JP4661409B2 - Bearing unit outer member, bearing unit - Google Patents

Bearing unit outer member, bearing unit Download PDF

Info

Publication number
JP4661409B2
JP4661409B2 JP2005197956A JP2005197956A JP4661409B2 JP 4661409 B2 JP4661409 B2 JP 4661409B2 JP 2005197956 A JP2005197956 A JP 2005197956A JP 2005197956 A JP2005197956 A JP 2005197956A JP 4661409 B2 JP4661409 B2 JP 4661409B2
Authority
JP
Japan
Prior art keywords
bearing unit
plastic flow
cross
raceway
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005197956A
Other languages
Japanese (ja)
Other versions
JP2007016865A (en
Inventor
光司 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005197956A priority Critical patent/JP4661409B2/en
Publication of JP2007016865A publication Critical patent/JP2007016865A/en
Application granted granted Critical
Publication of JP4661409B2 publication Critical patent/JP4661409B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Forging (AREA)

Description

この発明は、軸受ユニット(複列の軌道を有する外輪およびフランジが一体になっている外側部材と、内輪と、転動体を備えた軸受)に関する。   The present invention relates to a bearing unit (an outer member in which an outer ring having a double-row raceway and a flange are integrated, an inner ring, and a bearing provided with rolling elements).

近年、自動車の燃費を向上するために、軽量化を目的とした車輪支持用軸受のユニット化が進んでいる。図1は、ユニット化された車輪支持用軸受の一例を示す断面図である。このユニットは、内側部材1と、外側部材2と、玉(転動体)3と、保持器4と、第1のシール5と、第2のシール6と、スリンガ7とで構成され、玉3が転動する軌道を二列備えている。   In recent years, in order to improve the fuel efficiency of automobiles, unitization of wheel support bearings for the purpose of weight reduction has been advanced. FIG. 1 is a cross-sectional view showing an example of a unitized wheel support bearing. This unit is composed of an inner member 1, an outer member 2, a ball (rolling element) 3, a cage 4, a first seal 5, a second seal 6, and a slinger 7. Has two rows of rolling tracks.

内側部材1は、二列の軌道を有する内輪11、車軸を内嵌するハブ12、および車輪側部材8を固定するフランジ13を有する。内側部材1は第1の部材1aと第2の部材1bとからなる。第1の部材1aは、内輪11の一方の内輪軌道11aの部分とハブ12とフランジ13が一体に形成されたもの(ハブ輪)である。第2の部材1bは、他方の内輪軌道11bが形成されたリング状部材であって、第1の部材1aに外嵌されている。   The inner member 1 includes an inner ring 11 having two rows of tracks, a hub 12 that fits an axle, and a flange 13 that fixes the wheel side member 8. The inner member 1 includes a first member 1a and a second member 1b. The first member 1a is a member in which one inner ring raceway 11a portion of the inner ring 11, the hub 12 and the flange 13 are integrally formed (hub ring). The second member 1b is a ring-shaped member in which the other inner ring raceway 11b is formed, and is externally fitted to the first member 1a.

外側部材2は、二列の軌道21a,21bを有する外輪21と、車体の懸架装置(車体側部材)を固定するボルト穴22aが形成されたフランジ22とが一体に形成されたものである。
このような複雑な形状を有する内側部材1および外側部材2は、従来、0.5質量%程度の炭素を含有する中炭素鋼からなる素材を用い、熱間鍛造で所定形状に加工した後、軌道溝の表層部を高周波焼入れにより硬化させることで製造されている。
The outer member 2 is formed integrally with an outer ring 21 having two rows of raceways 21a and 21b and a flange 22 in which a bolt hole 22a for fixing a vehicle suspension device (vehicle body side member) is formed.
The inner member 1 and the outer member 2 having such a complicated shape are conventionally made of a medium carbon steel containing about 0.5% by mass of carbon, and after being processed into a predetermined shape by hot forging, It is manufactured by hardening the surface layer of the raceway groove by induction hardening.

また、内部に水が浸入する等の過酷な使用条件に耐えることができるように、車輪支持用軸受ユニットの寿命向上要求が高まっている。この要求に応える方法としては、特定の合金成分を含有した鋼からなる素材を用いる方法や、清浄度の高い鋼からなる素材を用いる方法があるが、これらの方法には、素材が調達しにくくなる、生産性が低減する、コストが上昇する等の問題がある。   In addition, there is an increasing demand for improving the life of the wheel supporting bearing unit so that it can withstand severe use conditions such as water entering inside. There are two methods to meet this requirement: a method using a material made of steel containing a specific alloy component and a method using a material made of steel with a high degree of cleanliness. There are problems such as productivity reduction and cost increase.

下記の特許文献1には、鍛造工程の条件で変化する内輪および外輪のメタルフロー(鍛流線)の向きを特定範囲に設定することにより、転がり軸受の寿命を長くすることが開示されている。具体的には、回転軸を含む断面におけるメタルフローの当該回転軸に対する角度の最大値を10°以上50°以下に設定している。メタルフローの角度を前記範囲にするために、素材を半径方向に熱間鍛造し、穴開け加工をした後に、冷間ローリング加工による前記穴を拡径する工程を行っている。   Patent Document 1 below discloses extending the life of a rolling bearing by setting the direction of the metal flow (forged streamline) of the inner ring and outer ring, which change depending on the conditions of the forging process, in a specific range. . Specifically, the maximum value of the angle of the metal flow with respect to the rotation axis in the cross section including the rotation axis is set to 10 ° or more and 50 ° or less. In order to make the metal flow angle within the above range, the material is hot forged in the radial direction, drilled, and then subjected to a step of expanding the diameter of the hole by cold rolling.

