JP4572864B2 - Wheel support bearing unit outer member, wheel support bearing unit - Google Patents

Wheel support bearing unit outer member, wheel support bearing unit Download PDF

Info

Publication number
JP4572864B2
JP4572864B2 JP2006117785A JP2006117785A JP4572864B2 JP 4572864 B2 JP4572864 B2 JP 4572864B2 JP 2006117785 A JP2006117785 A JP 2006117785A JP 2006117785 A JP2006117785 A JP 2006117785A JP 4572864 B2 JP4572864 B2 JP 4572864B2
Authority
JP
Japan
Prior art keywords
raceway groove
ball
bearing unit
flange
outer member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006117785A
Other languages
Japanese (ja)
Other versions
JP2007292116A (en
Inventor
光司 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006117785A priority Critical patent/JP4572864B2/en
Publication of JP2007292116A publication Critical patent/JP2007292116A/en
Application granted granted Critical
Publication of JP4572864B2 publication Critical patent/JP4572864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement

Description

この発明は、車輪支持用の軸受ユニット(複列の軌道溝を有する外輪およびフランジが一体になっている外側部材と、内輪と、ボールを備えた軸受)に関する。 The present invention relates to a bearing unit for supporting a wheel (an outer member having a double row raceway groove and an outer member integrated with a flange, an inner ring, and a ball bearing).

近年、自動車の燃費を向上するために、軽量化を目的とした車輪支持用軸受のユニット化が進んでいる。図8は、ユニット化された車輪支持用軸受の一例を示す断面図である。このユニットは、内側部材1と、外側部材2と、ボール3と、保持器4と、第1のシール5と、第2のシール6と、スリンガ7とで構成され、ボール3が転動する軌道溝を二列備えている。   In recent years, in order to improve the fuel efficiency of automobiles, unitization of wheel support bearings for the purpose of weight reduction has been advanced. FIG. 8 is a cross-sectional view showing an example of a unitized wheel support bearing. This unit includes an inner member 1, an outer member 2, a ball 3, a cage 4, a first seal 5, a second seal 6, and a slinger 7, and the ball 3 rolls. Two rows of raceway grooves are provided.

内側部材1は、二列の軌道溝を有する内輪11、車軸を内嵌するハブ12、および車輪側部材8を固定するフランジ13を有する。内側部材1は第1の部材1aと第2の部材1bとからなる。第1の部材1aは、内輪11の一方の内輪軌道溝11aの部分とハブ12とフランジ13が一体に形成されたもの(ハブ輪)である。第2の部材1bは、他方の内輪軌道溝11bが形成されたリング状部材であって、第1の部材1aに外嵌されている。   The inner member 1 has an inner ring 11 having two rows of raceway grooves, a hub 12 for fitting an axle, and a flange 13 for fixing the wheel side member 8. The inner member 1 includes a first member 1a and a second member 1b. The first member 1a is formed by integrally forming a portion of one inner ring raceway groove 11a of the inner ring 11, the hub 12 and the flange 13 (hub ring). The second member 1b is a ring-shaped member in which the other inner ring raceway groove 11b is formed, and is externally fitted to the first member 1a.

外側部材2は、二列の軌道溝21a,21bを有する外輪21と、車体の懸架装置(車体側部材)を固定するボルト穴22aが形成されたフランジ22とが一体に形成されたものである。
このような複雑な形状を有する内側部材1および外側部材2は、従来、0.5質量%程度の炭素を含有する中炭素鋼からなる素材を用い、熱間鍛造で所定形状に加工した後、軌道溝の表層部を高周波焼入れにより硬化させることで製造されている。
The outer member 2 is formed integrally with an outer ring 21 having two rows of raceway grooves 21a and 21b and a flange 22 in which a bolt hole 22a for fixing a vehicle suspension device (vehicle body side member) is formed. .
The inner member 1 and the outer member 2 having such a complicated shape are conventionally made of a medium carbon steel containing about 0.5% by mass of carbon, and after being processed into a predetermined shape by hot forging, It is manufactured by hardening the surface layer of the raceway groove by induction hardening.

また、内部に水が浸入するような過酷な使用条件に耐えることができるように、車輪支持用軸受ユニットの寿命向上要求が高まっている。この要求に応える方法としては、特定の合金成分を含有した鋼からなる素材を用いる方法や、清浄度の高い鋼からなる素材を用いる方法があるが、これらの方法には、素材が調達しにくくなる、生産性が低減する、コストが上昇する等の問題がある。   In addition, there is an increasing demand for improving the life of the wheel support bearing unit so that it can withstand the severe use conditions in which water enters the inside. There are two methods to meet this requirement: a method using a material made of steel containing a specific alloy component and a method using a material made of steel with a high degree of cleanliness. There are problems such as productivity reduction and cost increase.

これに対して、下記の特許文献1および2には、鍛造工程の条件で変化するメタルフロー(鍛流線)の向きを特定範囲に設定することにより、転がり軸受の寿命を長くすることが開示されている。特許文献1では、回転軸を含む断面におけるメタルフローの当該回転軸に対する角度の最大値を10°以上50°以下に設定している。特許文献2では、ボールの公転方向に対するメタルフローの角度を±15°以内に設定している。   On the other hand, the following Patent Documents 1 and 2 disclose that the life of the rolling bearing is extended by setting the direction of the metal flow (forged streamline) that changes depending on the conditions of the forging process within a specific range. Has been. In patent document 1, the maximum value of the angle with respect to the said rotating shaft of the metal flow in the cross section containing a rotating shaft is set to 10 degrees or more and 50 degrees or less. In Patent Document 2, the angle of the metal flow with respect to the ball revolution direction is set within ± 15 °.

