JP2007107059A - Method for manufacturing base material having excellent cold forgeability - Google Patents

Method for manufacturing base material having excellent cold forgeability Download PDF

Info

Publication number
JP2007107059A
JP2007107059A JP2005300097A JP2005300097A JP2007107059A JP 2007107059 A JP2007107059 A JP 2007107059A JP 2005300097 A JP2005300097 A JP 2005300097A JP 2005300097 A JP2005300097 A JP 2005300097A JP 2007107059 A JP2007107059 A JP 2007107059A
Authority
JP
Japan
Prior art keywords
temperature
forging
annealing
present
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005300097A
Other languages
Japanese (ja)
Other versions
JP5119585B2 (en
Inventor
Juichi Ito
樹一 伊藤
Hiroaki Yoshida
広明 吉田
Yukihiro Isogawa
幸宏 五十川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2005300097A priority Critical patent/JP5119585B2/en
Priority to CN 200610140896 priority patent/CN1947928A/en
Publication of JP2007107059A publication Critical patent/JP2007107059A/en
Application granted granted Critical
Publication of JP5119585B2 publication Critical patent/JP5119585B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a base material which has a reduced cost due to a shortened annealing period of time, and shows high deformability while being cold-forged. <P>SOLUTION: The method for manufacturing the base material comprises the steps of: forging a steel material containing, by mass%, 0.1-0.6% C, at 200°C to 820°C, while imparting a distortion of 0.3 or more to the steel material; and then annealing it at 600°C to 780°C. The steel material further includes 0.03-0.6% Si, 0.1-1.0% Mn, 0.1-1.5% Cr, 0.01-0.5% Mo, 0.01-3% Ni, 0.01-0.5% Al and 0.003-0.03% N, as needed; and still further one or more elements of 0.001-0.01% Ti, 0.0005-0.0020% B and 0.01-0.09% Nb, in some cases. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は冷間鍛造加工の際の変形抵抗が小さく、高い変形能を有する冷間鍛造性に優れた素材の製造方法に関する。   The present invention relates to a method for producing a material having a low deformation resistance during cold forging and a high deformability and excellent cold forgeability.

例えば機械構造部品を製造するに際して、従来にあっては鋼材を熱間鍛造加工(例えば加熱温度は1000〜1200℃)した後、球状化焼きなまし(SA)処理を施し、しかる後冷間鍛造加工して最終製品に近い形状に成形しておき、その後機械加工により仕上げ加工を施して製品としていた。
ここで球状化焼きなまし処理は、パーライトのラメラー組織中の炭化物(セメンタイト)を球状化してこれを細かく分散させるもので、その熱処理のためには長い時間を要する。
ところが従来にあっては通常の球状化焼きなまし処理によっては炭化物が十分に球状化及び分散せず、そのため冷間鍛造加工を高い加工率で行った場合等には加工割れを起こし易い問題が生じていた。
For example, when manufacturing mechanical structural parts, conventionally, steel is hot forged (for example, the heating temperature is 1000 to 1200 ° C.) and then subjected to spheroidizing annealing (SA), followed by cold forging. Then, it was molded into a shape close to the final product, and then finished by machining.
Here, the spheroidizing annealing treatment spheroidizes carbides (cementite) in the lamellar structure of pearlite and disperses them finely, and it takes a long time for the heat treatment.
However, conventional spheroidizing annealing does not sufficiently spheroidize and disperse carbides, and therefore, when cold forging is performed at a high processing rate, there is a problem that processing cracks are likely to occur. It was.

冷間鍛造加工時にこのような割れが起こるのは、炭化物が十分に球状化せずにパーライトのラメラーが残り、その細長い大きなラメラーにひずみが集中してこれが割れの起点となることによる。
その対策として、球状化焼きなまし処理の際の徐冷時の冷却速度を遅くするなどによって対応しているが、この場合球状化焼きなまし処理に要する時間が更に長時間となり、このことが製造コストを高める大きな要因となっていた。
The reason why such a crack occurs during cold forging is that the carbide does not spheroidize sufficiently and pearlite lamellar remains, and strain concentrates on the long and narrow lamellar, which becomes the starting point of the crack.
As countermeasures, it is possible to reduce the cooling rate during slow cooling during the spheroidizing annealing process. In this case, the time required for the spheroidizing annealing process becomes longer, which increases the manufacturing cost. It was a big factor.

本発明はこのような課題を解決するために案出されたものである。
尚本発明に対する先行技術として下記特許文献1に開示されたものがある。
但しこの特許文献1に開示のものは熱間鍛造温度が800℃以上等製造条件が異なり、本発明のような組織を得ることはできない。
The present invention has been devised to solve such problems.
As a prior art for the present invention, there is one disclosed in Patent Document 1 below.
However, the one disclosed in Patent Document 1 is different in manufacturing conditions such as a hot forging temperature of 800 ° C. or higher, and a structure as in the present invention cannot be obtained.

