JP6484086B2 - Method for producing tool steel castings - Google Patents

Method for producing tool steel castings Download PDF

Info

Publication number
JP6484086B2
JP6484086B2 JP2015073143A JP2015073143A JP6484086B2 JP 6484086 B2 JP6484086 B2 JP 6484086B2 JP 2015073143 A JP2015073143 A JP 2015073143A JP 2015073143 A JP2015073143 A JP 2015073143A JP 6484086 B2 JP6484086 B2 JP 6484086B2
Authority
JP
Japan
Prior art keywords
hardness
heat treatment
carbide
tool steel
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015073143A
Other languages
Japanese (ja)
Other versions
JP2016191138A (en
JP2016191138A5 (en
Inventor
菅野 利猛
利猛 菅野
弘典 丹羽
弘典 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimura Chuzosho Co Ltd
Original Assignee
Kimura Chuzosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimura Chuzosho Co Ltd filed Critical Kimura Chuzosho Co Ltd
Priority to JP2015073143A priority Critical patent/JP6484086B2/en
Publication of JP2016191138A publication Critical patent/JP2016191138A/en
Publication of JP2016191138A5 publication Critical patent/JP2016191138A5/en
Application granted granted Critical
Publication of JP6484086B2 publication Critical patent/JP6484086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

本発明は、冷間工具、プレス金型用素材、熱間プレス金型用素材、鍛造用金型素材等に使用可能な工具鋼鋳鋼品の製造方法に関する。   The present invention relates to a method for producing a tool steel cast steel product that can be used for cold tools, press die materials, hot press die materials, forging die materials, and the like.

従来のプレス金型などには冷間工具鋼としてSKD11が用いられる。一般的にSKD11はHRC60±2程度に焼入れされ、鍛造を行うことで炭化物を分解・分散させるために溶接性が良く、溶接時に割れが発生することは少ない。また、焼き入れ時にも割れることがない。   For conventional press dies, SKD11 is used as cold tool steel. In general, SKD11 is quenched to about HRC 60 ± 2 and decomposes and disperses carbides by forging, so that weldability is good, and cracks are less likely to occur during welding. Moreover, it does not crack during quenching.

一方、例えば、冷間工具鋼用鋳鋼の先行技術としては、特許文献1に記載の「鋳物製冷間工具およびその製造方法」が知られている。この特許文献1では、SKD11ベースの成分に、NbやW,Niを含んだ成分構成を採用する。鍛造にて製造される冷間工具を鋳造で製造することにより、鍛造では不可能な複雑形状品の製造、加工時の歩留り向上を図ることができる。   On the other hand, for example, as a prior art of cast steel for cold tool steel, “Cast Cast Cold Tool and its Manufacturing Method” described in Patent Document 1 is known. In this patent document 1, the component structure which contains Nb, W, and Ni in the component of SKD11 base is employ | adopted. By producing a cold tool produced by forging by casting, it is possible to produce a complex shape product that cannot be produced by forging and improve the yield during processing.

冷間工具鋼を鋳造品で製造しようとすると、図9(a)に示すように、鍛造品では炭化物が分散しているが、鋳造品は、同図(b)に示すように、炭化物が網目状に晶出してしまう。鋳造品と鍛造品の差は炭化物の分散度合の他にも、焼入れや溶接時の割れやすさの差の問題がある。鋳鋼品は鍛造品と異なり、粒界に晶出する初析フェライトや初析セメンタイトの跡を完全に熱処理で取り去ることはできない。このため、パーライトをより完全に粒状化させないと、焼入れ時や溶接時の割れを防止することはできない。このため、パーライトを完全に粒状化させられる本成分に合った熱処理方法を開発する必要がある。   When trying to manufacture cold tool steel with a cast product, as shown in FIG. 9 (a), carbide is dispersed in the forged product, but as shown in FIG. 9 (b), the cast product contains carbide. It will crystallize in a network. The difference between the cast product and the forged product is not only the degree of dispersion of the carbide but also the problem of the difference in cracking at the time of quenching and welding. Unlike forged products, cast steel products cannot completely remove the traces of pro-eutectoid ferrite and pro-eutectoid cementite crystallized at grain boundaries by heat treatment. For this reason, unless pearlite is granulated more completely, cracking during quenching or welding cannot be prevented. For this reason, it is necessary to develop a heat treatment method suitable for this component that can completely granulate pearlite.

従来の最も一般的な熱処理方法は、図10に示すように、約950℃まで昇温し、これを急冷することにより、元素が再び粒界などに凝集するのを防止する目的で固溶化処理という熱処理を行い、その後軟化及び微細な組織にすることを目的として、850℃付近で完全焼なましを行い、760〜700℃の間にパーライトを球状化させる球状化焼なましを行う。このように従来の一般的な熱処理では、熱処理温度が950℃と高く、また熱処理総時間も約44時間と長い。   As shown in FIG. 10, the most common conventional heat treatment method is a solution treatment for the purpose of preventing elements from agglomerating again at grain boundaries by raising the temperature to about 950 ° C. and rapidly cooling it. Then, for the purpose of softening and forming a fine structure, complete annealing is performed at around 850 ° C., and spheroidizing annealing is performed to spheroidize pearlite between 760 and 700 ° C. Thus, in the conventional general heat treatment, the heat treatment temperature is as high as 950 ° C., and the total heat treatment time is as long as about 44 hours.

特開平10−273756号公報JP-A-10-273756

かかる従来の実情に鑑みて、本発明は、高温で長時間の固溶化処理を行うことなく短納期を可能にした冷間工具、プレス金型用素材、熱間プレス金型用素材、鍛造用金型素材等に使用可能な工具鋼鋳鋼品の製造方法を提供することを目的とする。   In view of such a conventional situation, the present invention provides a cold tool, a material for a press die, a material for a hot press die, a forging which enables a short delivery time without performing a solid solution treatment at a high temperature for a long time. It aims at providing the manufacturing method of the tool steel cast steel goods which can be used for a mold raw material.

上記目的を達成するため、本発明に係る工具鋼鋳鋼品の製造方法の特徴構成は、質量%で、C:0.5〜1.0%、Si:0.2〜1.2%、Mn:0.25〜1.50%、Cr:4.0〜8.0%、Mo:0.8〜2.0%、V:0.2〜1.0%を含有し残部がFe及び不純物からなる鋳綱品を、840℃〜880℃で1〜3時間加熱・保持した後、−15〜−40℃/hで500℃〜720℃の任意の冷却温度に至るまで冷却する熱処理を行うことで、基地組織が粒状パーライトであり、遊離炭化物が面積率で0.1%〜5%であり、熱処理後の硬さがHB180〜HB250とすることにある。   In order to achieve the above object, the characteristic configuration of the method for producing a tool steel cast steel product according to the present invention is, in mass%, C: 0.5 to 1.0%, Si: 0.2 to 1.2%, Mn : 0.25 to 1.50%, Cr: 4.0 to 8.0%, Mo: 0.8 to 2.0%, V: 0.2 to 1.0%, the balance being Fe and impurities A cast steel product made of is heated and held at 840 ° C. to 880 ° C. for 1 to 3 hours, and then subjected to a heat treatment for cooling at −15 to −40 ° C./h until reaching an arbitrary cooling temperature of 500 ° C. to 720 ° C. Thus, the base structure is granular pearlite, the free carbide is 0.1% to 5% in area ratio, and the hardness after heat treatment is HB180 to HB250.

ここで、「1〜3時間加熱・保持」は、「全体が均一温度となるように加熱・保持」することを意味している。発明者の実験によれば、「840℃〜880℃で1〜3時間加熱・保持」により、全体が均一温度となる。その後、−15〜−40℃/hで500℃〜720℃の任意の冷却温度に至るまで冷却する熱処理を行うことで、基地組織が粒状パーライトであり、遊離炭化物が面積率で0.1%〜5%であり、熱処理後の硬さがHB180〜HB250である工具鋼鋳鋼品を得られた。この工具鋼鋳鋼品では、鋳放しでの基地の初析フェライト量が0.1〜10%以下、または、初析炭化物量が0.1〜5%以下の面積率となっていた。   Here, “heating and holding for 1 to 3 hours” means “heating and holding so that the whole becomes a uniform temperature”. According to the inventor's experiment, the whole is brought to a uniform temperature by “heating and holding at 840 ° C. to 880 ° C. for 1 to 3 hours”. Thereafter, the base structure is granular pearlite and the free carbide is 0.1% in area ratio by performing a heat treatment at -15 to −40 ° C./h to reach an arbitrary cooling temperature of 500 ° C. to 720 ° C. A tool steel cast steel product having a hardness of ˜5% and a hardness after heat treatment of HB180˜HB250 was obtained. In this tool steel cast steel product, the amount of pro-eutectoid ferrite in the as-cast base was 0.1 to 10% or less, or the amount of pro-eutectoid carbide was 0.1 to 5% or less.

上記特徴に加え、さらに980〜1050℃で焼入れ、または、焼入れ焼戻し処理をすることによりHRC56以上の硬度を有してもよい。さらに、500〜550℃の2次炭化物発生による2次硬化の硬さがHRC55以上としてもよい。焼き入れのみ行われる場合としては、例えば、フレームハードによる焼き入れで焼き戻しを必要としない場合が該当する。   In addition to the above characteristics, it may have a hardness of HRC56 or higher by further quenching or quenching and tempering at 980 to 1050 ° C. Furthermore, the hardness of the secondary curing due to generation of secondary carbide at 500 to 550 ° C. may be HRC 55 or more. As a case where only quenching is performed, for example, there is a case where tempering is not required by quenching with frame hardware.

上記本発明の構成によれば、高温で長時間の固溶化処理を行うことなく、鋳放しでの基地の初析フェライト量が10%以下、または、初析炭化物量が5%以下の面積率とすることができた。そして、基地組織が粒状パーライトであり、遊離炭化物が面積率で0.1%〜5%であり、熱処理後の硬さをHB180〜HB250とすることができたので、短納期対応の可能な冷間工具、プレス金型用素材、熱間プレス金型用素材、鍛造用金型素材等として使用できる工具鋼鋳鋼品の製造方法を提供し得るに至った。
According to the configuration of the present invention, an area ratio in which the amount of pro-eutectoid ferrite in an as-cast base is 10% or less or the amount of pro-eutectoid carbide is 5% or less without performing a solution treatment for a long time at a high temperature. And was able to. The base structure is granular pearlite, the free carbide is 0.1% to 5% in area ratio, and the hardness after heat treatment can be HB180 to HB250. It has come to be able to provide a method for producing a tool steel cast steel product that can be used as an interstitial tool, a press die material, a hot press die material, a forging die material and the like.

本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。   Other objects, configurations, and effects of the present invention will become apparent from the following embodiments of the present invention.

C量と共析変態における組織の関係を表す状態図である。It is a state figure showing the relationship of the structure | tissue in C amount and eutectoid transformation. 表1における試料の組織写真を示し、(a)はC量0.4%、(b)はC量0.6%、(c)はC量0.8%、(d)はC量1.0%、(e)はC量1.2%の組織写真を示す。The structure photograph of the sample in Table 1 is shown, (a) C amount 0.4%, (b) C amount 0.6%, (c) C amount 0.8%, (d) C amount 1 0.0%, (e) shows a structural photograph with a C content of 1.2%. 焼戻し温度と硬度の関係を示す図である。It is a figure which shows the relationship between tempering temperature and hardness. 焼入れ温度と硬度の関係を示す図である。It is a figure which shows the relationship between quenching temperature and hardness. Cr・Moと焼入れ硬度・2次硬化有無の関係を示す図である。It is a figure which shows the relationship between Cr * Mo, quenching hardness, and the presence or absence of secondary hardening. 本発明鋼の熱処理サイクルを示す図である。It is a figure which shows the heat processing cycle of this invention steel. 熱処理温度と機械的性質の関係を示す図である。It is a figure which shows the relationship between heat processing temperature and a mechanical property. 冷却速度と機械的性質の関係を示す図である。It is a figure which shows the relationship between a cooling rate and a mechanical property. 鍛造品と鋳造品の炭化物形状比較(SKD11成分)であり、(a)はSKD11(鍛造品)、(b)はSKD11相当材(鋳造品)の組織写真を示す。It is a carbide | carbonized_material shape comparison (SKD11 component) of a forged product and a cast product, (a) shows the structure photograph of SKD11 (forged product), (b) shows SKD11 equivalent material (cast product). 従来の熱処理サイクル例を示す図である。It is a figure which shows the example of the conventional heat processing cycle.

次に、適宜添付図面を参照しながら、本発明をさらに詳しく説明する。
発明者らは、C量を変化させた時に炭化物がどのように変化するかについて調査を行った。図1に示す状態図から考察すると、C量が共析点(C0.76%)より少ない場合、オーステナイト粒界に初析フェライトが析出し、このフェライト粒界に沿って破壊が進行するため、靱性は高いが強度が低くなり、また焼入れ硬度も低くなる。また、焼入れ時や溶接時に割れが発生するようになる。逆にC量が多い場合、粒界に初析炭化物が析出し、強度はあるが靱性が低くなる。
Next, the present invention will be described in more detail with reference to the accompanying drawings as appropriate.
The inventors investigated how the carbide changes when the amount of C is changed. Considering from the phase diagram shown in FIG. 1, when the amount of C is less than the eutectoid point (C 0.76%), proeutectoid ferrite precipitates at the austenite grain boundary, and fracture proceeds along this ferrite grain boundary. High toughness but low strength and low quenching hardness. In addition, cracks occur during quenching and welding. On the other hand, when the amount of C is large, pro-eutectoid carbide precipitates at the grain boundaries, and strength is high but toughness is low.

ここで、Cを0.4〜1.2%の中で変化させたときの炭化物量・硬度・焼入れ硬度・焼割れとの関係を表1に示す。また、表1の各試料の組織写真を図2に示す。表1よりCが0.5%未満では焼入れ硬度がHRC55以下になる。また、組織の内部にウッドマンステッテン状のフェライトが若干みられる(図2(a))。逆に、Cが1.0%ではウッドマンステッテン状の炭化物は見られるものの、割れ等はなく、炭化物も繋がっていない(図2(d))。Cが1.2%になると初析のセメンタイトが連続するようになり、焼割れが発生する(図2(e))。また、Cが0.6%、0.8%では、遊離炭化物の面積率が0.2%〜0.8%で、ウッドマンステッテン状の炭化物は見られず、割れ等もなく、炭化物も繋がっていない(図2(b)(c))。以上、焼入れ硬度、組織、焼割れの観点からC量は0.5〜1.0%とした。なお、遊離炭化物の面積率(%)は、顕微鏡、CCDカメラ及び市販の面積率測定ソフトを用いて、組織写真上の炭化物面積/全面積×100にて算出される。   Here, Table 1 shows the relationship among the amount of carbide, hardness, quenching hardness, and quench cracking when C is varied in the range of 0.4 to 1.2%. Moreover, the structure photograph of each sample of Table 1 is shown in FIG. From Table 1, when C is less than 0.5%, the quenching hardness becomes HRC55 or less. In addition, some Woodman Stetten-like ferrite is observed inside the structure (FIG. 2 (a)). On the contrary, when C is 1.0%, Woodman Stetten-like carbides are seen, but there are no cracks and the carbides are not connected (FIG. 2 (d)). When C is 1.2%, pro-eutectoid cementite becomes continuous and fire cracking occurs (FIG. 2 (e)). In addition, when C is 0.6% and 0.8%, the area ratio of free carbide is 0.2% to 0.8%, no Woodman Stetten-like carbide is observed, there are no cracks, and the carbide They are not connected (FIGS. 2B and 2C). As described above, the C content is set to 0.5 to 1.0% from the viewpoints of quenching hardness, structure, and quench cracking. The area ratio (%) of the free carbide is calculated as carbide area / total area × 100 on the tissue photograph using a microscope, a CCD camera, and commercially available area ratio measurement software.

また、図3に、本発明品のC量を変化させた場合の焼戻し温度と硬度の関係を示す。本発明鋼は焼戻し温度が500℃を超えると、2次炭化物が析出することにより硬度の回復が起こる。これを2次硬化と呼ぶが、550℃付近で2次硬化が発生せずに硬度が低下すると、耐摩耗性が低下し、「カジリ」などが発生するようになる。Cが0.5%未満になると、500〜550℃の焼戻し硬度がHRC55を切るようになる。炭化物の量及び焼戻し温度500〜550℃の2次炭化物析出時の硬度の関係より、C%の範囲は0.5〜1.0%とした。   FIG. 3 shows the relationship between the tempering temperature and the hardness when the C content of the product of the present invention is changed. When the tempering temperature of the steel of the present invention exceeds 500 ° C., secondary carbide precipitates and the hardness is recovered. This is called secondary curing, but if the hardness decreases without generating secondary curing at around 550 ° C., the wear resistance decreases and “galling” or the like occurs. When C is less than 0.5%, a tempering hardness of 500 to 550 ° C. becomes less than HRC55. From the relationship between the amount of carbide and the hardness at the time of precipitation of secondary carbide at a tempering temperature of 500 to 550 ° C., the C% range was set to 0.5 to 1.0%.

発明者らは本発明品の焼入れ及び焼戻し温度と硬度について調査を行った。図4に示すように、C0.8%では焼入れ温度980℃以上で焼入れ硬度がHRC60以上になり、1030℃付近で焼入れ硬度が最も高くなっており、SKD11と同等の硬度を示している。また、1030℃以上では焼入れ硬度は徐々に下がり始めている。1030℃の焼入れ剤の組織を観察したところ、残留オーステナイトの量が増加しており、1050℃以上では残留オーステナイトのマルテンサイト化による割れや変形が心配された。以上より焼入れ温度の範囲は980〜1050℃とした。   The inventors investigated the quenching and tempering temperature and hardness of the product of the present invention. As shown in FIG. 4, when C is 0.8%, the quenching hardness is HRC60 or more at a quenching temperature of 980 ° C. or higher, and the quenching hardness is highest at around 1030 ° C., indicating a hardness equivalent to that of SKD11. Further, at 1030 ° C. or higher, the quenching hardness starts to decrease gradually. When the structure of the quenching agent at 1030 ° C. was observed, the amount of retained austenite was increased. At 1050 ° C. or higher, there was a concern about cracking or deformation due to martensite formation of the retained austenite. From the above, the quenching temperature range was 980 to 1050 ° C.

次に発明者らは、図5に示すように工具鋼に添加されるCr・Moと焼入れ性及び2次炭化物発生による2次硬化の有無について調査を行った。Crが4%を下回ると焼入れ性硬度がHRC56以下となってしまう。また、500〜550℃の焼戻し後の2次硬化による硬度もHRC55を切るようになる。550℃での2次硬化による硬度が低下すると、耐摩耗性が低下し、「カジリ」などが発生するようになる。一方Crが8%を超えると、網目状の炭化物が析出し始めるようになる。このような網目状の炭化物は焼入れや溶接による割れを発生させる。以上よりCrに関しては4.0〜8.0%とした。Moは図5に示すように0.8%を下回るようになると、焼戻し温度500〜550℃の2次炭化物の析出による2次硬化が明瞭に見られなくなる。また図5からもわかるように、Moが2.0%を超えるようになると、それ以下の時よりも焼入れ硬度が低下し、HRC55を切るようになる。CrとMoの量は図5のハッチング線で囲まれた範囲が好ましい。   Next, as shown in FIG. 5, the inventors investigated Cr · Mo added to the tool steel, hardenability, and the presence or absence of secondary hardening due to generation of secondary carbides. When Cr is less than 4%, the hardenability hardness becomes HRC56 or less. Further, the hardness due to secondary curing after tempering at 500 to 550 ° C. also falls below HRC55. When the hardness due to the secondary curing at 550 ° C. is reduced, the wear resistance is reduced, and “galling” or the like is generated. On the other hand, when the Cr content exceeds 8%, a net-like carbide starts to precipitate. Such a net-like carbide causes cracking due to quenching or welding. From the above, the Cr content was 4.0 to 8.0%. As shown in FIG. 5, when Mo becomes less than 0.8%, secondary hardening due to precipitation of secondary carbides at a tempering temperature of 500 to 550 ° C. cannot be clearly seen. Further, as can be seen from FIG. 5, when Mo exceeds 2.0%, the quenching hardness is lower than when it is less than that, and the HRC 55 is cut. The amount of Cr and Mo is preferably in the range surrounded by the hatched lines in FIG.

その他の元素については、以下の理由で以下の成分範囲とした。
[Si:0.2〜1.2%]
Siを適量含有すると、焼戻し軟化抵抗を高め、耐摩耗性や耐へたり性を向上させるのに有効となる。しかし含有量が多すぎると基地の靱性が低下する。
[Mn:0.25〜1.5%]
Mnを適量含有すると、焼入れ性が向上し基地を強化することができる。しかし含有量が多すぎると熱間加工性が阻害される。
[V:0.2〜1.0%]
Vを適量含有すると、軟化抵抗が向上する。また耐摩耗性と耐焼付き性の向上にも有効であるとともに、結晶粒の微細化にも有効である。しかし多量に含有すると、初析炭化物の析出量が増大し、網目状に繋がりやすくなる。
About other elements, it was set as the following component ranges for the following reasons.
[Si: 0.2-1.2%]
When an appropriate amount of Si is contained, the temper softening resistance is increased, and it is effective for improving wear resistance and sag resistance. However, if the content is too large, the toughness of the base is lowered.
[Mn: 0.25 to 1.5%]
When an appropriate amount of Mn is contained, the hardenability is improved and the base can be strengthened. However, if the content is too large, hot workability is hindered.
[V: 0.2 to 1.0%]
When an appropriate amount of V is contained, the softening resistance is improved. In addition, it is effective for improving wear resistance and seizure resistance, and also effective for making crystal grains finer. However, if it is contained in a large amount, the precipitation amount of pro-eutectoid carbide increases, and it tends to be connected in a network form.

発明者らは、靱性を高め、溶接性及び焼入れ性の良い冷間工具鋼鋳鋼の熱処理方法について調査を行った。従来の方法では、Cr・Mo等の元素を拡散させ、炭化物が網目状に成長しないようにするために、図10に示した固溶化熱処理を行い、その後完全焼鈍または球状化焼鈍を行っていた。しかしこの方法では熱処理に45時間以上かかり、熱処理にかかるコストが増大する。   The inventors investigated the heat treatment method for cold tool steel cast steel with improved toughness and good weldability and hardenability. In the conventional method, in order to diffuse elements such as Cr / Mo and prevent the carbide from growing in a network shape, the solution heat treatment shown in FIG. 10 is performed, and then complete annealing or spheroidizing annealing is performed. . However, in this method, the heat treatment takes 45 hours or more, and the cost for the heat treatment increases.

そこで本発明の成分において、簡易的な熱処理を行うことができないか検討した。図6に検討した熱処理パターンの例を示す。本熱処理は図10に示す一般的な熱処理とは異なり、固溶化処理を行わず、完全焼なましの温度域に保持した後、徐冷することによりパーライトの球状化処理を行うものである。図7に下記表2のC0.6%,0.8%,0.9%(試料1〜3)の各組成の鋳鋼品における保持温度(横軸)と機械的性質(縦軸)の関係を示す。図7の結果より保持温度は860℃が最も好ましく、840〜880℃の範囲ならば機械的性質が良好であることがわかる。次に図8に、下記表2の各組成の鋳鋼品における保持温度860℃、冷却温度540℃とし冷却速度を変化させた場合の機械的性質(縦軸)と冷却速度(横軸)の関係を示す。図8より冷却速度は−30℃/hが最も好ましく、−15〜−40℃/hの徐冷ならば問題のないことがわかる。   Therefore, it was examined whether a simple heat treatment could be performed on the components of the present invention. FIG. 6 shows an example of the heat treatment pattern studied. Unlike the general heat treatment shown in FIG. 10, this heat treatment is one in which pearlite spheroidization treatment is carried out by maintaining the temperature in a completely annealed temperature range and then slowly cooling it, without performing a solution treatment. FIG. 7 shows the relationship between the holding temperature (horizontal axis) and the mechanical properties (vertical axis) of cast steel products having the compositions of C 0.6%, 0.8%, and 0.9% (Samples 1 to 3) in Table 2 below. Indicates. From the results of FIG. 7, it is understood that the holding temperature is most preferably 860 ° C., and the mechanical properties are good if it is in the range of 840 to 880 ° C. Next, FIG. 8 shows the relationship between the mechanical properties (vertical axis) and the cooling rate (horizontal axis) when the cooling rate is changed at a holding temperature of 860 ° C. and a cooling temperature of 540 ° C. in cast steel products having the respective compositions shown in Table 2 below. Indicates. FIG. 8 shows that the cooling rate is most preferably −30 ° C./h, and there is no problem if it is gradually cooled at −15 to −40 ° C./h.

以上より、本発明の鋳鋼品の熱処理は860℃±20℃で1〜3h、好ましくは厚さが1インチ増すごとに保持時間を1h増やし、冷却速度は−30(+15,−10)℃/hとして、500〜720℃の任意の温度まで冷却する熱処理とすることが好ましいと分かった。しかも、熱処理の時間は約25時間程度となり、従来と比べ処理時間を大幅に短縮できた。   As described above, the heat treatment of the cast steel product of the present invention is performed at 860 ° C. ± 20 ° C. for 1 to 3 hours, preferably, the holding time is increased by 1 hour every time the thickness is increased by 1 inch, and the cooling rate is −30 (+ 15, −10) ° C. / It turned out that it is preferable to set it as the heat processing which cools to arbitrary temperature of 500-720 degreeC as h. Moreover, the heat treatment time is about 25 hours, and the treatment time can be greatly shortened compared to the conventional method.

本発明に係る冷間工具鋼鋳鋼は、一般に市販されているSKD11材の代替材として使用可能である。よって、プレス金型用素材、熱間プレス金型用素材、鍛造用金型素材などの分野に適用可能である。また本発明品は靱性が高いことから、ダイカスト用素材としても十分に適用可能である。
また本発明品は、SKD11・SKD61等の代替品として使用できるだけでなく、他の冷間工具鋼の代替材としても使用可能である。
The cold tool steel cast steel according to the present invention can be used as a substitute for the SKD11 material that is generally commercially available. Therefore, the present invention can be applied to fields such as a press die material, a hot press die material, and a forging die material. Further, since the product of the present invention has high toughness, it can be sufficiently applied as a die casting material.
The product of the present invention can be used not only as a substitute for SKD11 / SKD61 but also as a substitute for other cold tool steels.

Claims (4)

質量%で、C:0.5〜1.0%、Si:0.2〜1.2%、Mn:0.25〜1.50%、Cr:4.0〜8.0%、Mo:0.8〜2.0%、V:0.2〜1.0%を含有し残部がFe及び不純物からなる鋳鋼品を、
840℃〜880℃で1〜3時間加熱・保持した後、−15〜−40℃/hで500℃〜720℃の任意の冷却温度に至るまで冷却する熱処理を行うことで、基地組織が粒状パーライトであり、遊離炭化物が面積率で0.1%〜5%であり、熱処理後の硬さをHB180〜HB250とする工具鋼鋳鋼品の製造方法。
In mass%, C: 0.5 to 1.0%, Si: 0.2 to 1.2%, Mn: 0.25 to 1.50%, Cr: 4.0 to 8.0%, Mo: A cast steel product containing 0.8 to 2.0%, V: 0.2 to 1.0%, the balance being Fe and impurities,
After heating and holding at 840 ° C. to 880 ° C. for 1 to 3 hours, the base structure is granular by performing a heat treatment at -15 to −40 ° C./h until reaching an arbitrary cooling temperature of 500 ° C. to 720 ° C. A manufacturing method of a tool steel cast steel product which is pearlite, has free carbides in an area ratio of 0.1% to 5%, and has a hardness after heat treatment of HB180 to HB250.
質量%で、C:0.5〜1.0%、Si:0.2〜1.2%、Mn:0.25〜1.50%、Cr:4.0〜8.0%、Mo:0.8〜2.0%、V:0.2〜1.0%を含有し残部がFe及び不純物からなる鋳鋼品を、
840℃〜880℃で全体が均一温度となるように加熱・保持した後、−15〜−40℃/hで500℃〜720℃の任意の冷却温度に至るまで冷却する熱処理を行うことで、基地組織が粒状パーライトであり、遊離炭化物が面積率で0.1%〜5%であり、熱処理後の硬さがHB180〜HB250とする工具鋼鋳鋼品の製造方法。
In mass%, C: 0.5 to 1.0%, Si: 0.2 to 1.2%, Mn: 0.25 to 1.50%, Cr: 4.0 to 8.0%, Mo: A cast steel product containing 0.8 to 2.0%, V: 0.2 to 1.0%, the balance being Fe and impurities,
By heating and holding at 840 ° C. to 880 ° C. so that the whole becomes a uniform temperature, by performing a heat treatment that cools to an arbitrary cooling temperature of 500 ° C. to 720 ° C. at −15 to −40 ° C./h, A manufacturing method of a tool steel cast steel product in which the base structure is granular pearlite, the free carbide is 0.1% to 5% in area ratio, and the hardness after heat treatment is HB180 to HB250.
さらに980〜1050℃で焼入れ、または、焼入れ焼戻し処理をすることによりHRC56以上の硬度を有する請求項1又は2記載の工具鋼鋳鋼品の製造方法。 Furthermore, the manufacturing method of the tool steel cast-steel goods of Claim 1 or 2 which has hardness of HRC56 or more by hardening or quenching and tempering at 980-1050 degreeC. 500〜550℃の2次炭化物発生による2次硬化の硬さがHRC55以上である請求項1〜3のいずれかに記載の工具鋼鋳鋼品の製造方法。 The method for producing a tool steel cast steel product according to any one of claims 1 to 3, wherein the hardness of secondary hardening caused by generation of secondary carbide at 500 to 550 ° C is HRC55 or more.
JP2015073143A 2015-03-31 2015-03-31 Method for producing tool steel castings Active JP6484086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015073143A JP6484086B2 (en) 2015-03-31 2015-03-31 Method for producing tool steel castings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015073143A JP6484086B2 (en) 2015-03-31 2015-03-31 Method for producing tool steel castings

Publications (3)

Publication Number Publication Date
JP2016191138A JP2016191138A (en) 2016-11-10
JP2016191138A5 JP2016191138A5 (en) 2018-02-15
JP6484086B2 true JP6484086B2 (en) 2019-03-13

Family

ID=57246268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015073143A Active JP6484086B2 (en) 2015-03-31 2015-03-31 Method for producing tool steel castings

Country Status (1)

Country Link
JP (1) JP6484086B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110484812A (en) * 2019-04-29 2019-11-22 如皋市宏茂重型锻压有限公司 A kind of high-performance hot stamping die steel and its manufacturing process
CN111100976A (en) * 2019-09-20 2020-05-05 河南中原特钢装备制造有限公司 Heat treatment process for preventing cracking of steel for glass mold after forging
CN114480796A (en) * 2022-01-27 2022-05-13 湖南华菱涟源钢铁有限公司 Method for obtaining uniform granular pearlite structure without spheroidizing annealing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167644A (en) * 2000-11-30 2002-06-11 Daido Steel Co Ltd Cold tool steel having constant deformation on treatment and method for producing cold tool using the steel
JP2006193790A (en) * 2005-01-14 2006-07-27 Daido Steel Co Ltd Cold working tool steel

Also Published As

Publication number Publication date
JP2016191138A (en) 2016-11-10

Similar Documents

Publication Publication Date Title
JP6586519B2 (en) On-line controlled cooling method and manufacturing method for seamless steel pipes for effective grain refinement
CN111511936B (en) Wire rod for cold heading, worked product using the same, and method for manufacturing the same
JP5991564B2 (en) Hot tool material and hot tool manufacturing method
JP6366326B2 (en) High toughness hot work tool steel and manufacturing method thereof
JPH04365816A (en) Production of steel wire rod for cold working
JPWO2016080315A1 (en) Rolled steel bar or wire rod for cold forging parts
JP2016003395A (en) Steel for surface treatment machine component having excellent properties, component of the steel and manufacturing method therefor
TW201641709A (en) Steel wire for mechanical structure parts
JP2017526823A5 (en)
JP6484086B2 (en) Method for producing tool steel castings
JP6139062B2 (en) Cast iron casting manufacturing method
US8377235B2 (en) Process for forming steel
JP2011246784A (en) Rolled non-heat treated steel bar having excellent strength and toughness and method for producing the same
KR101977499B1 (en) Wire rod without spheroidizing heat treatment, and method for manufacturing thereof
JP6364219B2 (en) Cast iron castings and manufacturing method thereof
JP2005187888A (en) Method for quenching hyper-eutectoid steel excellent in static strength used for rolling bearing
JP2016191138A5 (en) Method for producing tool steel cast steel product and tool steel cast steel product
JP6108924B2 (en) Manufacturing method of steel for cold forging
JP5972823B2 (en) Manufacturing method of steel for cold forging
JP6793541B2 (en) Spheroidal graphite cast iron pipe and method for manufacturing spheroidal graphite cast iron pipe
JP6752624B2 (en) Manufacturing method of carburized steel
JP4975343B2 (en) Steel pipe excellent in cold forging processability and manufacturing method thereof
JP6466152B2 (en) Heat treatment method for boron-containing steel
JP6059569B2 (en) Manufacturing method of steel material excellent in cold workability and machinability
JPH02294450A (en) Die steel for molding plastics and its manufacture

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190215

R150 Certificate of patent or registration of utility model

Ref document number: 6484086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250