また、下記の特許文献3には、転がり寿命の向上を図りながら軌道溝の加工取り代を削減することを目的として、軌道溝の曲率中心と「ファイバーフロー」の断面が析出している点とを直線で結び、この直線の軌道面との交点で軌道溝の接線を引き、この交点におけるファイバーフローの接線と、前記軌道溝の接線とのなす角度を「ファイバーフローの角度」と定義し、この角度を15°以下にすることが記載されている。
特許第3123055号公報 特開平8−42576号公報 特開2005−35513号公報
Further, in Patent Document 3 below, for the purpose of reducing the machining allowance of the raceway groove while improving the rolling life, the center of curvature of the raceway groove and the section of “fiber flow” are deposited. Are connected with a straight line, the tangent line of the raceway groove is drawn at the intersection with the raceway surface of this straight line, and the angle formed by the tangent line of the fiber flow at this intersection point and the tangent line of the raceway groove is defined as the “fiber flow angle”. It is described that this angle is 15 ° or less.
Japanese Patent No. 3123055 JP-A-8-42576 JP-A-2005-35513

本発明は、鍛造時の素材変形に伴う材料の流れに着目した方法ではあるが、特許文献1〜3とは異なる方法で、内部に水が浸入するような過酷な使用条件下での転がり軸受の寿命を長くすることを課題とする。   Although this invention is a method which paid its attention to the flow of the material accompanying the raw material deformation | transformation at the time of forging, it is a method different from patent documents 1-3, and it is a rolling bearing under the severe use conditions that water infiltrates inside. It is an object to prolong the life of the product.

上記課題を解決するために、本発明は、複列の軌道溝を有する外輪およびフランジが一体に、素材の鍛造工程を経て製造され、内輪およびボールとともに車輪支持用軸受ユニットを構成する車輪支持用軸受ユニット外側部材であって、軸線を含む断面における軌道溝のボール接触点での接線と、前記断面における軌道溝表層部の折れ曲がって方向性を持って並んだ鍛流線の折れ曲がり点を結んだ線である塑性流れ曲線の方向を示す直線と、のなす角度が30°以上90°以下であり、軌道溝とボールとの接触楕円の長軸の長さを2Aとしたときに、前記断面における軌道溝表層部に存在する前記塑性流れ曲線は、軌道溝とボールとの接触点から1.1A以上離れた位置を通過することを特徴とする車輪支持用軸受ユニット外側部材を提供する。また、この外側部材と、内輪と、ボールを備えたことを特徴とする車輪支持用軸受ユニットを提供する。 In order to solve the above-mentioned problems, the present invention provides a wheel support bearing unit in which an outer ring and a flange having a double row raceway groove are integrally manufactured through a material forging process, and constitutes a wheel support bearing unit together with the inner ring and the ball. This is a bearing unit outer member that connects the tangent line at the ball contact point of the raceway groove in the cross section including the axis and the bend point of the forged streamline aligned with the direction of the bend of the track groove surface layer in the cross section . and the straight line indicating the direction of plastic flow curve is a line, or less angle of 90 ° 30 ° or more, when the length of the major axis of the contact ellipse between the raceway groove and the ball was 2A, in the cross section The plastic flow curve existing in the surface portion of the raceway groove provides a wheel support bearing unit outer member characterized by passing a position separated by 1.1 A or more from the contact point between the raceway groove and the ball. Further, a wheel support bearing unit comprising the outer member, an inner ring, and a ball is provided.

本発明はまた、複列の軌道溝を有する内輪、車軸を内嵌するハブ、および車輪側部材を固定するフランジを有し、少なくとも一列の軌道溝とハブとフランジが一体に、素材の鍛造工程を経て製造された内側部材と、複列の軌道溝を有する外輪および車体側部材を固定するフランジが一体に、素材の鍛造工程を経て製造された外側部材と、ボールと、を備えた車輪支持用軸受ユニットにおいて、フランジと一体化された内輪の軌道溝および外輪の軌道溝の少なくともいずれかは、軸線を含む断面における軌道溝のボール接触点での接線と、前記断面における軌道溝表層部の折れ曲がって方向性を持って並んだ鍛流線の折れ曲がり点を結んだ線である塑性流れ曲線の方向を示す直線と、のなす角度が30°以上90°以下であり、軌道溝とボールとの接触楕円の長軸の長さを2Aとしたときに、前記断面における軌道溝表層部に存在する前記塑性流れ曲線は、軌道溝とボールとの接触点から1.1A以上離れた位置を通過することを特徴とする車輪支持用軸受ユニットを提供する。 The present invention also includes an inner ring having a double row of raceway grooves, a hub for fitting an axle, and a flange for fixing a wheel side member, wherein at least one row of raceway grooves, the hub and the flange are integrally formed, and a material forging process A wheel support comprising an inner member manufactured through a forging process, an outer ring having a double row raceway groove and a flange for fixing a vehicle body side member, an outer member manufactured through a material forging process, and a ball. In the bearing unit for a bearing, at least one of the raceway groove of the inner ring and the raceway groove of the outer ring integrated with the flange is tangent to the ball contact point of the raceway groove in the cross section including the axis, and the raceway groove surface layer portion in the cross section The angle formed by the straight line indicating the direction of the plastic flow curve, which is a line connecting the bent points of the forged flow lines that are bent and arranged with directionality, is 30 ° or more and 90 ° or less. When the length of the long axis of the contact ellipse is 2A, the plastic flow curve existing on the surface of the raceway groove in the cross section passes a position 1.1A or more away from the contact point between the raceway groove and the ball. A wheel support bearing unit is provided.

複列の軌道輪と単列の軌道輪とを比較した場合や、軌道輪にフランジが一体化されている軸受部材とフランジがない軌道輪のみの軸受部材とを比較した場合に、これらが素材の鍛造工程を経て製造されていると、より複雑な形状である「複列の軌道輪」および「軌道輪にフランジが一体化されている軸受部材」は、鍛造工程で素材の芯部(中心付近の部分)が軌道溝表層部に出現し易くなる。素材の芯部が軌道溝表層部へ出現していることは、軸線を含む断面を腐食させて実体顕微鏡で観察した時に、軌道溝表層部で多数の鍛流線が極端に折れ曲がって方向性を持って並んだ状態になっていることにより確認できる。   When comparing a double-row bearing ring with a single-row bearing ring, or when comparing a bearing member with a flange integrated with the bearing ring and a bearing member with only a bearing ring without a flange, these are the materials. When the forging process is used, the more complex shapes of “double-row race ring” and “bearing member with a flange integrated with the race ring” (Near part) tends to appear on the surface of the raceway groove. The appearance of the core of the material on the surface of the raceway groove corrodes the cross section including the axis, and when observed with a stereomicroscope, a large number of forging lines are bent at the surface of the raceway groove and the directionality is changed. This can be confirmed by holding them in a line.