特開平6−299241号公報JP-A-6-299241

本発明は以上のような事情を背景とし、焼きなまし処理に要する熱処理時間を簡略化ないし短縮化し得てコストを低減でき、しかも冷間鍛造加工時の変形能力の高い、冷間鍛造性に優れた素材の製造方法を提供することを目的としてなされたものである。   In the background of the above circumstances, the present invention can simplify or shorten the heat treatment time required for the annealing treatment to reduce the cost, and has high deformability at the time of cold forging and excellent cold forgeability. It was made for the purpose of providing the manufacturing method of a raw material.

而して請求項1の製造方法は、質量%でC:0.1〜0.6%を含有した鋼材を200℃以上820℃以下の温度で且つひずみ0.3以上で鍛造加工し、その後600℃以上780℃以下の温度で焼きなましすることを特徴とする。   Thus, the manufacturing method of claim 1 is forging a steel material containing C: 0.1 to 0.6% by mass at a temperature of 200 ° C. or higher and 820 ° C. or lower and a strain of 0.3 or higher, and then 600 ° C. or higher and 780 ° C. or lower. It is characterized by annealing at a temperature of

請求項2の製造方法は、質量%でC:0.1〜0.6%,Si:0.03〜0.6%,Mn:0.1〜1.0%,Cr:0.1〜1.5%,Mo:0.01〜0.5%,Ni:0.01〜3%,Al:0.01〜0.5%,N:0.003〜0.03%を含有した鋼材を200℃以上820℃以下の温度で且つひずみ0.3以上で鍛造加工し、その後600℃以上780℃以下の温度で焼きなましすることを特徴とする。   The manufacturing method of claim 2 is C: 0.1-0.6%, Si: 0.03-0.6%, Mn: 0.1-1.0%, Cr: 0.1-1.5%, Mo: 0.01-0.5%, Ni: 0.01- 3%, Al: 0.01-0.5%, N: 0.003-0.03% steel is forged at a temperature of 200 ° C to 820 ° C and strain of 0.3 or more, and then annealed at a temperature of 600 ° C to 780 ° C It is characterized by doing.

請求項3の製造方法は、請求項2の各成分に加えて更に質量%でTi:0.001〜0.01%,B:0.0005〜0.0020%,Nb:0.01〜0.09%の1種若しくは2種以上を含有した鋼材を200℃以上820℃以下の温度で且つひずみ0.3以上で鍛造加工し、その後600℃以上780℃以下の温度で焼きなましすることを特徴とする。   The manufacturing method according to claim 3 contains one or more of Ti: 0.001 to 0.01%, B: 0.0005 to 0.0020%, Nb: 0.01 to 0.09% in addition to each component of Claim 2 in mass%. The forged steel material is forged at a temperature of 200 ° C. or higher and 820 ° C. or lower and a strain of 0.3 or higher, and then annealed at a temperature of 600 ° C. or higher and 780 ° C. or lower.

発明の作用・効果Effects and effects of the invention

以上のように本発明はC:0.1〜0.6%含有した鋼材を200℃以上820℃以下の温度で且つひずみ0.3以上で鍛造加工し、その後600℃以上780℃以下の温度で焼きなまし処理するものである。   As described above, the present invention involves forging a steel material containing C: 0.1 to 0.6% at a temperature of 200 ° C. or higher and 820 ° C. or lower and a strain of 0.3 or higher, and thereafter annealing at a temperature of 600 ° C. or higher and 780 ° C. or lower. is there.

従来の熱間鍛造後に焼きなまし処理する製造方法の場合、図1の(イ)の模式図に示しているように、熱間鍛造加工によってオーステナイト粒は一旦は扁平に潰れるものの、その後再結晶によって細かい粒に分かれた後粒成長し、大きな丸いオーステナイト粒10となる。
そしてその後の空冷によって変態しフェライト・パーライト粒12となる。
図中14はフェライトを、また16はパーライトを示している。
In the case of a conventional manufacturing method in which annealing is performed after hot forging, the austenite grains are once flattened by hot forging as shown in the schematic diagram of FIG. The grains grow after being divided into grains and become large round austenite grains 10.
And it transforms by the subsequent air cooling and becomes ferrite pearlite grains 12.
In the figure, 14 indicates ferrite and 16 indicates pearlite.