特許文献2には、トロイダル型無段変速機の入力および出力ディスクのトラクション面に、ディスク表面に沿うメタルフロー(トラクション面の接線に対する角度が30°以下であるメタルフロー)が存在するように構成することで、寿命を長くすることが記載されている。
特開平8−42576号公報 特開平11−190408号公報
Patent Document 2 is configured such that a metal flow along the disk surface (a metal flow whose angle with respect to a tangent to the traction surface is 30 ° or less) exists on the traction surface of the input and output disks of the toroidal type continuously variable transmission. By doing so, it is described that the life is extended.
JP-A-8-42576 JP-A-11-190408

しかしながら、上記特許文献1および2に記載された技術を、複列の軌道を有する外輪およびフランジが一体になっている外側部材と、内輪と、転動体を備えた軸受ユニットに対して適用しても、内部に水が浸入する等の過酷な使用条件下では長い寿命を得ることができないという問題がある。
本発明は、複列の軌道を有する外輪およびフランジが一体になっている外側部材と、内輪と、転動体を備えた軸受ユニットにおいて、内部に水が浸入する等の過酷な条件下で使用された場合でも長い寿命が得られるようにすることを課題とする。
However, the techniques described in Patent Documents 1 and 2 are applied to an outer member in which an outer ring and a flange having a double-row track are integrated, an inner ring, and a bearing unit including a rolling element. However, there is a problem that a long life cannot be obtained under severe use conditions such as water entering inside.
INDUSTRIAL APPLICABILITY The present invention is used in a bearing unit including an outer member having a double row raceway and an outer ring integrated with a flange, an inner ring, and a rolling element under severe conditions such as water entering inside. It is an object to obtain a long life even in the case of failure.

上記課題を解決するために、本発明は、複列の軌道を有する外輪およびフランジが一体に、素材の鍛造工程を経て製造された軸受ユニット外側部材であって、軸線を含む断面において、極端に折れ曲がった鍛流線の頂点を結んだ線であり、素材の芯部を示す塑性流れ曲線軌道面から100μm以上の深さに存在し、前記断面における軌道溝の転動体接触点での接線と、前記断面における前記塑性流れ曲線の方向を示す線である塑性流れを示す直線と、のなす角度が、0°以上50°以下であることを特徴とする軸受ユニット外側部材を提供する。また、この外側部材と、内輪と、転動体を備えたことを特徴とする軸受ユニットを提供する。 In order to solve the foregoing problems, the present invention is the outer ring and the flange integrally with the trajectory of double row, a bearing unit outer member manufactured through the material of the forging step, have you to a cross section including the axis, It is a line connecting the vertices of the extremely bent forging line, and the plastic flow curve indicating the core of the material is present at a depth of 100 μm or more from the raceway surface, at the rolling element contact point of the raceway groove in the cross section. And an angle formed by the straight line indicating the plastic flow, which is a line indicating the direction of the plastic flow curve in the cross section , is 0 ° or more and 50 ° or less. . A bearing unit comprising the outer member, an inner ring, and rolling elements is provided.

た、複列の軌道を有する内輪、車軸を内嵌するハブ、および車輪側部材を固定するフランジを有し、少なくとも一列の軌道とハブとフランジが一体に、素材の鍛造工程を経て製造された内側部材と、複列の軌道を有する外輪および車体側部材を固定するフランジが一体に、素材の鍛造工程を経て製造された外側部材と、転動体と、を備えた車輪支持用軸受ユニットにおいて、フランジと一体化された内輪の軌道溝および外輪の軌道溝の少なくともいずれかは、軸線を含む断面における転動体と軌道溝との接触角度が初期接触点での接触角度の−5°〜+10°となる範囲で、前記断面における塑性流れが軌道面から100μm以上の深さに存在し、前記断面における軌道溝の転動体接触点での接線と、前記断面における塑性流れを示す直線と、のなす角度が、0°以上50°以下であることを特徴とするものが挙げられる。
この車輪支持用軸受ユニットによれば、フランジと一体化された内輪の軌道溝および外輪の軌道溝の少なくともいずれかについて、軸線を含む断面における転動体と軌道溝との接触角度が初期接触点での接触角度の−5°〜+10°となる範囲で、素材の芯部を示す塑性流れの存在位置を軌道面から100μm以上の深さにするとともに、前記断面における軌道溝の転動体接触点での接線と、前記断面における軌道溝表層部の塑性流れを示す直線と、のなす角度を0°以上50°以下にすることにより、これらの条件を満たさない場合と比較して、内部に水が浸入する等の過酷な使用条件での寿命を長くすることができる。
Also, the inner ring having a raceway of the double row, hub fitted into the axle, and a flange for fixing a wheel-side member, at least one row of track and the hub and the flange are manufactured through integral to, material of the forging process A wheel support bearing unit comprising: an inner member, an outer ring having a double-row raceway, and a flange for fixing a vehicle body side member, and an outer member manufactured through a material forging process; and a rolling element. In addition, at least one of the inner ring raceway groove and the outer ring raceway groove integrated with the flange has a contact angle between the rolling element and the raceway groove in a cross section including the axis of −5 ° to +10 of the contact angle at the initial contact point. The plastic flow in the cross section exists at a depth of 100 μm or more from the raceway surface within the range of °, the tangent line at the contact point of the raceway groove in the cross section, and the straight line indicating the plastic flow in the cross section Angle of, Ru include those characterized in that 50 ° or less 0 ° or more.
According to this wheel support bearing unit, the contact angle between the rolling element and the raceway groove in the cross section including the axis is at the initial contact point for at least one of the raceway groove of the inner ring and the raceway groove of the outer ring integrated with the flange. In the range of −5 ° to + 10 ° of the contact angle, the position of the plastic flow indicating the core of the material is set to a depth of 100 μm or more from the raceway surface, and at the rolling element contact point of the raceway groove in the cross section. And the straight line indicating the plastic flow of the surface portion of the raceway groove in the cross section, the angle between 0 ° and 50 ° is less than the case where these conditions are not satisfied. It is possible to extend the life under severe use conditions such as infiltration.