本発明では、折れ曲がって方向性を持って並んだ鍛流線の折れ曲がり点を結んだ線を「塑性流れ曲線」と称し、その方向を示す線を「塑性流れ曲線の方向を示す直線」と称する。ここで、素材の芯部(中心付近の部分)は、周辺の部分よりも介在物が存在しやすい(鋼の清浄度が低い)ため、芯部が軌道溝表層部に存在すると、介在物を起点とした剥離が生じやすい。 In the present invention, a line connecting bent points of forged flow lines that are bent and arranged with directionality is referred to as a “plastic flow curve”, and a line indicating the direction is referred to as a “straight line indicating the direction of the plastic flow curve”. . Here, since the core part of the material (part near the center) contains inclusions more easily than the peripheral part (the cleanliness of the steel is low), if the core part exists in the track groove surface layer part, Peeling from the starting point is likely to occur.

しかし、本発明によれば、素材の芯部が軌道溝表層部(表面から、最大剪断応力深さに相当する深さまでの範囲)へ出現した場合でも、(1) 「塑性流れ曲線の方向を示す直線」と「軌道溝のボール接触点での接線」とのなす角度(θ)が30°以上90°以下であり、(2) 塑性流れ曲線が、軌道溝とボールとの接触点から1.1A以上(好ましくは1.3A以上)離れた位置を通過する、という二つの条件を満たすことにより、これらの条件を満たさない場合と比較して、剥離起点となる介在物の存在率が低くなって、軌道溝に剥離が生じ難くなる。
具体的には、剥離の起点となる介在物は鍛流線に沿って存在しているため、前記角度θを30°以上90°以下と大きくすることにより、これより小さい場合と比較して、介在物の軌道溝の面積当たりの存在率が低くなる。
However, according to the present invention, even when the core portion of the material appears on the surface of the raceway groove (the range from the surface to the depth corresponding to the maximum shear stress depth), (1) “the direction of the plastic flow curve The angle (θ) between the straight line shown and the “tangent at the ball contact point of the raceway groove” is 30 ° to 90 °, and (2) the plastic flow curve is 1 from the contact point between the raceway groove and the ball. .. By satisfying the two conditions of passing through a position separated by 1 A or more (preferably 1.3 A or more), the presence rate of inclusions as a separation starting point is lower than when these conditions are not satisfied. Thus, the raceway grooves are less likely to be peeled off.
Specifically, since the inclusion that becomes the starting point of the separation exists along the forging line, by increasing the angle θ to 30 ° or more and 90 ° or less, compared to a case where it is smaller than this, The existence rate per area of the raceway groove of the inclusion becomes low.

また、図2に示すように、前記条件(2) を満たす塑性流れ曲線Sは、軌道溝21bの表層部で接触楕円25の外側に存在しているが、前記条件(2) を満たさない塑性流れ曲線S’は、軌道溝21bの表層部で接触楕円25の内側に存在している。すなわち、「軌道溝とボールとの接触楕円の長軸の長さを2Aとしたときに、軌道溝とボールとの接触点から1.1A以上離れた位置を通過している」塑性流れ曲線Sは、軌道溝21bの表層部で接触楕円25の外側に存在している。そして、塑性流れ曲線は介在物の存在率が高い素材の芯部を示す線であるため、本発明では、塑性流れ曲線が接触楕円の外側に存在することで、ボールと軌道溝との間の最も負荷がかかる面での介在物の存在率を低くすることができる。   Further, as shown in FIG. 2, the plastic flow curve S satisfying the condition (2) exists outside the contact ellipse 25 in the surface layer portion of the raceway groove 21b, but does not satisfy the condition (2). The flow curve S ′ exists inside the contact ellipse 25 at the surface layer portion of the raceway groove 21b. In other words, “when the length of the long axis of the contact ellipse between the raceway groove and the ball is 2A, the plastic flow curve S passes through a position 1.1 A or more away from the contact point between the raceway groove and the ball”. Exists outside the contact ellipse 25 in the surface layer portion of the raceway groove 21b. And since a plastic flow curve is a line which shows the core part of a material with a high presence rate of inclusions, in the present invention, the plastic flow curve exists outside the contact ellipse so It is possible to reduce the presence rate of inclusions on the most loaded surface.

なお、円柱状素材を用いる場合、円柱状素材の径方向で中心から半径の40%となる部分が軌道溝とボールとの接触楕円の外側になるようにすることや、素材の炭素含有率を12ppm以下、硫黄含有率を0.015質量%以下にすることが、ボールと軌道溝との間の最も負荷がかかる面での介在物の存在率を低くするという点で好ましい。   In addition, when using a cylindrical material, the portion that is 40% of the radius from the center in the radial direction of the cylindrical material should be outside the contact ellipse between the raceway groove and the ball, or the carbon content of the material It is preferable that the sulfur content is 12 ppm or less and the sulfur content is 0.015% by mass or less from the viewpoint of reducing the presence rate of inclusions on the most loaded surface between the ball and the raceway groove.

本発明によれば、素材の鍛造工程を経て製造された車輪支持用軸受ユニット外側部材の、軸線を含む断面における軌道溝のボール接触点での接線と、前記断面における軌道溝表層部の塑性流れ曲線の方向を示す直線とのなす角度(θ)が30°以上90°以下であり、塑性流れ曲線が、軌道溝とボールとの接触点から1.1A以上離れた位置を通過するという二つの条件を満たすことにより、これらの条件を満たさない場合と比較して、車輪支持用軸受ユニットの寿命を長くすることができる。 According to the present invention, the material of the forging process the via the wheels produced supporting bearing unit outside the side member, the tangent of the ball contact point of the raceway groove in a cross section including the axis, raceway groove surface portion of the cross section The angle (θ) formed with a straight line indicating the direction of the plastic flow curve is 30 ° or more and 90 ° or less, and the plastic flow curve passes through a position separated by 1.1 A or more from the contact point between the raceway groove and the ball. by two conditions are satisfied that, in comparison with a case that does not meet these conditions, a longer wheel supporting bearing unit of life.