その後において球状化焼きなまし処理(SA処理)を施すと、パーライト16のラメラーを形成しているセメンタイトが球状化して球状炭化物18を形成する。
ところが従来の製造方法においては、この球状化焼きなまし処理によってセメンタイトが十分に球状化して分散せず、このことが冷間鍛造用の素材に十分な変形能を付与できず、冷間鍛造時の割れの原因となっていた。
Thereafter, when spheroidizing annealing (SA treatment) is performed, cementite forming the lamellar of pearlite 16 is spheroidized to form spherical carbides 18.
However, in the conventional manufacturing method, the cementite is not sufficiently spheroidized and dispersed by this spheroidizing annealing treatment, which does not give sufficient deformability to the material for cold forging, and cracks during cold forging. It was the cause.

これに対し本発明に従って鋼材をオーステナイトの再結晶温度の820℃以下の温度で、望ましくは780℃以下の温度で鍛造加工した場合、図1(ロ)に示しているようにオーステナイト粒は先ず780℃以下の温度となることによってフェライト14とオーステナイト20とから成る粒22となり、その後鍛造加工により潰れて扁平な粒24となる。
このときフェライト14,オーステナイト20ともに扁平な形状となる。
On the other hand, when the steel material is forged at a temperature of 820 ° C. or less, preferably 780 ° C. or less, which is the recrystallization temperature of austenite according to the present invention, as shown in FIG. When the temperature is not higher than ° C., grains 22 composed of ferrite 14 and austenite 20 are formed, and then crushed by forging to become flat grains 24.
At this time, both the ferrite 14 and the austenite 20 are flat.

従来の製造方法と異なって本発明の製造方法では、このようにして扁平となった粒24はその後に再結晶を生じないため、その扁平な形状をそのまま保持する。
この扁平となった粒24は、その後の空冷によってオーステナイト20がパーライト26に変態する。
図において28はその空冷によって変態したパーライト26とフェライト14とから成る扁平なパーライト変態後の粒を表している。
In the manufacturing method of the present invention, unlike the conventional manufacturing method, the flattened grains 24 are not recrystallized thereafter, and thus the flat shape is maintained as it is.
In the flattened grains 24, the austenite 20 is transformed into pearlite 26 by the subsequent air cooling.
In the figure, reference numeral 28 denotes a grain after flat pearlite transformation comprising pearlite 26 and ferrite 14 transformed by air cooling.

このとき、変態後の扁平な粒28は、その形状が扁平形状となっていることによって図に示しているように変態後のパーライト26のラメラーの長さが短いものとなる。
加えてフェライト14が扁平な形状をなしていてラメラーを分断しているため、そのフェライト14による分断によってラメラーの長さはより短くなる。
そのため、その後において焼きなまし処理を行ったとき、ラメラーが短いことによってラメラー組織におけるセメンタイトが良好に球状化して分散し、ラメラー組織をあまり残さない軟らかい粒となって変形抵抗が小さく変形能の高い素材を与える。
At this time, the flat particle 28 after transformation has a short lamellar length of the pearlite 26 after transformation as shown in FIG.
In addition, since the ferrite 14 has a flat shape and divides the lamellar, the length of the lamellar becomes shorter due to the division by the ferrite 14.
Therefore, when the annealing process is performed after that, the cementite in the lamellar structure is well spheroidized and dispersed due to the short lamellar structure, and it becomes a soft grain that does not leave much lamellar structure, resulting in a material with low deformation resistance and high deformability. give.

以上は鍛造加工をフェライトが析出する780℃以下の温度で行った場合であるが、これよりも高い温度であってもオーステナイトの再結晶温度の820℃以下での鍛造加工であれば、その鍛造加工によってオーステナイト粒が扁平形状を保ち、その状態でその後の冷却により変態を生じるため、同様にラメラーの長さが短いものとなって、焼きなまし処理の際にセメンタイトが良好に球状化し、素材の変形抵抗が小となって高い変形能を与える。   The above is the case where the forging process is performed at a temperature of 780 ° C. or less at which ferrite precipitates, but even if the forging process is performed at a recrystallization temperature of 820 ° C. or less at an austenite recrystallization temperature, the forging Since the austenite grains keep a flat shape by processing and transformation is caused by subsequent cooling in that state, the length of the lamellar is similarly shortened, and the cementite is well spheroidized during the annealing treatment, and the material is deformed. Low resistance gives high deformability.

かかる本発明によれば、焼きなまし処理の時間を短くした場合であっても冷間鍛造用の素材に対して高い変形能を与えることができ、素材製造のためのコストを低減することができる。
或いはまた焼きなまし処理の時間を長くした場合には、従来に増して高い変形能を冷間鍛造用の素材に与えることができる。
According to the present invention, even when the annealing time is shortened, a high deformability can be imparted to the material for cold forging, and the cost for manufacturing the material can be reduced.
Alternatively, when the annealing time is increased, higher deformability can be imparted to the material for cold forging than in the prior art.