複列の軌道輪と単列の軌道輪とを比較した場合や、軌道輪にフランジが一体化されている軸受部材とフランジがない軌道輪のみの軸受部材とを比較した場合に、これらが素材の鍛造工程を経て製造されていると、より複雑な形状である「複列の軌道輪」および「軌道輪にフランジが一体化されている軸受部材」は、鍛造工程で素材の芯部(中心付近の部分)が軌道溝表層部に出現し易くなる。素材の芯部が軌道溝表層部へ出現していることは、軸線を含む断面を腐食させて実体顕微鏡で観察した時に、軌道溝表層部で多数の鍛流線が極端に折れ曲がって方向性を持って並んだ状態になっていることにより確認できる。   When comparing a double-row bearing ring with a single-row bearing ring, or when comparing a bearing member with a flange integrated with the bearing ring and a bearing member with only a bearing ring without a flange, these are the materials. If the forging process is used, the more complex shapes of “double-row race ring” and “bearing member with a flange integrated with the race ring” (Near part) tends to appear on the surface of the raceway groove. The appearance of the core of the material on the surface of the raceway groove means that when the cross section including the axis is corroded and observed with a stereomicroscope, a large number of forged lines are extremely bent at the surface of the raceway groove and the directionality is changed. This can be confirmed by holding them in a line.

この状態になっている軸受ユニット外側部材の例を、図2に示す。図2の符号Tが鍛流線であり、図2(b)は(a)のA部分の拡大図である。
本発明では、極端に折れ曲がった鍛流線Tの頂点を結んだ線を「塑性流れ曲線LT 」と称し、その方向を示す線を「塑性流れを示す直線LS 」と称する。ここで、素材の芯部(中心付近の部分)は、周辺の部分よりも非金属介在物が存在しやすい(清浄度が低い)ため、芯部が軌道溝表層部に存在すると、介在物を起点とした剥離が生じやすい。
An example of the bearing unit outer member in this state is shown in FIG. 2 is a forged stream line, and FIG. 2B is an enlarged view of a portion A in FIG.
In the present invention, a line connecting the vertices of the extremely bent forging line T is referred to as “plastic flow curve L T ”, and a line indicating the direction thereof is referred to as “straight line L S indicating plastic flow”. Here, since the core part (part near the center) of the material is more likely to have non-metallic inclusions (less clean) than the peripheral part, if the core part is present on the surface of the raceway groove, Peeling from the starting point is likely to occur.

これに対して、本発明によれば、素材の芯部を示す塑性流れの存在位置を軌道面から100μm以上の深さにする(図2でd≧100μm)とともに、軸線を含む断面における軌道溝の転動体接触点Pでの接線L0 と、前記断面における塑性流れを示す直線LS と、のなす角度θを、0°以上50°以下にすることにより、これらの条件を満たさない場合と比較して、軌道溝に介在物を起点とした剥離が生じ難くなる。また、塑性流れの存在位置を、軌道面から最大剪断応力深さ(転動体直径の2%)に相当する深さより深い位置にすることが好ましい。 On the other hand, according to the present invention, the position of the plastic flow indicating the core portion of the material is set to a depth of 100 μm or more from the raceway surface (d ≧ 100 μm in FIG. 2), and the raceway groove in the cross section including the axis line When the angle θ formed by the tangent L 0 at the rolling element contact point P and the straight line L S indicating the plastic flow in the cross section is not less than 0 ° and not more than 50 °, these conditions are not satisfied. In comparison, separation from the inclusions in the raceway grooves is less likely to occur. Further, it is preferable that the plastic flow is present at a position deeper than the depth corresponding to the maximum shear stress depth (2% of the rolling element diameter) from the raceway surface.

また、車輪支持用軸受ユニットの場合、これらの条件を、図3に示すように、前記断面における転動体3と軌道溝21bとの接触角度が初期接触点(P0 )での接触角度(α)の−5°〜+10°となる範囲で満たすように限定した。その理由は、組み付け後に付与する予圧により接触角が変化するためと、車両の旋回時にかかる横Gによって接触角が大きくなるためである。図3(a)は、初期接触点(予圧を付与する前の軌道溝21bと転動体3との接触点)P0 を示し、図3(b)は、接触角度が初期接触点での値(α)の−5°〜+10°となる範囲A(接触点P1 〜P2 の範囲)を示す。 Further, in the case of a wheel support bearing unit, these conditions are as shown in FIG. 3, in which the contact angle between the rolling element 3 and the raceway groove 21b in the cross section is the contact angle (α) at the initial contact point (P 0 ). ) In the range of −5 ° to + 10 °. The reason is that the contact angle changes due to the preload applied after assembly, and the contact angle increases due to the lateral G applied when the vehicle turns. FIG. 3A shows an initial contact point (a contact point between the raceway groove 21b and the rolling element 3 before applying the preload) P 0 , and FIG. 3B shows a value at which the contact angle is at the initial contact point. A range A (range of contact points P 1 to P 2 ) of (α) from −5 ° to + 10 ° is shown.

なお、素材の芯部が軌道溝の表層部に存在しない場合(d>500μmの場合)には、前記角度θが50°を超えても問題ないため、dの上限値は500μmである。
た、複列の軌道を有する外輪およびフランジが一体化された軸受ユニット外側部材を、素材の鍛造工程を経て製造する方法において、軸線を含む断面における塑性流れが軌道面から100μm以上の深さに存在し、前記断面における軌道溝の転動体接触点での接線と、前記断面における塑性流れを示す直線と、のなす角度が、0°以上50°以下となるように、前記軌道溝を、仕上げ研削前の熱処理前に冷間ローリング加工することを特徴とする軸受ユニット外側部材の製造方法も挙げられる。
When the core portion of the material does not exist on the surface layer portion of the raceway groove (when d> 500 μm), there is no problem even if the angle θ exceeds 50 °, so the upper limit value of d is 500 μm.
Also, the bearing unit outer member outer ring and flange are integrated with the trajectory of the double row, in the method of manufacturing through the material of the forging process, the depth plastic flow from the raceway surface 100μm or more in a cross section including the axis The raceway groove is formed so that an angle formed between a tangent line at the contact point of the raceway groove in the cross section and a straight line indicating the plastic flow in the cross section is 0 ° or more and 50 ° or less. method of manufacturing a bearing unit outer member, characterized in that the cold rolling process before heat treatment prior to finish grinding Ru also listed.

この方法によれば、前記仕上げ研削前の熱処理前の状態で、図4(a)に示すように、塑性流れ曲線LT が軌道溝21Aに向かって延びている状態(素材の芯部が軌道溝21Aに出現している状態)の場合に、軌道溝21Aを冷間ローリング加工して拡径することにより、図4(b)に示すように、塑性流れ曲線LT が軌道溝21Aの曲面に沿って延びるようにすることができる。これにより、軌道溝21Aの転動体接触点Pでの接線L0 と塑性流れを示す直線LS とのなす角度θを、0°以上50°以下にすることができる。 According to this method, in a state before the heat treatment of the finish grinding before, as shown in FIG. 4 (a), the core portion in a state (material plastic flow curve L T extends toward the raceway groove 21A orbit in the case of state) are emerging in the groove 21A, by expanding the diameter by cold rolling process the raceway groove 21A, as shown in FIG. 4 (b), the plastic flow curve L T is track groove 21A curved It can be made to extend along. As a result, the angle θ formed by the tangent L 0 at the rolling element contact point P of the raceway groove 21A and the straight line L S indicating the plastic flow can be set to 0 ° or more and 50 ° or less.

本発明によれば、素材の芯部を示す塑性流れの存在位置を軌道面から100μm以上の深さにするとともに、軸線を含む断面における軌道溝の転動体接触点での接線と、前記断面における塑性流れを示す直線と、のなす角度を、0°以上50°以下にすることにより、これらの条件を満たさない場合と比較して、複列の軌道を有する外輪およびフランジが一体になっている外側部材の軌道溝に、介在物を起点とした剥離が生じ難くなる。   According to the present invention, the position of the plastic flow indicating the core portion of the material is set to a depth of 100 μm or more from the raceway surface, and the tangent line at the contact point of the raceway groove in the cross section including the axis line, By making the angle between the straight line indicating the plastic flow and 0 ° or more and 50 ° or less, the outer ring and the flange having the double-row track are integrated as compared with the case where these conditions are not satisfied. Separation starting from inclusions is unlikely to occur in the raceway grooves of the outer member.

よって、この外側部材と、内輪と、転動体を備えた軸受ユニットを、内部に水が浸入する等の過酷な条件下で使用した場合に長い寿命が得られるようにすることができる Therefore, a long life can be obtained when the outer member, the inner ring, and the bearing unit including the rolling element are used under severe conditions such as water entering the inside .

以下、本発明の実施形態について説明する。
この実施形態の軸受ユニットを図5に示す。この図は軸線Zを含む断面図である。この軸受ユニットは、複列アンギュラ玉軸受の外輪21にフランジ22が一体化された形状であり、それぞれ一列の軌道11a,11bを備えた二つの内輪10a,10bと、二列の軌道21a,21bを備えた外輪21にフランジ22が一体化された外側部材2と、玉3で構成されている。この軸受ユニットの内径(d)は38mmであり、外径(D)は73mmであり、幅(B)は40mmであり、作用点距離(K)は65mmである。玉3の直径は11.1mmである。
Hereinafter, embodiments of the present invention will be described.
The bearing unit of this embodiment is shown in FIG. This figure is a cross-sectional view including the axis Z. This bearing unit has a shape in which a flange 22 is integrated with an outer ring 21 of a double-row angular ball bearing, and includes two inner rings 10a and 10b each provided with one row of raceways 11a and 11b, and two rows of raceways 21a and 21b. The outer ring 21 is provided with an outer member 2 in which a flange 22 is integrated, and a ball 3. The bearing unit has an inner diameter (d) of 38 mm, an outer diameter (D) of 73 mm, a width (B) of 40 mm, and an action point distance (K) of 65 mm. The diameter of the ball 3 is 11.1 mm.

この軸受ユニットの寿命試験を図6に示す方法で行うために、図6に示す試験軸受の内輪10aと外輪20aを以下の方法で作製した。
内輪10aは図7に示す方法で作製した。
先ず、図7(a)に示すように、山陽特殊製鋼の高清浄度SUJ2鋼製の円柱状素材(直径35mm×軸方向寸法40mm)を用意した。次に、2500tonのプレス機(栗本鉄工所製)を用い、この素材を軸方向を上下方向にして上下の金型の間に置き、1100〜1200℃で、軸方向寸法が27mmとなるまで押し潰すことにより、据え込み工程を行い、図7(b)に示す状態にした。
In order to perform the life test of this bearing unit by the method shown in FIG. 6, the inner ring 10a and the outer ring 20a of the test bearing shown in FIG. 6 were produced by the following method.
The inner ring 10a was produced by the method shown in FIG.
First, as shown to Fig.7 (a), the column-shaped raw material (diameter 35mm x axial direction dimension 40mm) made from the high cleanliness SUJ2 steel of Sanyo special steel was prepared. Next, using a 2500 ton press (manufactured by Kurimoto Iron Works), place this material between the upper and lower molds with the axial direction up and down and press at 1100 to 1200 ° C. until the axial dimension is 27 mm. By crushing, an upsetting process was performed to obtain a state shown in FIG.

次に、鍛造工程により、図7(c)に示すように、内輪10aの軸方向一端が塞がれた形状に成形した。次に、ピアスパンチ工程によりこの閉塞部分13を除去して、図7(d)に示す形状にした。
次に、840℃に1時間加熱した後に冷却する焼入れを行った後、180℃で2時間の焼戻し処理を施して、表面硬さをHRC61にした。次に、研削加工を行って、軌道11aの溝形状を含む各寸法が正確な寸法になるようにした。
Next, as shown in FIG. 7C, the inner ring 10a was formed into a shape in which one end in the axial direction was closed by a forging process. Next, the closed portion 13 was removed by a piercing punch process to obtain the shape shown in FIG.
Next, after quenching by heating to 840 ° C. for 1 hour and cooling, a tempering treatment was performed at 180 ° C. for 2 hours to make the surface hardness HRC61. Next, grinding was performed so that each dimension including the groove shape of the track 11a was an accurate dimension.

外輪20aの作製方法は以下の通りである。先ず、図8に示す方法で図5の外側部材2を作製する。
すなわち、図8(a)に示すように、S53CG製の円柱状素材として、直径が50mmで、軸方向寸法が80mmであるものを用意した。次に、2500tonのプレス機(栗本鉄工所製)を用い、この素材を軸方向を上下方向にして上下の金型の間に置き、1100〜1200℃で、軸方向寸法が45〜47mmとなるまで押し潰すことにより、据え込み工程を行い、図8(b)に示す状態にした。この工程までは全てのサンプルで同じ条件で行い、下記の鍛造工程および冷間ローリング加工の条件を各サンプルで変えることにより、鍛流線の流れを変化させて、前記角度θおよび距離dを変化させた。
The manufacturing method of the outer ring 20a is as follows. First, the outer member 2 of FIG. 5 is produced by the method shown in FIG.
That is, as shown in FIG. 8A, a columnar material made of S53CG having a diameter of 50 mm and an axial dimension of 80 mm was prepared. Next, using a 2500 ton press (manufactured by Kurimoto Iron Works), this material is placed between the upper and lower molds with the axial direction set to the vertical direction, and the axial dimension is 45 to 47 mm at 1100 to 1200 ° C. The upsetting process was performed by squeezing until the state shown in FIG. Up to this step, all the samples are performed under the same conditions. By changing the following forging process and cold rolling conditions for each sample, the flow of the forging line is changed, and the angle θ and the distance d are changed. I let you.

次に、鍛造工程により、図8(c)に示すように、フランジ22と外輪21と、両軌道の間の部分210を繋ぐ部分23とが一体化された形状に成形した。次に、ピアスパンチ工程により、繋ぎ部分23を除去して、図8(d)に示す形状にした。
次に、旋削加工によりフランジ22を除去した後、旋削加工により軌道21a,21bの溝形状を整えた。次に、一部のサンプルについては冷間ローリング加工を行った後に、他のサンプルについては冷間ローリング加工を行わないで、高周波焼入れを行った。次に、180℃で2時間の焼戻し処理を施して、表面硬さをHRC59にした。次に、研削加工により軌道21a,21bの溝形状を含む各寸法が正確な寸法になるようにした。これにより、図9に示す複列の外輪21を得た。
Next, as shown in FIG. 8 (c), the flange 22, the outer ring 21, and the portion 23 connecting the portions 210 between the two tracks were formed into an integrated shape by a forging process. Next, the connecting portion 23 was removed by a piercing punch process to obtain the shape shown in FIG.
Next, after removing the flange 22 by turning, the groove shapes of the tracks 21a and 21b were adjusted by turning. Next, after subjecting some samples to cold rolling, other samples were subjected to induction hardening without performing cold rolling. Next, a tempering treatment was performed at 180 ° C. for 2 hours to make the surface hardness HRC59. Next, each dimension including the groove shape of the tracks 21a and 21b was made accurate by grinding. As a result, a double row outer ring 21 shown in FIG. 9 was obtained.

次に、図9に示す複列の外輪21を、放電加工により軸方向で二等分(ラインHに沿って切断)した。そして、軌道21a側の部分を試験軸受の外輪20aとした
なお、実際の外側部材2を作製する場合には、図8(d)に示す形状にした後にフランジ22を除去しないで、旋削加工により軌道21a,21bの溝形状を整えた後に、高周波焼入れおよび焼戻し処理を施す。
Next, the double-row outer ring 21 shown in FIG. 9 was divided into two equal parts (cut along line H) in the axial direction by electric discharge machining. The portion on the raceway 21a side is the outer ring 20a of the test bearing. Note that when the actual outer member 2 is manufactured, the flange 22 is not removed after the shape shown in FIG. After adjusting the groove shapes of the tracks 21a and 21b, induction hardening and tempering treatment is performed.

得られた内輪10aおよび外輪20aを軸線Zを含む平面で切断して、軸線Zを含む断面を露出させた。この断面を、先ず、飽和ピクリン酸水溶液で腐食させ、次いで、飽和ピクリン酸水溶液に塩化第2鉄を少量混合した液体でさらに腐食させた後、その断面を実体顕微鏡で観察した。この顕微鏡写真を基に、内輪10aおよび外輪20aの断面に現れた鍛流線Tを描き、この鍛流線Tに基づいて塑性流れ曲線LT を描いた。 The obtained inner ring 10a and outer ring 20a were cut along a plane including the axis Z to expose a cross section including the axis Z. This cross section was first corroded with a saturated picric acid aqueous solution, then further corroded with a liquid obtained by mixing a small amount of ferric chloride in a saturated picric acid aqueous solution, and then the cross section was observed with a stereomicroscope. Based on this micrograph, draw a metal flows T appearing in the cross section of the inner ring 10a and the outer ring 20a, painted plastic flow curve L T on the basis of the grain flow T.

その結果、内輪10aは、塑性流れ曲線LT は厚さ方向中心部付近に存在し、軌道溝11aから500μmの深さまでには存在していなかった。
外輪20aは、軌道溝21aの表層部付近に塑性流れ曲線LT が存在していたので、図4(b)に示すように、塑性流れ曲線LT の方向を示す線である「塑性流れを示す直線LS 」と、軌道溝21a(21A)の転動体接触点Pでの接線L0 を描き、塑性流れを示す直線LS と接線L0 とのなす角度θを測定した。また、塑性流れの存在深さdとして、軌道溝21a(21A)の転動体接触点Pと、点Pの法線Hと直線LS との交点Qとの距離を測定した。その結果を下記の表1に示す。
As a result, the inner ring 10a, the plastic flow curves L T exists in the vicinity of the thickness direction center, the raceway grooves 11a to a depth of 500μm were not present.
The outer ring 20a, so plastic flow curve L T to the vicinity of the surface layer portion of the raceway groove 21a is present, as shown in FIG. 4 (b), the "plastic flow is a line indicating the direction of plastic flow curve L T The straight line L S "and the tangent line L 0 at the rolling element contact point P of the raceway groove 21a (21A) are drawn, and the angle θ between the straight line L S indicating the plastic flow and the tangent line L 0 is measured. Further, as the existence depth d of the plastic flow, the distance between the rolling element contact point P of the raceway groove 21a (21A) and the intersection point Q between the normal H of the point P and the straight line L S was measured. The results are shown in Table 1 below.

このようにして得られた1種類の内輪10aと、表1に示すようにθおよびdが異なる35種類の外輪20aと、SUJ2製で通常の熱処理が施された1種類の玉3を用い、図6に示す試験軸受を、サンプルNo. 1〜35で各10個組み立てた。
図6に示す試験方法では、先ず、内輪10aに回転軸Jを取り付けた状態で試験軸受を容器Y内に置く。この状態で、容器Y内に、潤滑油「VG10」に水を5質量%混合した液体Eを入れ、液体E内に試験軸受全体が浸るようにする。次に、回転軸Jの上からアキシャル荷重Pa(8820N)を付与した状態で、回転軸Jを速度1000min-1で回転させる。
Using one kind of inner ring 10a thus obtained, 35 kinds of outer rings 20a having different θ and d as shown in Table 1, and one kind of ball 3 made of SUJ2 and subjected to normal heat treatment, Ten test bearings shown in FIG. 6 were each assembled with sample Nos. 1-35.
In the test method shown in FIG. 6, first, the test bearing is placed in the container Y with the rotating shaft J attached to the inner ring 10a. In this state, the liquid E in which 5% by mass of water is mixed with the lubricating oil “VG10” is placed in the container Y so that the entire test bearing is immersed in the liquid E. Next, the rotating shaft J is rotated at a speed of 1000 min −1 with an axial load Pa (8820 N) applied from above the rotating shaft J.

また、この試験で使用する試験機を、試験軸受に生じる振動を振動計で常時測定し、外輪20aの軌道溝21aに剥離が生じて振動計の測定値が一定値を超えると回転を停止するとともに、回転開始から停止までの時間を記録するように構成する。そして、この回転停止までの時間を試験軸受の寿命と、L10寿命を調べた。さらに、各サンプルのL10寿命をNo. 2のL10寿命で除算して、「L10寿命比」を算出した。その結果も下記の表1に併せて示す。 In addition, the test machine used in this test constantly measures the vibration generated in the test bearing with a vibration meter, and when the measured value of the vibration meter exceeds a certain value due to the separation in the raceway groove 21a of the outer ring 20a, the rotation is stopped. At the same time, the time from the start to the end of rotation is recorded. The time until the rotation stop was examined for the life of the test bearing and the L 10 life. Furthermore, each sample of the L 10 life was divided by No. 2 of L 10 life was calculated to "L 10 life ratio". The results are also shown in Table 1 below.

Figure 0004661409
Figure 0004661409

また、得られたデータのうちd≧100μmのものを用いて、外輪20aの角度θとL10寿命比との関係にまとめた。このグラフを図10に示す。さらに、得られたデータのうち0≦θ≦50°のものを用いて、外輪20aの距離d(塑性流れの軌道面からの深さ)とL10寿命との関係にまとめた。このグラフを図11に示す。 Further, by using those d ≧ 100 [mu] m among the obtained data are summarized in the relationship between the angle θ and the L 10 life ratio of the outer ring 20a. This graph is shown in FIG. Furthermore, using those 0 ≦ θ ≦ 50 ° of the obtained data, the distance d (the depth from the raceway surface of the plastic flow) of the outer ring 20a and are summarized in the relationship between the L 10 life. This graph is shown in FIG.

表1および図10のグラフから分かるように、外輪の距離dが100μm以上の場合、外輪の角度θが0〜50°であると、No. 2の2.2倍〜8.2倍の寿命が得られるが、外輪の角度θが55°以上であると、No. 2の0.9倍〜1.1倍の寿命となる。
表1および図11のグラフから分かるように、外輪の角度θが0〜50°の場合、外輪の距離dが100μm以上であるとNo. 2の2.2倍〜8.2倍の寿命が得られるが、外輪の距離dが90μm以下であるとNo. 2の0.5倍〜1.1倍の寿命となる。
また、図11のグラフから、距離dが100μm以上で距離dが同じ場合には、角度θが小さいほど寿命を長くできることが分かる。
As can be seen from the graphs in Table 1 and FIG. 10, when the outer ring distance d is 100 μm or more, the outer ring angle θ is 0 to 50 °, and the life is 2.2 to 8.2 times that of No. 2. However, when the angle θ of the outer ring is 55 ° or more, the life is 0.9 to 1.1 times that of No. 2.
As can be seen from the graphs of Table 1 and FIG. 11, when the outer ring angle θ is 0 to 50 °, the outer ring distance d is 100 μm or more, and the life is 2.2 to 8.2 times that of No. 2. Although the outer ring distance d is 90 μm or less, the lifetime is 0.5 to 1.1 times that of No. 2.
Further, it can be seen from the graph of FIG. 11 that when the distance d is equal to or greater than 100 μm and the distance d is the same, the life can be extended as the angle θ decreases.

小型軽量化された車輪支持用軸受ユニットの一例を示す断面図である。It is sectional drawing which shows an example of the bearing unit for wheel support reduced in size and weight. 塑性流れ曲線、塑性流れを示す線、および塑性流れの軌道面からの深さを説明する断面図である。It is sectional drawing explaining the depth from the track surface of a plastic flow curve, the line which shows a plastic flow, and a plastic flow. 塑性流れの軌道面からの深さを100μm以上、角度θを0°以上50°以下とする接触角度の範囲を説明する図である。It is a figure explaining the range of the contact angle which makes the depth from the track surface of a plastic flow 100 micrometers or more and makes angle (theta) 0 degrees or more and 50 degrees or less. 冷間ローリング加工による作用および角度θを説明する断面図である。It is sectional drawing explaining the effect | action and angle (theta) by a cold rolling process. 実施形態の軸受ユニットを示す断面図である。It is sectional drawing which shows the bearing unit of embodiment. 実施形態で行った寿命試験を説明する図である。It is a figure explaining the life test performed in embodiment. 実施形態で採用した軸受ユニットの内輪の作製方法を説明する図である。It is a figure explaining the production method of the inner ring | wheel of the bearing unit employ | adopted by embodiment. 実施形態で採用した軸受ユニットの外側部材の作製方法を説明する図である。It is a figure explaining the production methods of the outer member of the bearing unit employ | adopted by embodiment. 図5の軸受ユニットの外側部材からフランジを除去した状態を示す断面図である。It is sectional drawing which shows the state which removed the flange from the outer side member of the bearing unit of FIG. 実施形態で行った寿命試験のデータ(d≧100μm)を、外輪(外側部材)の角度θとL10寿命比との関係にまとめたグラフである。The data of life tests conducted in the embodiment (d ≧ 100 [mu] m), is a graph summarizing the relationship between the angle θ and the L 10 life ratio of the outer ring (outer member). 実施形態で行った寿命試験のデータ(0≦θ≦50°)を、外輪(外側部材)の塑性流れの軌道面からの深さ(d)とL10寿命との関係にまとめたグラフである。The data of life tests conducted in embodiments (0 ≦ θ ≦ 50 °) , is a graph summarizing the relationship of the outer ring depth from the raceway surface of the plastic flow of the (outer member) (d) and the L 10 life .

符号の説明Explanation of symbols

1 内側部材
1a 第1の部材(ハブ輪)
1b 第2の部材
11b 内輪軌道
11 内輪
12 ハブ
13 フランジ
2 外側部材
21 外輪
21a 軌道溝
21b 軌道溝
22a 懸架装置(車体側部材)を固定するボルト穴
22 フランジ
3 玉(転動体)
4 保持器
5 第1のシール
6 第2のシール
7 スリンガ
8 車輪側部材
Ls 塑性流れを示す直線
0 接触点での軌道溝の接線
T 鍛流線
T 塑性流れ曲線
P 接触点
0 初期接触点
1 接触点
2 接触点
θ 接線L0 と塑性流れを示す直線Ls とのなす角度
1 Inner member 1a First member (hub wheel)
DESCRIPTION OF SYMBOLS 1b 2nd member 11b Inner ring track 11 Inner ring 12 Hub 13 Flange 2 Outer member 21 Outer ring 21a Track groove 21b Track groove 22a Bolt hole for fixing a suspension device (vehicle body side member) 22 Flange 3 Ball (rolling element)
4 Cage 5 First seal 6 Second seal 7 Slinger 8 Wheel side member Ls Straight line indicating plastic flow L 0 Tangent line of raceway groove at contact point T Forging line L T plastic flow curve P Initial contact point P 0 Contact point P 1 Contact point P 2 Contact point θ Angle between tangent L 0 and straight line Ls indicating plastic flow

Claims (2)

複列の軌道を有する外輪およびフランジが一体に、素材の鍛造工程を経て製造された軸受ユニット外側部材であって、
軸線を含む断面において、極端に折れ曲がった鍛流線の頂点を結んだ線であり、素材の芯部を示す塑性流れ曲線軌道面から100μm以上の深さに存在し、前記断面における軌道溝の転動体接触点での接線と、前記断面における前記塑性流れ曲線の方向を示す線である塑性流れを示す直線と、のなす角度が、0°以上50°以下であることを特徴とする軸受ユニット外側部材。
An outer ring and a flange having a double row raceway are integrally formed through a forging process of a material, and are bearing unit outer members.
And have you to a cross section including the axis, a line connecting the vertices of extreme bent grain flows, plastic flow curve showing the core portion of the material is present from the raceway surface to a depth of more than 100 [mu] m, in the cross-section An angle formed by a tangent line at a contact point of the raceway groove with a rolling element and a straight line indicating a plastic flow, which is a line indicating the direction of the plastic flow curve in the cross section , is 0 ° or more and 50 ° or less. Bearing unit outer member to be used.
請求項1記載の外側部材と、内輪と、転動体を備えたことを特徴とする軸受ユニット A bearing unit comprising the outer member according to claim 1, an inner ring, and rolling elements .
JP2005197956A 2005-07-06 2005-07-06 Bearing unit outer member, bearing unit Expired - Fee Related JP4661409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005197956A JP4661409B2 (en) 2005-07-06 2005-07-06 Bearing unit outer member, bearing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005197956A JP4661409B2 (en) 2005-07-06 2005-07-06 Bearing unit outer member, bearing unit

Publications (2)

Publication Number Publication Date
JP2007016865A JP2007016865A (en) 2007-01-25
JP4661409B2 true JP4661409B2 (en) 2011-03-30

Family

ID=37754202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005197956A Expired - Fee Related JP4661409B2 (en) 2005-07-06 2005-07-06 Bearing unit outer member, bearing unit

Country Status (1)

Country Link
JP (1) JP4661409B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5084491B2 (en) * 2007-12-26 2012-11-28 株式会社ムロコーポレーション Double-sided protruding cylindrical part molding method from flat plate and double-sided protruding cylindrical part integrally molded product
JP2009228747A (en) * 2008-03-21 2009-10-08 Ntn Corp Method of manufacturing outer ring, outer ring for double row angular contact ball bearing, double row angular contact bearing, and bearing device for wheel
DE112009000609T5 (en) * 2008-03-13 2011-01-13 NTN Corporation, Osaka-shi Method for producing an outer ring, outer ring for double-row angular contact bearing, double-row angular contact bearing and bearing device for wheels
JP6429441B2 (en) * 2013-09-20 2018-11-28 Ntn株式会社 Wheel bearing device, intermediate body, and manufacturing method thereof
JP6224402B2 (en) * 2013-10-04 2017-11-01 Ntn株式会社 Method for manufacturing outer member of wheel bearing device
DE102019214488A1 (en) * 2019-09-23 2021-03-25 Aktiebolaget Skf Bearings with a single optical measuring fiber for load detection and storage unit with combined bearings
DE102019218794A1 (en) * 2019-12-03 2021-06-10 Thyssenkrupp Ag Process for increasing the load-bearing capacity and rolling device for hard rolling a surface-hardened roller bearing raceway
CN114406604A (en) * 2021-11-18 2022-04-29 中国航发哈尔滨轴承有限公司 Forming method of eccentric ball bearing outer ring for controlling distribution of metal flow lines along channel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083513A (en) * 2003-09-10 2005-03-31 Ntn Corp Wheel bearing device

Also Published As

Publication number Publication date
JP2007016865A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
JP6523677B2 (en) Method of manufacturing hub wheel and inner member of wheel bearing device
US20090257701A1 (en) Process for manufacturing rolling contact member, process for manufacturing rolling bearing, raceway member of rolling bearing and rolling bearing
US7651275B2 (en) Wheel bearing apparatus
US10137541B2 (en) Method for manufacturing bearing ring member
CN100416122C (en) Bearing device for wheel
JP4661409B2 (en) Bearing unit outer member, bearing unit
JP2006220221A (en) Rolling bearings, bearing units
JP4572864B2 (en) Wheel support bearing unit outer member, wheel support bearing unit
JP2005180627A (en) Wheel ring for bearing unit for wheel support, manufacturing method thereof, and bearing unit for wheel support
JP4561389B2 (en) Outside member of bearing unit
JP5147259B2 (en) Manufacturing method of wheel bearing device
JP2006064036A (en) Wheel support bearing device
JP2014122378A (en) Rolling bearing
JP2006250317A (en) Rolling bearings, bearing units
EP2497583A1 (en) Method of manufacturing a shaft member for a wheel hub assembly with rolling bearings
JP5050587B2 (en) Rolling bearing device for wheel support
JP2015048915A (en) Rolling bearing unit for wheel support and manufacturing method of hub for rolling bearing unit for wheel support
JP4225061B2 (en) Rolling bearing unit for wheel support
JP2008150687A (en) Rolling bearing device for wheel support
JP2009299759A (en) Wheel supporting rolling bearing unit
JP2007147079A (en) Method of manufacturing hub ring and outward member of wheel bearing device
JP2009041652A (en) Rolling bearing and manufacturing method thereof
JP2007100715A (en) Bearing device for vehicle
JP2006226373A (en) Rolling bearing unit for wheel support
JP2010014129A (en) Hub unit bearing and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R150 Certificate of patent or registration of utility model

Ref document number: 4661409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees