法において、Mn−Cu系合金材料を据え込み、成形及び打ち抜きの冷間鍛造に供してリング素材とした後、該リング素材を冷間転造に供して所要の大きさのリングとすることを特徴とするMn−Cu系合金製リングの製造方法に係る。   The present invention that solves the above-mentioned problems is a method of manufacturing a ring from an Mn-Cu alloy material, after placing the Mn-Cu alloy material into a ring material by subjecting it to cold forging for forming and punching, The present invention relates to a method for producing a ring made of a Mn—Cu alloy, wherein the ring material is subjected to cold rolling to obtain a ring having a required size.

本発明では先ず、Mn−Cu系合金材料を据え込み、成形及び打ち抜きの冷間鍛造に供してリング素材とする。原料として用いるMn−Cu系合金の組成は、Mnをベースとし、Mnの次にCuを多く含有するものであれば特に制限されないが、代表的には本発明によって製造した所要の大きさのリングに制振性能を付与し、ほぼそのままのリング形状で使用する関係から、Mnをベースとし、原子%で、Cuを20±5%、Niを5±3%、Feを2±1%含有するものが好ましく、また更にAlを2〜5%含有するものが好ましい。本発明では、Mn−Cu系合金材料として、かかるMn−Cu系合金製の例えば丸棒を径方向へ切断した切断物を用いる。   In the present invention, first, an Mn—Cu-based alloy material is placed and subjected to cold forging by forming and punching to obtain a ring material. The composition of the Mn—Cu-based alloy used as a raw material is not particularly limited as long as it is based on Mn and contains a large amount of Cu next to Mn. Typically, the ring of the required size manufactured according to the present invention is used. Because of the relationship of imparting vibration damping performance and using the ring shape almost as it is, based on Mn, it contains 20 ± 5% Cu, 5 ± 3% Ni, 2 ± 1% Fe and 5 ± 3% Fe. The thing containing 2 to 5% of Al is further preferable. In the present invention, a cut product obtained by cutting, for example, a round bar made of Mn—Cu alloy in the radial direction is used as the Mn—Cu alloy material.

本発明では、前記のようなMn−Cu系合金材料を据え込み、成形及び打ち抜きの冷間鍛造に供してリング素材とする。例えば、Mn−Cu系合金製丸棒の切断物を、やや扁平状に据え込み、更に断面凹形の容器状に成形した後、その底面を打ち抜いてリング素材とするのである。かかるリング素材がこれを更に冷間転造して得られる所要の大きさのリングに比べて小さい外径及び内径を有することはいうまでもない。以上のような冷間鍛造において、据え込み前、据え込みと成形との間、成形と打ち抜きとの間に、Mn−Cu系合金材料等の被冷間鍛造物を適宜に溶体化処理することもできる。   In the present invention, the Mn—Cu alloy material as described above is placed and subjected to cold forging by forming and punching to obtain a ring material. For example, a cut piece of a Mn—Cu alloy round bar is placed in a slightly flat shape, further formed into a container shape having a concave cross section, and then punched to form a ring material. It goes without saying that such a ring material has a smaller outer diameter and inner diameter than a ring of the required size obtained by further cold rolling it. In the cold forging as described above, before for upsetting, between upsetting and forming, between the forming and punching, the cold forging such as Mn-Cu alloy material is appropriately solution treated. You can also.

本発明では次に、前記のような冷間鍛造したリング素材を冷間転造に供して所要の大きさのリングとする。冷間転造それ自体は、成形ロールに引っ掛けたリング素材にマンドレルを当接させた状態にて該マンドレルを回転させることにより該リング素材を回転させながら造形する従来法にしたがって行なうことができる。本発明では、前記したような冷間鍛造の据え込みに先立って、及び/又は冷間鍛造後の冷間転造に先立って、素材丸棒の加工や冷間鍛造による加工歪を除去するために、またマルテンサイト相(双晶)やα相を低減させるために、Mn−Cu系合金材料や冷間鍛造したリング素材を例えば700〜900℃の温度範囲で0.5〜4時間保持後に急冷する溶体化処理を行なうのが好ましい。   Next, in the present invention, the cold forged ring material as described above is subjected to cold rolling to obtain a ring having a required size. Cold rolling itself can be performed in accordance with a conventional method of shaping while rotating the mandrel while rotating the mandrel in a state where the mandrel is in contact with the ring material caught on the forming roll. In the present invention, prior to the above-described cold forging upsetting and / or prior to cold rolling after cold forging, in order to remove the processing distortion of the material round bar and cold forging. In addition, in order to reduce the martensite phase (twinning) and α phase, the Mn—Cu alloy material and the cold forged ring material are held at a temperature range of 700 to 900 ° C. for 0.5 to 4 hours, for example. It is preferable to perform a solution treatment for rapid cooling.

かくして得られる所要の大きさのリングは、代表的にはこれに制振性能を付与し、ほぼそのままのリング形状で使用することができる。この場合の制振性能の付与は、加熱及び徐冷の熱処理に供する従来法にしたがって行なうことができるが、冷間転造した所要の大きさのリングを800〜1100℃の温度範囲で加熱した後、0.85〜1.65℃/分で定速徐冷するか、又は700〜900℃の温度範囲で加熱及び保持して溶体化処理し、引き続き350〜650℃の温度範囲で加熱及び保持して時効処理することにより行なうのが好ましい。   The ring of the required size thus obtained typically imparts damping performance to the ring and can be used in an almost intact ring shape. In this case, the vibration damping performance can be imparted according to a conventional method for heating and annealing, and a cold-rolled ring having a required size is heated in a temperature range of 800 to 1100 ° C. Thereafter, it is cooled at a constant rate of 0.85 to 1.65 ° C./min, or is heated and held in a temperature range of 700 to 900 ° C., followed by solution treatment, followed by heating and heating in a temperature range of 350 to 650 ° C. It is preferable to carry out by holding and aging treatment.

以上説明した本発明には、Mn−Cu系合金材料から所要の大きさのリングを製造するに際して、熱間鍛造する場合のような相応の熱処理設備やその管理は必要でなく、また熱間鍛造する場合に比べて打ち抜き屑の発生量が少ない分だけ歩留まりが高く、したがってこれらが相まって全体として経済的であり、とりわけ得られるリングの寸法精度が良いという効果がある。   In the present invention described above, when manufacturing a ring of a required size from an Mn-Cu alloy material, the corresponding heat treatment equipment and its management as in the case of hot forging are not necessary, and hot forging is also necessary. Compared to the case, the yield is high because the amount of punching waste generated is small. Therefore, these are combined and economical as a whole, and the dimensional accuracy of the obtained ring is particularly good.

図1は本発明の実施形態を断面で略示する工程図である。図1では、Mn−Cu系合金製丸棒の切断物1を溶体化処理した後、据え込み、成形及び打ち抜きの冷間鍛造に供している。据え込みでは潤滑処理した短尺な円柱状の切断物1を据え込んで扁平状物2としており、また成形では扁平状物2を成形して断面凹形の容器状物3としていて、更に打ち抜きでは容器状物3の底面を打ち抜いてリング素材4としている。引き続き図1では、リング素材4を溶体化処理した後、冷間転造に供して、リング素材4よりも外径及び内径が大きくて肉厚の薄い、所要の大きさのリング5としている。   FIG. 1 is a process diagram schematically showing an embodiment of the present invention in cross section. In FIG. 1, a cut 1 of a round bar made of Mn—Cu alloy is subjected to a solution treatment, and then subjected to cold forging of upsetting, forming and punching. In the upsetting, a short cylindrical cut object 1 that has been lubricated is installed into a flat object 2, and in the forming, the flat object 2 is formed into a container 3 having a concave cross section. The bottom of the container 3 is punched out to form a ring material 4. In FIG. 1, after the ring material 4 is subjected to a solution treatment, it is subjected to cold rolling to form a ring 5 having a required size that has an outer diameter and an inner diameter larger than the ring material 4 and is thin.

実施例1
図1について前記した工程図にしたがい、下記の条件下でリングを製造した。
Mn−Cu系合金材料:原子%で、Mn−20Cu−5Ni−2Feの組成を有する合金製丸棒の切断物であって、外径34mmで高さ42.2mmの切断物を、820℃で1時間加熱及び保持して溶体化処理したものを用いた。
冷間鍛造:前記の切断物を潤滑処理した後、設定値が外径60mmの扁平状物に据え込み、次いで設定値が同じ外径の容器状物に成形し、更に底面を打ち抜いて設定値が外径60mmで内径40mmのリング素材とした。
冷間転造:前記のリング素材を820℃で1時間加熱及び保持して溶体化処理した後、設定値が外径82mmで内径72mmのリングに冷間転造した。
高精度の温度制御が可能な特別の熱処理炉は必要とせず、また打ち抜き屑の発生量が少ないために歩留まりは高く、したがってこれらが相まって全体として経済的であり、とりわけ寸法精度の良いリングを製造することができた。
Example 1
According to the process diagram described above with reference to FIG. 1, a ring was manufactured under the following conditions.
Mn-Cu alloy material: A cut piece of an alloy round bar having the composition of Mn-20Cu-5Ni-2Fe in atomic%, and a cut piece having an outer diameter of 34 mm and a height of 42.2 mm at 820 ° C. What was heated and held for 1 hour and subjected to a solution treatment was used.
Cold forging: After the above cut product is lubricated, it is placed in a flat product with a set value of 60 mm in outer diameter, then molded into a container with the same set value, and the bottom is punched to set value Is a ring material having an outer diameter of 60 mm and an inner diameter of 40 mm.
Cold rolling: The ring material was heated and held at 820 ° C. for 1 hour for solution treatment, and then cold rolled into a ring having a set value of 82 mm outer diameter and 72 mm inner diameter.
No special heat treatment furnace capable of high-accuracy temperature control is required, and the yield is high due to the small amount of punching waste. Therefore, they combine to produce a ring with high dimensional accuracy. We were able to.

比較例1
実施例1と同じ寸法のMn−Cu系合金材料を用い、これを1100℃に加熱して、据え込み、成形及び打ち抜きの熱間鍛造により、実施例1と同じ内外径を有するリングの製造を試みたが、当初の加熱でMn−Cu系合金材料の一部が溶融してしまい、熱間鍛造それ自体を行なうことができなかった。
Comparative Example 1
Using a Mn—Cu based alloy material having the same dimensions as in Example 1, heating this to 1100 ° C., and producing a ring having the same inner and outer diameters as in Example 1 by hot forging of upsetting, forming and punching Although an attempt was made, a part of the Mn—Cu alloy material was melted by the initial heating, and the hot forging itself could not be performed.

比較例2
実施例1と同じ寸法のMn−Cu系合金材料を用い、これを850℃に加熱して、据え込み、成形及び打ち抜きの熱間鍛造により、実施例1と同じ内外径を有するリングを製造した。高精度の温度制御が可能な特別の熱処理炉を必要とし、また打ち抜き屑の発生量が多いために歩留まりが低く、したがってこれらが相まって全体として非経済的であり、とりわけ製造したリングの寸法精度が悪かった。
Comparative Example 2
A ring having the same inner and outer diameters as in Example 1 was manufactured by using a Mn—Cu alloy material having the same dimensions as in Example 1 and heating it to 850 ° C. to perform hot forging by upsetting, forming, and stamping. . A special heat treatment furnace capable of high-accuracy temperature control is required, and the yield is low due to the large amount of punching waste. Therefore, they are combined to be uneconomical as a whole. It was bad.

比較例3
実施例1と同じ寸法のMn−Cu系合金材料を用い、これを850℃に加熱して、据え込み、成形及び打ち抜きの熱間鍛造により、設定値が実施例1と同じリング素材とした後、更に冷間転造に供して、実施例1と同じ内外径を有するリングを製造した。高精度の温度制御が可能な特別の熱処理炉を必要としたが、打ち抜き屑の発生量が少ないために歩留まりは高く、製造したリングの寸法精度はやや悪かった。
Comparative Example 3
After using a Mn—Cu based alloy material having the same dimensions as in Example 1 and heating it to 850 ° C. and setting it to the same ring material as in Example 1 by hot forging by upsetting, forming and punching Further, it was subjected to cold rolling to produce a ring having the same inner and outer diameters as in Example 1. Although a special heat treatment furnace capable of high-precision temperature control was required, the yield was high due to the small amount of punching waste generated, and the dimensional accuracy of the manufactured ring was somewhat poor.

比較例4
実施例1と同じ寸法のMn−Cu系合金材料を用い、据え込み、成形及び打ち抜きの冷間鍛造により、実施例1と同じ内外径を有するリングを製造した。高精度の温度制御が可能な特別の熱処理炉は必要としなかったが、大型のプレス機を必要とし、また打ち抜き屑の発生量が多いために歩留まりが低く、したがってこれらが相まって全体として非経済的であったが、製造したリングの寸法精度は良かった。
以上の各例で製造したリングの寸法精度を表1にまとめて示した。別に、原子%で、Mn−20Cu−5Ni−2Fe−2Alの組成を有する合金製丸棒の切断物についても以上と同様の製造試験を行なったが、ほぼ同様の結果であった。
Comparative Example 4
A ring having the same inner and outer diameters as in Example 1 was manufactured by cold forging by upsetting, forming and punching using the same Mn—Cu alloy material as in Example 1. A special heat treatment furnace capable of high-precision temperature control was not required, but a large press was required, and the yield was low due to the large amount of punching scraps. However, the dimensional accuracy of the manufactured ring was good.
Table 1 summarizes the dimensional accuracy of the rings manufactured in each of the above examples. Separately, the same production test was performed on a cut piece of an alloy round bar having the composition of Mn-20Cu-5Ni-2Fe-2Al in atomic%, but the results were almost the same.

Figure 2006289394
Figure 2006289394

本発明の実施状態を断面で略示する工程図。The process figure which shows the implementation state of this invention schematically in a cross section.

符号の説明Explanation of symbols

1 Mn−Cu系合金製丸棒の切断物
2 扁平状物
3 容器状物
4 リング素材
5 リング
DESCRIPTION OF SYMBOLS 1 Cut of Mn-Cu alloy round bar 2 Flat object 3 Container 4 Ring material 5 Ring

Claims (6)

Mn−Cu系合金材料からリングを製造する方法において、Mn−Cu系合金材料を据え込み、成形及び打ち抜きの冷間鍛造に供してリング素材とした後、該リング素材を冷間転造に供して所要の大きさのリングとすることを特徴とするMn−Cu系合金製リングの製造方法。   In a method of manufacturing a ring from an Mn-Cu alloy material, the Mn-Cu alloy material is upset, subjected to cold forging by forming and punching to form a ring material, and then the ring material is subjected to cold rolling. A method for producing a ring made of Mn—Cu alloy, characterized in that the ring has a required size. Mn−Cu系合金材料を溶体化処理してから冷間鍛造に供する請求項1記載のMn−Cu系合金製リングの製造方法。   The method for producing a ring made of Mn-Cu alloy according to claim 1, wherein the Mn-Cu alloy material is subjected to solution treatment and then subjected to cold forging. リング素材を溶体化処理してから冷間転造に供する請求項1又は2記載のMn−Cu系合金製リングの製造方法。   The method for producing a ring made of Mn-Cu alloy according to claim 1 or 2, wherein the ring material is subjected to solution rolling and then subjected to cold rolling. 所要の大きさのリングとしたものに更に熱処理を行なって該リングに制振性能を付与する請求項1〜3のいずれか一つの項記載のMn−Cu系合金製リングの製造方法。   The manufacturing method of the ring made from Mn-Cu type alloy as described in any one of Claims 1-3 which performs further heat processing to what was made into the ring of a required magnitude | size, and provides damping performance to this ring. Mn−Cu系合金材料が、Mnをベースとし、原子%で、Cuを20±5%、Niを5±3%及びFeを2±1%含有するものである請求項1〜4のいずれか一つの項記載のMn−Cu系合金製リングの製造方法。   5. The Mn—Cu based alloy material is based on Mn and contains, in atomic percent, 20 ± 5% Cu, 5 ± 3% Ni, and 2 ± 1% Fe. The manufacturing method of the ring made from Mn-Cu type alloy as described in one term. Mn−Cu系合金材料が、Mnをベースとし、原子%で、Cuを20±5%、Niを5±3%、Feを2±1%及びAlを2〜5%含有するものである請求項1〜4のいずれか一つの項記載のMn−Cu系合金製リングの製造方法。
The Mn-Cu alloy material is based on Mn and contains, in atomic%, 20 ± 5% Cu, 5 ± 3% Ni, 2 ± 1% Fe, and 2-5% Al. The manufacturing method of the ring made from Mn-Cu type alloy as described in any one of claim | item 1 -4.
JP2005110686A 2005-04-07 2005-04-07 METHOD FOR MANUFACTURING RING MADE OF Mn-Cu ALLOY Pending JP2006289394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005110686A JP2006289394A (en) 2005-04-07 2005-04-07 METHOD FOR MANUFACTURING RING MADE OF Mn-Cu ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005110686A JP2006289394A (en) 2005-04-07 2005-04-07 METHOD FOR MANUFACTURING RING MADE OF Mn-Cu ALLOY

Publications (1)

Publication Number Publication Date
JP2006289394A true JP2006289394A (en) 2006-10-26

Family

ID=37410558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005110686A Pending JP2006289394A (en) 2005-04-07 2005-04-07 METHOD FOR MANUFACTURING RING MADE OF Mn-Cu ALLOY

Country Status (1)

Country Link
JP (1) JP2006289394A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266688A (en) * 2007-04-17 2008-11-06 Daido Steel Co Ltd Mn-cu damping alloy and producing method therefor
FR2952558A1 (en) * 2009-11-19 2011-05-20 Creusot Forge PROCESS FOR PRODUCING A TUBULAR METAL PIECE
CN103350167A (en) * 2013-06-30 2013-10-16 贵州安大航空锻造有限责任公司 Roll forming method of 4340 H steel E-shaped ring forging
CN104148556A (en) * 2014-06-30 2014-11-19 贵州安大航空锻造有限责任公司 Super-plasticity forming method for LC4 aluminum alloy ring part with complex section
CN104826919A (en) * 2015-05-25 2015-08-12 无锡市派克重型铸锻有限公司 Punching method and punch structure used for aluminum alloy forged piece
CN107009094A (en) * 2017-03-23 2017-08-04 中南大学 The integrated preparation technology of the strong high temperature resistant magnesium alloy shell part forging rolling of major diameter superelevation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266688A (en) * 2007-04-17 2008-11-06 Daido Steel Co Ltd Mn-cu damping alloy and producing method therefor
FR2952558A1 (en) * 2009-11-19 2011-05-20 Creusot Forge PROCESS FOR PRODUCING A TUBULAR METAL PIECE
WO2011061444A3 (en) * 2009-11-19 2011-08-18 Creusot Forge Method for manufacturing a tubular metal part
CN103350167A (en) * 2013-06-30 2013-10-16 贵州安大航空锻造有限责任公司 Roll forming method of 4340 H steel E-shaped ring forging
CN103350167B (en) * 2013-06-30 2015-04-22 贵州安大航空锻造有限责任公司 Roll forming method of 4340 H steel E-shaped ring forging
CN104148556A (en) * 2014-06-30 2014-11-19 贵州安大航空锻造有限责任公司 Super-plasticity forming method for LC4 aluminum alloy ring part with complex section
CN104148556B (en) * 2014-06-30 2017-04-05 贵州安大航空锻造有限责任公司 The super plastic forming method of LC4 aluminum alloy complex cross sectional annular parts
CN104826919A (en) * 2015-05-25 2015-08-12 无锡市派克重型铸锻有限公司 Punching method and punch structure used for aluminum alloy forged piece
CN107009094A (en) * 2017-03-23 2017-08-04 中南大学 The integrated preparation technology of the strong high temperature resistant magnesium alloy shell part forging rolling of major diameter superelevation

Similar Documents

Publication Publication Date Title
JP6698940B2 (en) Warm rolling ring forming method for high carbon chrome bearing steel with spherical structure
JP4894855B2 (en) Seamless pipe manufacturing method
JP2006289394A (en) METHOD FOR MANUFACTURING RING MADE OF Mn-Cu ALLOY
CN103350179A (en) Forging forming method of low-pressure turbine shaft made of C250 maraging steel
RU2002135197A (en) METHOD FOR PRODUCING HOMOGENEOUS FINE-GRAIN TITANIUM MATERIAL (OPTIONS)
US8852367B2 (en) Method of production of high-strength hollow bodies from multiphase martensitic steels
CN103350180A (en) Forging forming method of fan shaft made of C250 maraging steel
JP2003230927A (en) Rough shape material for bearing ring reduced in quenching strain and its manufacturing method
CN109079067A (en) High-strength aluminum alloy ring parts rolling forming method
JP5119585B2 (en) Manufacturing method for materials with excellent cold forgeability
JP6575756B2 (en) Method for producing precipitation strengthened stainless steel
US10493517B2 (en) Method for producing a ring with a toothing
WO2015005119A1 (en) METHOD FOR PRODUCING HIGH-Cr STEEL PIPE
JP2000015326A (en) Die for copper hot extrusion and its manufacture
JP2006029543A (en) Wheel supporting bearing device
JP2006291353A (en) Method for heat-treating steel material
JPH07108340A (en) Manufacture of coarse shape material for rolling bearing race
CN107442711A (en) Two kinds of different titanium alloy combination rollings are the method for an annular element
JPWO2019099830A5 (en)
JP2009280869A (en) Method for producing steel product
JP2012200762A (en) Method for manufacturing austenitic stainless steel tube
RU2285736C1 (en) Method of production of articles from high-temperature nickel alloy
TWI568862B (en) Method for manufacturing austenitic alloy steel
CN107442710A (en) Titanium alloy structure bimetal copper-steel ring parts rolling forming method
CN107838343A (en) Titanium alloy rustless steel double-metal ring parts rolling forming method