尚、本発明においては必要に応じて鋼材にSi,Mn,Cr,Mo,Ni,Al,N、或いはまた更にTi,B,Nbの1種若しくは2種以上を、それぞれ上記の含有量で含有させておくことができる(請求項2,請求項3)。   In the present invention, if necessary, the steel material contains one or more of Si, Mn, Cr, Mo, Ni, Al, N, or even Ti, B, Nb at the above-mentioned contents. (Claim 2, Claim 3).

次に本発明における各化学成分や製造条件の各限定理由について以下に説明する。
C:0.1〜0.6%
冷間鍛造用の素材の組織がフェライト・パーライト組織となるようにC量を0.1〜0.6とする必要がある。
Next, each chemical component and each reason for limitation of manufacturing conditions in the present invention will be described below.
C: 0.1-0.6%
The amount of C needs to be 0.1 to 0.6 so that the structure of the material for cold forging becomes a ferrite pearlite structure.

Si:0.03〜0.6%
Siはフェライト層の強度確保のために0.03%以上含有させる必要がある。
ただし0.6%を超えて含有させると塑性加工性が低下するので上限を0.6%とする。
Si: 0.03-0.6%
Si needs to be contained by 0.03% or more in order to ensure the strength of the ferrite layer.
However, if the content exceeds 0.6%, the plastic workability deteriorates, so the upper limit is made 0.6%.

Mn:0.1〜1.0%
Mnはパーライト層のラメラーを微細化させるために0.1%以上含有させる。
ただし1.0%を超えて含有させると塑性加工性が低下するため上限を1.0%とする。
Mn: 0.1-1.0%
Mn is contained in an amount of 0.1% or more to make the pearlite layer lamellar fine.
However, if the content exceeds 1.0%, the plastic workability deteriorates, so the upper limit is made 1.0%.

Cr:0.1〜1.5%
Crは0.1%以上含有させることで強度を確保することができる。
ただし1.5%を超えて含有させると塑性加工性が低下するので上限を1.5%とする。
Cr: 0.1-1.5%
The strength can be ensured by adding 0.1% or more of Cr.
However, if the content exceeds 1.5%, the plastic workability deteriorates, so the upper limit is made 1.5%.

Mo:0.01〜0.5%
Moは0.01%以上含有させることで強度を確保することができる。
ただし0.5%を超えて含有させると塑性加工性が低下するため上限を0.5%とする。
Mo: 0.01-0.5%
The strength can be secured by containing Mo in an amount of 0.01% or more.
However, if the content exceeds 0.5%, the plastic workability deteriorates, so the upper limit is made 0.5%.

Ni:0.01〜3%
Niは0.01%以上含有させることで強度を確保することができる。
ただし3%を超えて含有させると塑性加工性が低下するので上限を3%とする。
Ni: 0.01 to 3%
Ni can be ensured in strength by containing 0.01% or more.
However, if the content exceeds 3%, the plastic workability deteriorates, so the upper limit is made 3%.

Al:0.01〜0.5%
Alは0.01%以上含有させることでAlNによる結晶粒微細化の働きを行わせることができる。
ただしその効果は0.5%で飽和するので上限を0.5%とする。
Al: 0.01-0.5%
By containing Al in an amount of 0.01% or more, the function of crystal grain refinement by AlN can be performed.
However, the effect is saturated at 0.5%, so the upper limit is 0.5%.

N:0.003〜0.03%
AlNによる結晶粒微細化の働きのため0.003%以上含有させる。
一方0.03%以上含有させようとしても含有させることが困難のため、その上限を0.03%とする。
N: 0.003-0.03%
It is contained in an amount of 0.003% or more for the purpose of grain refinement by AlN.
On the other hand, since it is difficult to contain 0.03% or more, the upper limit is made 0.03%.

Ti:0.001〜0.01%
Tiは0.001以上含有させることで結晶粒を微細化することができる。
ただしその効果は0.01%で飽和するので上限を0.01%とする。
Ti: 0.001 to 0.01%
By containing 0.001 or more Ti, crystal grains can be refined.
However, the effect is saturated at 0.01%, so the upper limit is made 0.01%.

B:0.0005〜0.0020%
Bは0.0005%以上含有させることで結晶粒を微細化することができる。
ただしその効果は0.0020%で飽和するため上限を0.0020%とする。
B: 0.0005-0.0020%
By containing B in an amount of 0.0005% or more, the crystal grains can be refined.
However, the effect is saturated at 0.0020%, so the upper limit is made 0.0020%.