本発明の車輪支持用軸受ユニットによれば、フランジと一体化された内輪の軌道溝および外輪の軌道溝の少なくともいずれかについて、軸線を含む断面における軌道溝のボール接触点での接線と、前記断面における軌道溝表層部の塑性流れ曲線の方向を示す直線とのなす角度(θ)が30°以上90°以下であり、塑性流れ曲線が、軌道溝とボールとの接触点から1.1A以上離れた位置を通過するという二つの条件を満たすことにより、これらの条件を満たさない場合と比較して、内部に水が浸入するような過酷な使用条件での寿命を長くすることができる。   According to the wheel support bearing unit of the present invention, at least one of the inner ring raceway groove and the outer ring raceway groove integrated with the flange, the tangent at the ball contact point of the raceway groove in the cross section including the axis line, and The angle (θ) formed with the straight line indicating the direction of the plastic flow curve of the track groove surface layer in the cross section is 30 ° or more and 90 ° or less, and the plastic flow curve is 1.1A or more from the contact point between the track groove and the ball. By satisfying the two conditions of passing through a distant position, it is possible to extend the life under severe use conditions in which water enters the interior, compared to the case where these conditions are not satisfied.

以下、本発明の実施形態について説明する。
図1は、この実施形態の軸受ユニット外側部材を示す断面図である。この断面図は軸線を含む断面の左側部分のみを示し、右側部分は省略している。
この外側部材2は、図8に示すユニット化された車輪支持用軸受の外側部材2に相当し、二列の軌道溝21a,21bを有する外輪21と、車体の懸架装置(車体側部材)を固定するボルト穴22aが形成されたフランジ22と、が一体に形成されたものである。
この断面において、軌道溝21bの表層部に、塑性流れ曲線(鍛流線Tの折れ曲がり点を結んだ線)Sが存在している。軌道溝21aを構成する溝(軌道溝)の表層部には塑性流れ曲線が存在していない。符号P1 は軌道溝21aとボール3との接触点であり、符号P2 は軌道溝21bとボール3との接触点である。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a cross-sectional view showing a bearing unit outer member of this embodiment. This sectional view shows only the left part of the section including the axis, and the right part is omitted.
The outer member 2 corresponds to the outer member 2 of the unitized wheel support bearing shown in FIG. 8, and includes an outer ring 21 having two rows of raceway grooves 21a and 21b, and a vehicle suspension system (vehicle body side member). The flange 22 in which the bolt hole 22a to be fixed is formed is integrally formed.
In this cross section, a plastic flow curve (a line connecting the bent points of the forging line T) S exists in the surface layer portion of the raceway groove 21b. A plastic flow curve does not exist in the surface layer portion of the groove (track groove) constituting the track groove 21a. Reference symbol P 1 is a contact point between the raceway groove 21 a and the ball 3, and reference symbol P 2 is a contact point between the raceway groove 21 b and the ball 3.

図2は、図1の軌道溝21bの部分を拡大した図である。図2に、この塑性流れ曲線Sの方向を示す直線LS と、軌道溝21bのボール接触点P2 での接線L1 と、これらの線のなす角度θを示す。この例で角度θは82.5°である。
図2には、また、軌道溝21bのボール3との接触楕円25が、軌道溝21bの上側に投影表示されている。接触楕円25の中心は、軌道溝21bとボール3との接触点P2 であり、この点を示す直線Cと、接触楕円25の長軸25aの両端を示す直線H1 ,H2 が表示されている。そして、長軸25aの長さを2Aとすると、直線Cと直線H1 および直線H2 との距離はAとなる。
FIG. 2 is an enlarged view of a portion of the raceway groove 21b of FIG. FIG. 2 shows a straight line L S indicating the direction of the plastic flow curve S, a tangent line L 1 at the ball contact point P 2 of the raceway groove 21b, and an angle θ formed by these lines. In this example, the angle θ is 82.5 °.
In FIG. 2, a contact ellipse 25 of the raceway groove 21b with the ball 3 is projected and displayed on the upper side of the raceway groove 21b. The center of the contact ellipse 25 is a contact point P 2 between the raceway groove 21b and the ball 3, and a straight line C indicating this point and straight lines H 1 and H 2 indicating both ends of the major axis 25a of the contact ellipse 25 are displayed. ing. When the length of the long axis 25a is 2A, the distances between the straight line C and the straight lines H 1 and H 2 are A.

この例では、塑性流れ曲線Sの軌道溝21bとの交点Ps と、軌道溝21bのボール接触点P2 との距離Kが、K1 =1.89Aになっている。すなわち、この塑性流れ曲線Sは、軌道溝21bとボール3との接触点P2 から1.89Aだけ離れた位置を通過している。
したがって、この外側部材2は、本発明の二つの条件(30°≦θ≦90°、K≧1.1A)を満たしている。
なお、図2に二点鎖線で示した塑性流れ曲線S’は、軌道溝21bとの交点PS'と軌道溝21bのボール接触点P2 との距離K2 が、0.74Aになっている。すなわち、この塑性流れ曲線S’は、軌道溝21bとボール3との接触点P2 から0.74Aだけ離れた位置を通過している。
In this example, the intersection point P s of the track grooves 21b of the plastic flow curve S, the distance K between the ball contact point P 2 of the raceway groove 21b has become K 1 = 1.89A. That is, the plastic flow curve S passes through a position separated from the contact point P 2 between the raceway groove 21b and the ball 3 by 1.89A.
Therefore, the outer member 2 satisfies the two conditions (30 ° ≦ θ ≦ 90 °, K ≧ 1.1A) of the present invention.
Note that plastic flow curve S shown in FIG. 2 by the two-dot chain line 'is the intersection P S of the raceway groove 21b' distance K 2 between the ball contact point P 2 of the raceway groove 21b is turned 0.74A Yes. That is, the plastic flow curve S ′ passes through a position separated from the contact point P 2 between the raceway groove 21b and the ball 3 by 0.74A.

図3を用いて、図1の外側部材2の製造方法を説明する。
先ず、図3(a)に示すように、円柱状の素材を用意し、据え込み工程により、円柱の軸方向両側から押し潰す。これにより、図3(b)に示す状態とする。次に、鍛造工程にり、図3(c)に示すように、フランジ22と外輪21と、両軌道の間の部分210を繋ぐ部分23とが一体化された形状に成形する。次に、ピアスパンチ工程により、繋ぎ部分23を除去して、図3(d)に示す形状とする。次に、図3(e)に示すように、冷間ローリング成形で軌道溝21a,21bを形成する。
A method for manufacturing the outer member 2 of FIG. 1 will be described with reference to FIG.
First, as shown to Fig.3 (a), a column-shaped raw material is prepared and it crushes from the axial direction both sides of a cylinder by an upsetting process. As a result, the state shown in FIG. Next, in the forging process, as shown in FIG. 3C, the flange 22, the outer ring 21, and the portion 23 connecting the portions 210 between the two raceways are formed into an integrated shape. Next, the connecting portion 23 is removed by a piercing punch process to obtain the shape shown in FIG. Next, as shown in FIG. 3E, raceway grooves 21a and 21b are formed by cold rolling.

そして、軸方向におけるフランジ22の位置および繋ぎ部分23の位置と、冷間ローリング成形による拡径率を変えることにより、角度θが異なる外側部材2を得ることができる。また、使用する円柱状素材の直径を変えることにより、塑性流れ曲線Sの軌道面通過位置(点Ps )が異なる外側部材2を得ることができる。 And the outer member 2 from which angle (theta) differs can be obtained by changing the position of the flange 22 and the position of the connection part 23 in an axial direction, and the diameter expansion rate by cold rolling shaping | molding. Further, by changing the diameter of the cylindrical material to be used, it is possible to obtain the outer member 2 having a different orbital plane passing position (point P s ) of the plastic flow curve S.

本発明の実施例に相当する軸受ユニットを図4(a)に示す。この図は、軸線Zを含む断面図である。この軸受ユニットは、複列アンギュラ玉軸受の外輪21にフランジ22が一体化された形状であり、それぞれ一列の軌道11a,11bを備えた二つの内輪10a,10bと、二列の軌道溝21a,21bを備えた外輪21にフランジ22が一体化された外側部材2と、ボール3で構成されている。この軸受ユニットの内径(d)は25mmであり、外径(D)は63.5mmであり、幅(B)は44.5mmであり、作用点距離(K)は51mmである。   A bearing unit corresponding to the embodiment of the present invention is shown in FIG. This figure is a cross-sectional view including the axis Z. This bearing unit has a shape in which a flange 22 is integrated with an outer ring 21 of a double-row angular ball bearing, and includes two inner rings 10a and 10b each provided with one row of raceways 11a and 11b, and two rows of raceway grooves 21a, The outer member 21 is provided with an outer member 21 having a flange 22 integrated with an outer ring 21 provided with 21b, and a ball 3. The bearing unit has an inner diameter (d) of 25 mm, an outer diameter (D) of 63.5 mm, a width (B) of 44.5 mm, and an action point distance (K) of 51 mm.

この軸受ユニットについて、外側部材2の軌道溝21bのボール接触点P2 と点PS (塑性流れ曲線の軌道溝21bとの交点)との距離K、および角度θを、下記の表1に示す各値にした場合の寿命を調べた。その試験軸受用の外輪として、図5に示す形状の外輪20aを作製した。この外輪20は、外側部材2のフランジ22を除去して図4(b)に示す複列の外輪21とした後、この外輪21を軸方向で二等分(ラインHに沿って切断)することにより得られる。 Table 1 below shows the distance K and the angle θ between the ball contact point P 2 of the raceway groove 21b of the outer member 2 and the point P S (intersection of the raceway groove 21b of the plastic flow curve) for this bearing unit. The life of each value was examined. As an outer ring for the test bearing, an outer ring 20a having a shape shown in FIG. 5 was produced. In the outer ring 20, the flange 22 of the outer member 2 is removed to form a double row outer ring 21 shown in FIG. 4B, and then the outer ring 21 is divided into two equal parts in the axial direction (cut along the line H). Can be obtained.

先ず、図3(a)に示すように、SUJ2製の円柱状素材として、直径が50〜70mmの各値で、軸方向寸法が70mmであるものを用意した。次に、2500tonのプレス機(栗本鉄工所製)を用い、この素材を軸方向を上下方向にして上下の金型の間に置き、1150〜1200℃で、軸方向寸法が30〜40mmとなるまで押し潰すことにより、据え込み工程を行い、図3(b)に示す状態にした。   First, as shown in FIG. 3A, a columnar material made of SUJ2 having a diameter of 50 to 70 mm and an axial dimension of 70 mm was prepared. Next, using a 2500 ton press (manufactured by Kurimoto Iron Works), this material is placed between the upper and lower molds with the axial direction set to the vertical direction, and the axial dimension becomes 30 to 40 mm at 1150 to 1200 ° C. The upsetting process was performed by squeezing until the state shown in FIG.

次に、鍛造工程により、図3(c)に示すように、外輪21とフランジ22と、両軌道溝の間の部分210を繋ぐ部分23とが一体化された形状に成形した。次に、ピアスパンチ工程により、繋ぎ部分23を除去して、図3(d)に示す形状にした。次に、図3(e)に示すように、冷間ローリング成形を行って軌道21a,21bを形成するとともに、両端部の内径N1 を50mmに、中間部の内径N2 を41mmに、全体の外径Dを66mmに拡げることにより、外側部材2の形状とした。 Next, as shown in FIG.3 (c), the outer ring | wheel 21, the flange 22, and the part 23 which connected the part 210 between both raceway grooves were shape | molded by the forge process. Next, the connecting portion 23 was removed by a piercing punch process to obtain the shape shown in FIG. Next, as shown in FIG. 3E, cold rolling is performed to form the tracks 21a and 21b, the inner diameter N 1 at both ends is set to 50 mm, and the inner diameter N 2 at the middle is set to 41 mm. The outer member 2 was expanded to 66 mm, thereby forming the outer member 2.

次に、旋削加工によりフランジ22を除去した後、旋削加工により軌道溝21a,21bの溝形状を整えた。次に、高周波焼入れを行った後、180℃で2時間の焼戻し処理を施して、表面硬さをHRC59にした。次に、研削加工により軌道溝21a,21bの溝形状を含む各寸法が正確な寸法になるようにした。
なお、角度θを変化させるために、図3(c)の鍛造工程の条件および図3(e)の冷間ローリング成形による拡径率を変えた。また、使用した円柱状素材の直径の違いで、塑性流れ曲線Sの軌道面通過位置(点Ps )が変化する。
Next, after removing the flange 22 by turning, the groove shapes of the raceway grooves 21a and 21b were adjusted by turning. Next, after induction hardening, a tempering treatment was performed at 180 ° C. for 2 hours to make the surface hardness HRC59. Next, each dimension including the groove shape of the raceway grooves 21a and 21b was made accurate by grinding.
In order to change the angle θ, the conditions of the forging process in FIG. 3C and the diameter expansion rate by cold rolling forming in FIG. Further, the raceway passage position (point P s ) of the plastic flow curve S changes due to the difference in diameter of the cylindrical material used.

これにより、図4(b)に示す複列の外輪21を得、この外輪21を、放電加工により軸方向で二等分(ラインHに沿って切断)した。この状態で、二等分された各外輪20aについて、軸線Zを含む断面を腐食させて実体顕微鏡で観察し、軌道溝の表層部での鍛流線の状態を調べ、塑性流れ曲線Sを引いて角度θおよび距離Kを測定した。その結果を下記の表1に併せて示す。
なお、実際の外側部材2を作製する場合には、図3(e)に示す形状にした後にフランジ22を除去しないで、旋削加工により軌道溝21a,21bの溝形状を整えた後に、高周波焼入れおよび焼戻し処理を施す。
As a result, a double row outer ring 21 shown in FIG. 4B was obtained, and the outer ring 21 was divided into two equal parts (cut along the line H) in the axial direction by electric discharge machining. In this state, for each of the outer rings 20a divided in half, the cross section including the axis Z is corroded and observed with a stereomicroscope, the state of the streamline at the surface layer portion of the raceway groove is examined, and the plastic flow curve S is drawn. The angle θ and the distance K were measured. The results are also shown in Table 1 below.
When the actual outer member 2 is manufactured, the flange 22 is not removed after the shape shown in FIG. 3 (e), and the groove shapes of the raceway grooves 21a and 21b are adjusted by turning, and then induction hardening is performed. And tempering.

試験軸受用のボール3としては、SUJ2製で通常の熱処理が施されたものを用い、内輪10aは以下の方法で作製した。先ず、山陽特殊製鋼の高清浄度SUJ2鋼製の円柱状素材(直径50mm×軸方向寸法1m)を、軸方向で42mmに切断した後、旋削加工で内輪形状にした。次に、840℃に加熱した後に冷却する焼入れを行った後、180℃で2時間の焼戻し処理を施して、表面硬さをHRC61にした。次に、研削加工を行って、軌道溝11aの溝形状を含む各寸法が正確な寸法になるようにした。   As the ball 3 for the test bearing, a product made of SUJ2 and subjected to normal heat treatment was used, and the inner ring 10a was produced by the following method. First, a columnar material (diameter 50 mm × axial dimension 1 m) made of Sanyo Special Steel's high cleanliness SUJ2 steel was cut into 42 mm in the axial direction and then turned into an inner ring shape by turning. Next, after quenching by heating to 840 ° C. and cooling, tempering treatment was performed at 180 ° C. for 2 hours to make the surface hardness HRC61. Next, grinding was performed so that each dimension including the groove shape of the raceway groove 11a was an accurate dimension.

この試験軸受の寿命試験を、図5に示す方法で行った。先ず、内輪10aに回転軸Jを取り付けた状態で試験軸受を容器Y内に置く。この状態で、容器Y内に、潤滑油「VG10」に水を5質量%混合した液体Eを入れ、液体E内に試験軸受全体が浸るようにする。次に、回転軸Jの上からアキシャル荷重Pa(8820N)を付与した状態で、回転軸Jを速度1000min-1で回転させる。
また、この試験で使用する試験機を、試験軸受に生じる振動を振動計で常時測定し、外輪20aの軌道面に剥離が生じて振動計の測定値が一定値を超えると回転を停止するとともに、回転開始から停止までの時間を記録するように構成する。そして、この回転停止までの時間を試験軸受の寿命とした。
The life test of this test bearing was performed by the method shown in FIG. First, the test bearing is placed in the container Y with the rotary shaft J attached to the inner ring 10a. In this state, the liquid E in which 5% by mass of water is mixed with the lubricating oil “VG10” is placed in the container Y so that the entire test bearing is immersed in the liquid E. Next, the rotating shaft J is rotated at a speed of 1000 min −1 with an axial load Pa (8820 N) applied from above the rotating shaft J.
In addition, the testing machine used in this test constantly measures the vibration generated in the test bearing with a vibrometer, and when the measured value of the vibrometer exceeds a certain value due to separation on the raceway surface of the outer ring 20a, the rotation is stopped. The time from the start of rotation to the stop is recorded. The time until the rotation stopped was defined as the life of the test bearing.

また、各サンプル毎に10個の軸受を用意して試験を行い、L10寿命を調べた。そして、θ=0でK=1.1AであるNo. 1のL10寿命で、No. 1〜24のL10寿命を除算することにより、No. 1のL10寿命を「1」とした「寿命比」を得た。その結果を下記の表1に併せて示す。表1では本発明の構成から外れる数値に下線を施した。θとKの両方に下線のないものが本発明の実施例に相当し、いずれかに下線のあるものが比較例に相当する。
また、その結果を、θとL10寿命との関係を示すグラフ(図6)と、「K/A」とL10寿命との関係を示すグラフ(図7)にまとめた。
In addition, 10 bearings were prepared for each sample and tested, and the L10 life was examined. Then, by dividing the L10 life of No. 1-24 by the L10 life of No. 1 with θ = 0 and K = 1.1A, the “life ratio” is set to “1” as the L10 life of No. 1. " The results are also shown in Table 1 below. In Table 1, numerical values deviating from the configuration of the present invention are underlined. A case where neither θ nor K is underlined corresponds to an example of the present invention, and a case where either one is underlined corresponds to a comparative example.
The results are summarized in a graph (FIG. 6) showing the relationship between θ and the L10 life and a graph (FIG. 7) showing the relationship between “K / A” and the L10 life.

Figure 0004572864
Figure 0004572864

図6のグラフから分かるように、外側部材の角度θが30°以上であると、寿命比が2.0以上となるのに対して、30°未満であると寿命比は1.5未満であった。図7のグラフから分かるように、「K/A」≧1.1であると寿命比が2.0以上となるのに対して、「K/A」≦1.0であると寿命比は1.5未満であった。
したがって、本発明の実施例に相当する軸受ユニットは、比較例に相当する軸受ユニットと比較して、内部に水が侵入するような過酷な使用条件での寿命が長くなる。
As can be seen from the graph of FIG. 6, when the angle θ of the outer member is 30 ° or more, the life ratio is 2.0 or more, whereas when it is less than 30 °, the life ratio is less than 1.5. there were. As can be seen from the graph of FIG. 7, the life ratio is 2.0 or more when “K / A” ≧ 1.1, whereas the life ratio is “K / A” ≦ 1.0. It was less than 1.5.
Therefore, the bearing unit corresponding to the embodiment of the present invention has a longer life under severe use conditions in which water enters the interior than the bearing unit corresponding to the comparative example.

本発明の軸受ユニット外側部材の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the bearing unit outer member of this invention. 図1の軌道溝21bの部分を拡大した図である。It is the figure which expanded the part of the track groove 21b of FIG. 本発明の軸受ユニット外側部材の作製方法を説明する図である。It is a figure explaining the preparation methods of the bearing unit outside member of the present invention. 実施例で作製した試験軸受の基になる軸受ユニットを示す断面図である。It is sectional drawing which shows the bearing unit used as the basis of the test bearing produced in the Example. 実施例で行った寿命試験を説明する図である。It is a figure explaining the life test done in the Example. 実施例で行った寿命試験のデータを、外側部材の角度θとL10寿命との関係にまとめたグラフである。It is the graph which put together the data of the life test done in the Example in the relationship between angle (theta) of an outer member, and L10 life. 実施例で行った寿命試験のデータを、外側部材の「K/A」とL10寿命との関係にまとめたグラフである。It is the graph which put together the data of the life test performed in the Example in the relationship between "K / A" of an outer member, and L10 life. 軽量化された車輪支持用軸受ユニットの一例を示す断面図である。It is sectional drawing which shows an example of the bearing unit for wheel support reduced in weight.

符号の説明Explanation of symbols

1 内側部材
1a 第1の部材(ハブ輪)
1b 第2の部材
11b 内輪軌道溝
11 内輪
12 ハブ
13 フランジ
2 外側部材
21 外輪
21a 軌道溝
21b 軌道溝
22a 懸架装置(車体側部材)を固定するボルト穴
22 フランジ
25 接触楕円
25a 接触楕円の長軸
3 ボール
4 保持器
5 第1のシール
6 第2のシール
7 スリンガ
8 車輪側部材
Ls 塑性流れ曲線の方向を示す直線
1 接触点での軌道溝の接線
S 塑性流れ曲線
1 接触点
2 接触点
θ L1 とLs とのなす角度
1 Inner member 1a First member (hub wheel)
1b Second member 11b Inner ring raceway groove 11 Inner ring 12 Hub 13 Flange 2 Outer member 21 Outer ring 21a Raceway groove 21b Raceway groove 22a Bolt hole for fixing the suspension device (vehicle body side member) 22 Flange 25 Contact ellipse 25a Long axis of contact ellipse 3 ball 4 cage 5 first seal 6 second seal 7 slinger 8 wheel-side member Ls tangent raceway grooves in a straight line L 1 contact point indicating the direction of plastic flow curve S plastic flow curve P 1 contact point P 2 Angle between contact point θ L 1 and Ls

Claims (3)

複列の軌道溝を有する外輪およびフランジが一体に、素材の鍛造工程を経て製造され、内輪およびボールとともに車輪支持用軸受ユニットを構成する車輪支持用軸受ユニット外側部材であって、
軸線を含む断面における軌道溝のボール接触点での接線と、前記断面における軌道溝表層部の折れ曲がって方向性を持って並んだ鍛流線の折れ曲がり点を結んだ線である塑性流れ曲線の方向を示す直線と、のなす角度が30°以上90°以下であり、
軌道溝とボールとの接触楕円の長軸の長さを2Aとしたときに、前記断面における軌道溝表層部に存在する前記塑性流れ曲線は、軌道溝とボールとの接触点から1.1A以上離れた位置を通過することを特徴とする車輪支持用軸受ユニット外側部材
The outer ring and the flange having the double row raceway grooves are manufactured integrally through a forging process of the material, and are a wheel support bearing unit outer member that constitutes a wheel support bearing unit together with the inner ring and the ball,
The direction of the plastic flow curve, which is the line connecting the tangent line at the ball contact point of the raceway groove in the cross section including the axis and the bending point of the forged flow line aligned with the direction of the bend of the track groove surface layer in the cross section The angle formed by the straight line indicating is 30 ° or more and 90 ° or less,
When the length of the long axis of the contact ellipse between the raceway groove and the ball is 2A, the plastic flow curve existing in the raceway groove surface layer portion in the cross section is 1.1 A or more from the contact point between the raceway groove and the ball. A wheel support bearing unit outer member characterized by passing through a distant position.
請求項1記載の外側部材と、内輪とボールを備えたことを特徴とする車輪支持用軸受ユニットA wheel support bearing unit comprising the outer member according to claim 1 , an inner ring and a ball . 複列の軌道溝を有する内輪、車軸を内嵌するハブ、および車輪側部材を固定するフランジを有し、少なくとも一列の軌道溝とハブとフランジが一体に、素材の鍛造工程を経て製造された内側部材と、
複列の軌道溝を有する外輪および車体側部材を固定するフランジが一体に、素材の鍛造工程を経て製造された外側部材と、
ボールと、
を備えた車輪支持用軸受ユニットにおいて、
フランジと一体化された内輪の軌道溝および外輪の軌道溝の少なくともいずれかは、
軸線を含む断面における軌道溝のボール接触点での接線と、前記断面における軌道溝表層部の折れ曲がって方向性を持って並んだ鍛流線の折れ曲がり点を結んだ線である塑性流れ曲線の方向を示す直線と、のなす角度が30°以上90°以下であり、
軌道溝とボールとの接触楕円の長軸の長さを2Aとしたときに、前記断面における軌道溝表層部に存在する前記塑性流れ曲線は、軌道溝とボールとの接触点から1.1A以上離れた位置を通過することを特徴とする車輪支持用軸受ユニット。
An inner ring having a double row raceway groove, a hub for fitting an axle, and a flange for fixing a wheel side member, and at least one row of the raceway groove, the hub and the flange are integrally manufactured through a material forging process. An inner member;
An outer member having a double row raceway groove and a flange for fixing the vehicle body side member are integrally formed, and an outer member manufactured through a forging process of the material ,
With the ball,
Te wheel supporting bearing unit odor with a
At least one of the inner ring raceway groove and the outer ring raceway groove integrated with the flange,
The direction of the plastic flow curve, which is the line connecting the tangent line at the ball contact point of the raceway groove in the cross section including the axis and the bending point of the forged flow line aligned with the direction of the bend of the track groove surface layer in the cross section The angle formed by the straight line indicating is 30 ° or more and 90 ° or less,
When the length of the long axis of the contact ellipse between the raceway groove and the ball is 2A, the plastic flow curve existing in the raceway groove surface layer portion in the cross section is 1.1 A or more from the contact point between the raceway groove and the ball. wheel supporting bearing unit, which comprises passing the distant position.
JP2006117785A 2006-04-21 2006-04-21 Wheel support bearing unit outer member, wheel support bearing unit Active JP4572864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006117785A JP4572864B2 (en) 2006-04-21 2006-04-21 Wheel support bearing unit outer member, wheel support bearing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006117785A JP4572864B2 (en) 2006-04-21 2006-04-21 Wheel support bearing unit outer member, wheel support bearing unit

Publications (2)

Publication Number Publication Date
JP2007292116A JP2007292116A (en) 2007-11-08
JP4572864B2 true JP4572864B2 (en) 2010-11-04

Family

ID=38762926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006117785A Active JP4572864B2 (en) 2006-04-21 2006-04-21 Wheel support bearing unit outer member, wheel support bearing unit

Country Status (1)

Country Link
JP (1) JP4572864B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5359877B2 (en) * 2007-10-02 2013-12-04 日本精工株式会社 Manufacturing method of bearing ring member for rolling bearing unit
WO2009113476A1 (en) 2008-03-13 2009-09-17 Ntn株式会社 Method of manufacturing outer ring, outer ring for double row angular contact bearing, double row angular contact bearing, and bearing device for wheel
JP2009222085A (en) * 2008-03-13 2009-10-01 Ntn Corp Double row angular bearing
JP2010188827A (en) * 2009-02-17 2010-09-02 Jtekt Corp Wheel bearing device and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11190408A (en) * 1997-12-26 1999-07-13 Nippon Seiko Kk Disc of toroidal type continuously variable transmission
JP2003232367A (en) * 2002-02-05 2003-08-22 Nsk Ltd Roller bearing
JP2005180627A (en) * 2003-12-22 2005-07-07 Nsk Ltd Raceway ring for bearing unit for supporting wheel, its manufacturing method, and bearing unit for supporting wheel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11190408A (en) * 1997-12-26 1999-07-13 Nippon Seiko Kk Disc of toroidal type continuously variable transmission
JP2003232367A (en) * 2002-02-05 2003-08-22 Nsk Ltd Roller bearing
JP2005180627A (en) * 2003-12-22 2005-07-07 Nsk Ltd Raceway ring for bearing unit for supporting wheel, its manufacturing method, and bearing unit for supporting wheel

Also Published As

Publication number Publication date
JP2007292116A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
JP6523677B2 (en) Method of manufacturing hub wheel and inner member of wheel bearing device
JP2006220221A (en) Rolling bearing, bearing unit
EP2284021B1 (en) Method for forming a wheel bearing device
JP4661409B2 (en) Bearing unit outer member, bearing unit
US20100239202A1 (en) Double-row angular bearing, bearing device for wheel, method of producing outer race, and method of producing inner race
US6702472B2 (en) Wheel bearing device and method of crimping the same
US7651275B2 (en) Wheel bearing apparatus
US20100316323A1 (en) Method of manufacturing outer ring, outer ring for double row angular contact bearing, double row angular contact bearing, and bearing device for wheel
JP2005083513A (en) Wheel bearing device
EP2908019A1 (en) Bearing device for wheel and manufacturing method therefor
JP4572864B2 (en) Wheel support bearing unit outer member, wheel support bearing unit
JP4561389B2 (en) Outside member of bearing unit
JP2006250317A (en) Rolling bearing and bearing unit
JP4305166B2 (en) Manufacturing method of bearing ring for bearing unit for supporting wheel
JP2006064036A (en) Bearing device for supporting axle
JP2007100715A (en) Bearing device for vehicle
JP4314997B2 (en) Bearing device and manufacturing method thereof
JP6224402B2 (en) Method for manufacturing outer member of wheel bearing device
JP5029376B2 (en) Manufacturing method of outer ring for double row rolling bearing unit
JP2007147079A (en) Method of manufacturing hub ring and outward member of wheel bearing device
JP6171741B2 (en) Manufacturing method of wheel-supporting rolling bearing unit and manufacturing method of wheel-supporting rolling bearing unit hub
CN103987475A (en) Method for manufacturing mechanical parts with superior rolling fatigue life
JP2008223990A (en) Rolling bearing unit for supporting wheel
JP2008266667A (en) Rolling bearing device for supporting wheel
JP2011005963A (en) Bearing device for wheel

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350