Nb:0.01〜0.09%
Nbは0.01%以上含有させることで結晶粒を微細化することができる。
ただしその効果は0.09%で飽和するので上限を0.09%とする。
Nb: 0.01-0.09%
By containing Nb in an amount of 0.01% or more, the crystal grains can be refined.
However, the effect is saturated at 0.09%, so the upper limit is set to 0.09%.

鍛造温度820℃以下且つ200℃以上:
オーステナイトを鍛造時に再結晶させず細長い形態とするため、820℃以下で鍛造を行う必要がある。好ましくはオーステナイト組織を分断するフェライトが存在する780℃以下の温度で鍛造を行う。
本発明では820℃以下の温度で鍛造を行うことで効果を発揮するが、その鍛造加工時の温度が低い場合には変形抵抗が高くなるため、加工しにくくなる温度の200℃以上の温度で鍛造を行う。
Forging temperature 820 ° C. or lower and 200 ° C. or higher:
It is necessary to forge at 820 ° C. or less in order to make austenite into an elongated form without being recrystallized during forging. Preferably, forging is performed at a temperature of 780 ° C. or lower where ferrite that divides the austenite structure is present.
In the present invention, the effect is exhibited by performing forging at a temperature of 820 ° C. or less. However, when the temperature during the forging process is low, the deformation resistance becomes high, so the temperature becomes 200 ° C. or more, which is a difficult temperature. Forging.

ひずみ0.3以上
パーライト組織のラメラーが分断されて炭化物が球状化し易くなるようにするため、0.3以上のひずみが必要である。ここでひずみは真ひずみで、下記により定義される。
ひずみ=絶対値|ln(加工後の長さ/加工前の長さ)|
Strain of 0.3 or more Strain of 0.3 or more is necessary so that the lamellar of the pearlite structure is divided and the carbide is easily spheroidized. Here, the strain is a true strain and is defined by the following.
Strain = absolute value | ln (length after processing / length before processing) |

600℃以上780℃以下での焼なまし
820℃以下で塑性加工されているため、加工ひずみが残留して硬い。この加工ひずみを除去するためには600℃以上に加熱する必要がある。
一方焼なまし温度が780℃よりも高い場合には、球状化した炭化物がオーステナイトに固溶する。組織がオーステナイト単層とならないようにするために本発明では780℃以下の温度で焼なましを行う。
Annealing at 600 ° C. or higher and 780 ° C. or lower Since plastic processing is performed at 820 ° C. or lower, processing strain remains and is hard. In order to remove this processing strain, it is necessary to heat to 600 ° C. or higher.
On the other hand, when the annealing temperature is higher than 780 ° C., the spheroidized carbide is dissolved in austenite. In the present invention, annealing is performed at a temperature of 780 ° C. or lower in order to prevent the structure from becoming an austenite monolayer.

次に本発明の実施形態を以下に具体的に説明する。
表1に示す化学組成の鋼材にて鍛造により直径33mmの丸棒を製造した。
次いでφ24×50mmの丸棒試験片に機械加工後、減面率20%(ひずみ0.2),30%(ひずみ0.4),65%(ひずみ1.1)にて表2に示す各種鍛造温度で前方押出(鍛造加工)を実施した。
その後図2に示す条件で焼なまし処理を行い、引張り試験片に加工した。そしてその試験片を用いて引張り試験を実施した。
Next, embodiments of the present invention will be specifically described below.
A round bar having a diameter of 33 mm was manufactured by forging with a steel material having the chemical composition shown in Table 1.
Next, after machining into a round bar test piece of φ24 × 50 mm, various reductions shown in Table 2 at a surface reduction ratio of 20% (strain 0.2), 30% (strain 0.4), and 65% (strain 1.1). Forward extrusion (forging) was performed at the forging temperature.
Thereafter, an annealing treatment was performed under the conditions shown in FIG. 2 and processed into a tensile test piece. And the tension test was implemented using the test piece.

Figure 2007107059
Figure 2007107059

尚、図2(イ)は押出材を表2に示す各焼なまし温度まで昇温させて3時間保持し、その後空冷を行うもので、表2中LAで示してある。
一方図2(ロ)は、押出材を表2に示す各種焼なまし温度まで昇温させた後その温度に5時間保持し、その後650℃まで1時間当り20℃の冷却速度で徐冷してその後空冷を行うもので、表2中SAで表してある。
表2には鍛造温度,焼なまし処理のパターン,焼なまし温度等と併せて引張り試験の結果、詳しくは引張り強さと絞り値が併せて示してある。
FIG. 2 (a) shows the extrudate raised to the respective annealing temperatures shown in Table 2, held for 3 hours, and then air-cooled, indicated by LA in Table 2.
On the other hand, FIG. 2 (b) shows that the extruded material was heated to various annealing temperatures shown in Table 2, held at that temperature for 5 hours, and then gradually cooled to 650 ° C. at a cooling rate of 20 ° C. per hour. Then, air cooling is performed, which is indicated by SA in Table 2.
Table 2 shows the results of the tensile test together with the forging temperature, the pattern of the annealing treatment, the annealing temperature, and the tensile strength and the drawing value in detail.

Figure 2007107059
Figure 2007107059

表2において、比較例Aは鍛造温度が1100℃で本発明の上限値である820℃よりも高く、そのため図2(イ)に示すパターンの焼なまし処理(LA)を鍛造加工後に施しても、引張り強さが高い値を保持するとともに絞り値が低く、十分な変形能を有していない。
また比較例Bでは同じく鍛造温度が1150℃と高く、そのためその後において焼なまし処理を施しても引張り強さが高い値を保持するとともに絞り値が低く、変形能が不十分である。
比較例Cは比較例Bと同じ鋼5を用いて比較例Bと同じ1150℃で鍛造を実施し、その後に図2(ロ)のSAの焼なまし処理を施しているが、同様に引張り強さの値が高くまた絞り値も低い値であって、変形能が不十分である。
In Table 2, Comparative Example A has a forging temperature of 1100 ° C., which is higher than the upper limit value of 820 ° C. of the present invention. Therefore, the annealing treatment (LA) of the pattern shown in FIG. However, the tensile strength is kept high and the squeezing value is low, so that it does not have sufficient deformability.
In Comparative Example B, the forging temperature is as high as 1150 ° C., so that even if annealing is performed thereafter, the tensile strength remains high and the drawing value is low, so that the deformability is insufficient.
In Comparative Example C, the same steel 5 as in Comparative Example B was used for forging at the same 1150 ° C. as in Comparative Example B, and thereafter the SA annealing treatment of FIG. The strength value is high and the aperture value is low, and the deformability is insufficient.

比較例D,Eでは比較例Cと同じ鋼5を用い、また鍛造温度を本発明の範囲内の温度としているが、その際の加工ひずみが本発明の下限値である0.3よりも小さいために、その後において図2(イ)のLA処理、(ロ)のSA処理を施しても引張り強さの値が高く、また絞り値が低く変形能が不十分である。
一方比較例Fは同じ鋼5を用い、且つ本発明で規定するひずみ0.3より大きいひずみを加えて鍛造加工を行っているにも拘わらず、その後の焼なまし温度が本発明の上限値である780℃を超えて高い温度であるため、引張り強さ,絞りの値がともに悪く、変形能が不十分である。
他方比較例Gでは、本発明の鍛造加工,焼なましの条件を満たしているものの、用いた鋼8のC含有量が本発明の上限値である0.6%よりも高いため、引張り強さ,絞り値ともに悪く、変形能が不十分である。
In Comparative Examples D and E, the same steel 5 as in Comparative Example C is used, and the forging temperature is set to a temperature within the range of the present invention, but the processing strain at that time is smaller than 0.3 which is the lower limit value of the present invention. Therefore, even if the LA treatment in FIG. 2A and the SA treatment in FIG. 2B are performed thereafter, the tensile strength value is high, the squeezing value is low, and the deformability is insufficient.
On the other hand, although Comparative Example F uses the same steel 5 and performs forging by applying a strain larger than the strain 0.3 specified in the present invention, the subsequent annealing temperature is the upper limit of the present invention. Since the temperature is higher than 780 ° C., both the tensile strength and the drawing value are poor, and the deformability is insufficient.
On the other hand, in Comparative Example G, although the forging and annealing conditions of the present invention are satisfied, the C content of the steel 8 used is higher than the upper limit of 0.6% of the present invention, so that the tensile strength is high. Both the aperture value is bad and the deformability is insufficient.

これに対し本発明例のものは何れも、引張り強さ,絞りの値が良好で冷間鍛造加工時の変形能の優れたものである。
本発明例において、LA処理したものとSA処理したものとの比較から明らかなように、SA処理したものはLA処理したものに比べて引張り強さが低い値を、また絞り値が高い値を示しており、LA処理したものに比べて高い変形能を示している。
即ち、本発明では従来の球状化焼なまし処理であるSA処理よりも低い温度で且つ処理時間を短くした場合でも、冷間鍛造用の素材に対して十分な変形能を付与することができるとともに、かかるLA処理に替えてSA処理を施した場合には、更に優れた冷間鍛造性を素材に付与することができる。
On the other hand, all of the examples of the present invention have excellent tensile strength and drawing values and excellent deformability during cold forging.
In the example of the present invention, as apparent from the comparison between the LA-treated and SA-treated, the SA-treated one has a lower tensile strength than the LA-treated one, and a higher aperture value. It shows a high deformability compared to that treated with LA.
That is, in the present invention, sufficient deformability can be imparted to the material for cold forging even when the processing time is shortened at a temperature lower than that of the SA treatment which is a conventional spheroidizing annealing treatment. At the same time, when the SA treatment is performed instead of the LA treatment, further excellent cold forgeability can be imparted to the material.

以上本発明の実施形態を詳述したがこれはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。   Although the embodiment of the present invention has been described in detail above, this is merely an example, and the present invention can be implemented in variously modified forms without departing from the spirit of the present invention.

本発明の作用を比較例と比較して説明する模式図である。It is a schematic diagram explaining the effect | action of this invention compared with a comparative example. 本発明の一実施形態における焼きなまし処理の内容を表す図である。It is a figure showing the content of the annealing process in one Embodiment of this invention.

Claims (3)

質量%でC:0.1〜0.6%を含有した鋼材を200℃以上820℃以下の温度で且つひずみ0.3以上で鍛造加工し、その後600℃以上780℃以下の温度で焼きなましすることを特徴とする優れた冷間鍛造性を有する素材の製造方法。   A steel material containing 0.1% to 0.6% C by mass% is forged at a temperature of 200 ° C or higher and 820 ° C or lower and strain of 0.3 or higher, and then annealed at a temperature of 600 ° C or higher and 780 ° C or lower. A method for producing a material having cold forgeability. 質量%でC:0.1〜0.6%,Si:0.03〜0.6%,Mn:0.1〜1.0%,Cr:0.1〜1.5%,Mo:0.01〜0.5%,Ni:0.01〜3%,Al:0.01〜0.5%,N:0.003〜0.03%を含有した鋼材を200℃以上820℃以下の温度で且つひずみ0.3以上で鍛造加工し、その後600℃以上780℃以下の温度で焼きなましすることを特徴とする優れた冷間鍛造性を有する素材の製造方法。   C: 0.1-0.6%, Si: 0.03-0.6%, Mn: 0.1-1.0%, Cr: 0.1-1.5%, Mo: 0.01-0.5%, Ni: 0.01-3%, Al: 0.01-0.5 %, N: 0.003 to 0.03% steel material is forged at a temperature of 200 ° C or higher and 820 ° C or lower and strain of 0.3 or higher, and then annealed at a temperature of 600 ° C or higher and 780 ° C or lower. A method for producing a material having cold forgeability. 請求項2の各成分に加えて更に質量%でTi:0.001〜0.01%,B:0.0005〜0.0020%,Nb:0.01〜0.09%の1種若しくは2種以上を含有した鋼材を200℃以上820℃以下の温度で且つひずみ0.3以上で鍛造加工し、その後600℃以上780℃以下の温度で焼きなましすることを特徴とする優れた冷間鍛造性を有する素材の製造方法。   A steel material containing one or more of Ti: 0.001 to 0.01%, B: 0.0005 to 0.0020%, and Nb: 0.01 to 0.09% in addition to each component of claim 2 at 200% to 820 ° C. A method for producing a material having excellent cold forgeability, characterized by forging at a temperature of the following and at a strain of 0.3 or more and then annealing at a temperature of 600 ° C to 780 ° C.
JP2005300097A 2005-10-14 2005-10-14 Manufacturing method for materials with excellent cold forgeability Expired - Fee Related JP5119585B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005300097A JP5119585B2 (en) 2005-10-14 2005-10-14 Manufacturing method for materials with excellent cold forgeability
CN 200610140896 CN1947928A (en) 2005-10-14 2006-10-13 Manufacturing method of block with perfect cold-forging property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005300097A JP5119585B2 (en) 2005-10-14 2005-10-14 Manufacturing method for materials with excellent cold forgeability

Publications (2)

Publication Number Publication Date
JP2007107059A true JP2007107059A (en) 2007-04-26
JP5119585B2 JP5119585B2 (en) 2013-01-16

Family

ID=38017608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005300097A Expired - Fee Related JP5119585B2 (en) 2005-10-14 2005-10-14 Manufacturing method for materials with excellent cold forgeability

Country Status (2)

Country Link
JP (1) JP5119585B2 (en)
CN (1) CN1947928A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174004A (en) * 2008-01-24 2009-08-06 Nippon Steel Corp Middle carbon chromium-molybdenum sttel for machine structure, and production method therefor
KR101043856B1 (en) 2008-10-14 2011-06-22 현대다이모스(주) Chromium alloy steel having superior cold forging formability for automobile and manufacturing method of differential gear using the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108425067A (en) * 2018-05-09 2018-08-21 舞阳钢铁有限责任公司 The big high-quality carbon mould steel plate of thickness and its production method
CN110977357B (en) * 2019-12-25 2020-09-04 台州浩尔工业有限公司 Bell-shaped shell for universal joint and processing technology
CN112853211B (en) * 2021-01-05 2022-04-22 江阴兴澄特种钢铁有限公司 Cold forging steel for universal joint fork of passenger vehicle and manufacturing method thereof
CN115478230A (en) * 2021-05-31 2022-12-16 宝山钢铁股份有限公司 Cold-forged gear steel and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5180613A (en) * 1975-01-11 1976-07-14 Kobe Steel Ltd Kyodo jinseinosuguretatanzohinnoseizohoho
JPS55126337A (en) * 1979-03-17 1980-09-30 Kobe Steel Ltd Warm forging method of cup-form member
JPS60135519A (en) * 1983-12-23 1985-07-18 Honda Motor Co Ltd Production of blank material for cold forging
JPS63162852A (en) * 1986-12-25 1988-07-06 Musashi Seimitsu Ind Co Ltd Production of forged camshaft
JPH07305139A (en) * 1994-05-09 1995-11-21 Nippon Steel Corp Non-heat treated machine parts and production thereof
JPH1017935A (en) * 1996-06-28 1998-01-20 Kawasaki Steel Corp Production of induction hardened parts
JP2000015379A (en) * 1998-07-02 2000-01-18 Daido Steel Co Ltd Forging method of high carbon steel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5180613A (en) * 1975-01-11 1976-07-14 Kobe Steel Ltd Kyodo jinseinosuguretatanzohinnoseizohoho
JPS55126337A (en) * 1979-03-17 1980-09-30 Kobe Steel Ltd Warm forging method of cup-form member
JPS60135519A (en) * 1983-12-23 1985-07-18 Honda Motor Co Ltd Production of blank material for cold forging
JPS63162852A (en) * 1986-12-25 1988-07-06 Musashi Seimitsu Ind Co Ltd Production of forged camshaft
JPH07305139A (en) * 1994-05-09 1995-11-21 Nippon Steel Corp Non-heat treated machine parts and production thereof
JPH1017935A (en) * 1996-06-28 1998-01-20 Kawasaki Steel Corp Production of induction hardened parts
JP2000015379A (en) * 1998-07-02 2000-01-18 Daido Steel Co Ltd Forging method of high carbon steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174004A (en) * 2008-01-24 2009-08-06 Nippon Steel Corp Middle carbon chromium-molybdenum sttel for machine structure, and production method therefor
KR101043856B1 (en) 2008-10-14 2011-06-22 현대다이모스(주) Chromium alloy steel having superior cold forging formability for automobile and manufacturing method of differential gear using the same

Also Published As

Publication number Publication date
CN1947928A (en) 2007-04-18
JP5119585B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
TWI606124B (en) Steel for mechanical structure for cold room processing and manufacturing method thereof
TW201402837A (en) Steel for mechanical structure for cold working, and method for manufacturing same
JP5119585B2 (en) Manufacturing method for materials with excellent cold forgeability
JP2009275250A (en) Steel wire rod excellent in cold-workability, and producing method thereof
JP2016194100A (en) Steel wire for machine structural component
TWI595101B (en) Cold forging and quenching and tempering after the delay breaking resistance of the wire with excellent bolts, and bolts
JP2005163123A (en) Method for producing tool steel and plastic-molding die steel
JP2006289394A (en) METHOD FOR MANUFACTURING RING MADE OF Mn-Cu ALLOY
CN109628713B (en) Spheroidizing annealing method of low-carbon steel
JP6484086B2 (en) Method for producing tool steel castings
JP2002363641A (en) Method for spheroidizing carbon steel by using ecap method
TWI465586B (en) Method for manufacturing low yield ratio steel material
JP6467154B2 (en) Manufacturing method of high strength and high ductility aluminum alloy sheet
JP6108924B2 (en) Manufacturing method of steel for cold forging
KR20130128811A (en) Forging process of fine grain steel
TW202221148A (en) Dual-phase steel wire rod and method of making the same
JP4215760B2 (en) Manufacturing method for medium and high carbon steel sheet
WO2022210124A1 (en) Steel wire for machine structural component and manufacturing method therefor
WO2022210125A1 (en) Steel wire for mechanical structural component and manufacturing method therefor
JP2022158883A (en) Steel wire for machine structural component and its manufacturing method
TWI838077B (en) Alloy steel and method of manufacturing the same
JP2022158882A (en) Steel wire for machine structural component and its manufacturing method
TWI806526B (en) Steel wire for mechanical structural parts and manufacturing method thereof
CN109593929B (en) Spheroidizing annealing method of cold forging steel
TWI635189B (en) Method for producing steel and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees