JP2003232367A - Roller bearing - Google Patents

Roller bearing

Info

Publication number
JP2003232367A
JP2003232367A JP2002028603A JP2002028603A JP2003232367A JP 2003232367 A JP2003232367 A JP 2003232367A JP 2002028603 A JP2002028603 A JP 2002028603A JP 2002028603 A JP2002028603 A JP 2002028603A JP 2003232367 A JP2003232367 A JP 2003232367A
Authority
JP
Japan
Prior art keywords
life
area
bearing
maximum
size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002028603A
Other languages
Japanese (ja)
Inventor
Kazuo Sekino
和雄 関野
Akihiro Kiuchi
昭広 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002028603A priority Critical patent/JP2003232367A/en
Publication of JP2003232367A publication Critical patent/JP2003232367A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To intend to enhance further reliability by broadly extending lifetime of a bearing. <P>SOLUTION: In a roller bearing in which a plurality of rolling bodies are interposed to make it possible to roll in circumferential direction between an outer race and an inner race, at least one of the outer and inner races and the rolled bodies comprise a bearing steel in which presumed value in magnitude of interface of a system of a maximum oxidate is less than 5 μm in presumed area 30,000 mm<SP>2</SP>according to statistical method of polar regions. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、航空機、
自動車、鉄鋼用等に用いられる転がり軸受に関し、特に
軸受寿命の信頼性が必要とされる転がり軸受に関する。
TECHNICAL FIELD The present invention relates to, for example, an aircraft,
The present invention relates to rolling bearings used for automobiles, steel, etc., and particularly to rolling bearings that require reliability of bearing life.

【0002】[0002]

【従来の技術】従来から軸受の転がり寿命に大きく影響
を与える物質の一つとして、軸受用鋼中に含まれる酸化
物系非金属介在物がある。この酸化物系非金属介在物と
しては、Al2 3 やCaO、SiO2 などが良く知ら
れているが、その中でも特に転がり軸受寿命を支配する
酸化物系介在物として非常に硬いAl2 3 が挙げら
れ、その大きさが大きく、数が多い程、軸受の寿命が極
端に落ちることは既に知られている。
2. Description of the Related Art Conventionally, oxide-based non-metallic inclusions contained in bearing steel have been one of the substances that have a great influence on the rolling life of bearings. Al 2 O 3 , CaO, SiO 2 and the like are well known as the oxide-based non-metallic inclusions, but among them, particularly hard Al 2 O as an oxide-based inclusion that governs the rolling bearing life. 3 and the like, is large in size, as a large number, the life of the bearing is possible is already known to fall extremely.

【0003】これは、従来、軸受の転がり寿命の信頼性
の向上や長寿命化を図るために、製鋼プロセスにおいて
鋼中酸素量の削減(脱酸)処理を目的とし、脱酸能力の
高いAl単独やAlとSi両者を添加して脱酸処理を行
なっていたことに起因するものだが、最終的には製鋼工
程中の精錬で完全に取り除くことが出来ずに鋼中に残っ
てしまうことが原因と考えられる。
[0003] Conventionally, in order to improve the reliability of rolling life of bearings and to extend the life of the bearings, the purpose is to reduce the amount of oxygen in the steel (deoxidation) in the steelmaking process, and to achieve high deoxidizing ability, Al This is due to the fact that deoxidation treatment was performed alone or by adding both Al and Si, but in the end it may remain in the steel without being completely removed by refining during the steelmaking process. Probably the cause.

【0004】また、特開平11−193855号公報で
は、トロイダル無段変速機にて、極地統計法(村上敬宜
著「金属疲労微小欠陥と介在物の影響」養賢堂1993
年3月8日第1版発行233頁〜261頁参照)を利用
し、寿命を確実に保証する方法が開示されている。
Further, in Japanese Patent Laid-Open No. 11-193855, a toroidal continuously variable transmission is used in a polar statistical method (Keiki Murakami, "Effects of Metal Fatigue Minute Defects and Inclusions", Yokendo 1993.
The first method issued March 8, 2013, pp. 233-261) is used to disclose a method for reliably guaranteeing the service life.

【0005】[0005]

【発明が解決しようとする課題】従来のAl単独やAl
とSi両者の添加により脱酸した軸受用鋼中において
は、残留した非金属介在物はAl2 3 の酸化物系非金
属介在物が支配的である。この介在物の平均の大きさ
は、5μm程度であるが、最大寸法は10μmを超え、
また、該介在物がフロー方向に密集したクラスター状の
介在物が残留することがある。このため、この鋼を用い
て製造された軸受部品が組み込まれた軸受の転がり寿命
は、頻度的には少ないが短寿命品が発生し、軸受の転が
り寿命の信頼性の点から未だ充分ではないという問題が
ある。
[Problems to be Solved by the Invention] Conventional Al alone or Al
In the bearing steel deoxidized by the addition of both Si and Si, the residual non-metallic inclusions are dominated by the oxide-based non-metallic inclusions of Al 2 O 3 . The average size of this inclusion is about 5 μm, but the maximum size exceeds 10 μm,
Further, cluster-shaped inclusions in which the inclusions are densely packed in the flow direction may remain. For this reason, the rolling life of a bearing incorporating a bearing part manufactured using this steel is low, but a short-life product occurs, which is not yet sufficient from the point of view of the reliability of the rolling life of the bearing. There is a problem.

【0006】また、特開平11−193855号公報で
は、軸受ではなく変速機に適用したものであり、しか
も、最大介在物推定値も50μm以下であるため、軸受
に適用したとしても寿命を確実に保証することは困難で
あり、一層の信頼性向上を図ることが難しい。本発明は
このような不都合を解消するためになされたものであ
り、軸受寿命を大幅に延長することができ、より一層の
信頼性の向上を図ることができる転がり軸受を提供する
ことを目的とする。
Further, in Japanese Unexamined Patent Publication No. 11-193855, the present invention is applied not to the bearing but to the transmission, and the maximum inclusion estimated value is 50 μm or less. Therefore, even if it is applied to the bearing, the life is surely secured. It is difficult to guarantee, and it is difficult to further improve reliability. The present invention has been made in order to eliminate such inconvenience, and an object thereof is to provide a rolling bearing capable of significantly extending the life of the bearing and further improving the reliability. To do.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る発明は、外輪と内輪との間に複数の
転動体が周方向に転動可能に介装された転がり軸受にお
いて、前記外輪、前記内輪および前記転動体の内の少な
くとも1つが、極地統計法による推定面積30000m
2 において最大酸化物系介在物の大きさの推定値が5
μm以下である軸受用鋼からなることを特徴とする。
In order to achieve the above object, the invention according to claim 1 is a rolling bearing in which a plurality of rolling elements are interposed between an outer ring and an inner ring so as to be rollable in the circumferential direction. At least one of the outer ring, the inner ring, and the rolling element has an estimated area of 30,000 m by the polar statistical method.
The estimated value of the maximum oxide inclusion size is 5 at m 2 .
It is characterized in that it is made of bearing steel having a thickness of not more than μm.

【0008】上記手段によれば、転動面に存在するAl
2 3 等の非常に硬い酸化物系介在物の大きさが小さい
と推定される為、ごくまれに発生する短寿命品を減少さ
せることができ、信頼性が向上する。この場合、好まし
くはAlが0.005重量%以下である軸受用鋼を使用
するとよい。
According to the above means, Al existing on the rolling surface is
Since it is presumed that the size of very hard oxide inclusions such as 2 O 3 is small, it is possible to reduce the number of short-life products that occur infrequently and improve the reliability. In this case, it is preferable to use bearing steel having an Al content of 0.005% by weight or less.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態の一例
を図を参照して説明する。図1は最大介在物の面積Aの
平方根(最大介在物寸法)と−log−log(T−1
/T)との関係を示すグラフ図、図2はスラスト型寿命
試験の概略図、図3は鋼中Al含有量とL10寿命比との
関係を示すグラフ図、図4は最大介在物推定寸法とL10
寿命比との関係を示すグラフ図、図5は最大介在物の面
積Aの平方根(最大介在物寸法)と視野面積との関係を
示すグラフ図、図6は最大介在物の面積Aの平方根(最
大介在物寸法)と測定回数との関係を示すグラフ図であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION An example of an embodiment of the present invention will be described below with reference to the drawings. Figure 1 shows the square root of the maximum inclusion area A (maximum inclusion size) and -log-log (T-1
/ T), FIG. 2 is a schematic diagram of the thrust type life test, FIG. 3 is a graph showing the relationship between the Al content in steel and the L 10 life ratio, and FIG. 4 is the maximum inclusion estimation. Dimensions and L 10
5 is a graph showing the relationship with the life ratio, FIG. 5 is a graph showing the relationship between the square root of the maximum inclusion area A (maximum inclusion size) and the field of view area, and FIG. 6 is the square root of the maximum inclusion area A ( It is a graph showing the relationship between the maximum inclusion size) and the number of measurements.

【0010】この実施の形態の転がり軸受は、外輪、内
輪および転動体の内の少なくとも1つが、極地統計法に
よる推定面積30000mm2 において最大酸化物系介
在物の大きさの推定値が5μm以下である軸受用鋼から
なるものである。以下、詳述する。まず、中炭素鋼や高
クロム炭素鋼をベースに種々の量のAlを含有させ、且
つその他の化学成分(C,Cr,Si,O)も変更して
表1に示す実施例1〜10、比較例1〜6の16種類の
鋼材を得た。
In the rolling bearing of this embodiment, at least one of the outer ring, the inner ring and the rolling element has an estimated value of the maximum oxide inclusion size of 5 μm or less when the area estimated by the polar statistical method is 30,000 mm 2 . It consists of a certain bearing steel. The details will be described below. First, Examples 1 to 10 shown in Table 1 in which various amounts of Al are contained on the basis of medium carbon steel and high chromium carbon steel, and other chemical components (C, Cr, Si, O) are also changed. 16 types of steel materials of Comparative Examples 1 to 6 were obtained.

【0011】[0011]

【表1】 [Table 1]

【0012】次に、各鋼材の断面積約100mm2 を5
箇所、計約500mm2 の視野において顕微鏡観察し、
各視野において視認される最大非金属介在物(Al2
3 、CaO、SiO2 等)の寸法を測定した。このとき
の全視野中の最大介在物の実測寸法、及び各視野で視認
された最大介在物の寸法から、極値統計法によって直接
視認されなかった最大介在物の寸法を推定した結果を表
2に示す。
Next, the cross-sectional area of each steel material of about 100 mm 2
Microscopic observation in a total area of about 500 mm 2 .
Maximum non-metallic inclusions (Al 2 O
3 , CaO, SiO 2 etc.) were measured. Table 2 shows the results of estimating the size of the largest inclusion that was not directly recognized by the extreme value statistical method from the measured size of the largest inclusion in the entire field of view and the size of the largest inclusion visually recognized in each field of view. Shown in.

【0013】[0013]

【表2】 [Table 2]

【0014】なお、ここで言う最大非金属介在物の寸法
は、線状欠陥の場合は最大長部を指し、粒状欠陥の場合
は最大径を指す。極値統計法による最大介在物寸法の測
定法の具体例について、上記比較例3(JIS SUJ
2)について説明する。まず、各視野の面積を一定50
0mm2 とし、各視野において視認される最大介在物の
面積Aを測定し、これから最大介在物の寸法(=√A
max )を求め、これを実測値とする。
The size of the largest non-metallic inclusion here means the maximum length in the case of a linear defect, and the maximum diameter in the case of a granular defect. Regarding the specific example of the method for measuring the maximum inclusion size by the extreme value statistical method, the above-mentioned Comparative Example 3 (JIS SUJ
2) will be described. First, the area of each field of view is fixed to 50
And 0 mm 2, the area A of the maximum inclusion is visible in the visual field was measured, from which the largest inclusion size (= {square root} A
max ) and use this as the measured value.

【0015】次いで、各視野において視認された最大介
在物寸法を横軸に、−log−log(T−1/T)を
縦軸にとって両者の関係をプロットすると、図1に示す
ように、分布確率と最大介在物寸法との関係が直線と
なる。ここで言うTの値は、T={(S+S0 )/
0 }で求めることができ、Sは推定面積、S0 は実測
面積を示す。
Then, the maximum inclusion size visually recognized in each visual field is plotted on the abscissa and -log-log (T-1 / T) is plotted on the ordinate, and the relationship between the two is plotted. As shown in FIG. The relationship between the probability and the maximum inclusion size becomes a straight line. The value of T here is T = {(S + S 0 ) /
S 0 }, where S is the estimated area and S 0 is the measured area.

【0016】今回、Sを30000mm2 とし、S0
500mm2 として求められるTは上式からT=61と
なり、縦軸(−log−log(T−1/T))=5.
7になって図1の直線(横破線)が描ける。そして、
直線との交点から垂線(縦破線)を引き、横軸に到
達した点の値を視認されなかった最大介在物寸法と推定
する。この場合、13.4μmとなる。
[0016] This time, the S and 30,000 mm 2, next to T = 61 is T asked to S 0 as 500 mm 2 from the above equation, the vertical axis (-log-log (T-1 / T)) = 5.
7, the straight line (horizontal broken line) in FIG. 1 can be drawn. And
A perpendicular line (vertical dashed line) is drawn from the intersection with the straight line, and the value at the point that reaches the horizontal axis is estimated to be the maximum size of the inclusion that was not visually recognized. In this case, it becomes 13.4 μm.

【0017】なお、極値統計法の詳細は、村上敬宜著
「金属疲労微小欠陥と介在物の影響」(養賢堂1993
年3月8日第1版発行)の特に88〜99頁、112〜
125頁、233〜258頁による。また、今回、視野
面積S0 を100mm2 を5箇所、計500mm2 、極
地統計法による推定面積Sを30000mm2 としたの
は、特開平11−193855号公報の本文および図
6、図7に開示されている様に、最大介在物の推定値の
ばらつきを小さくして材料間の差別化を図り、より信頼
性の高い値を得る為である。
The details of the extreme value statistical method are described in Takanori Murakami, "Effects of Metal Fatigue Minute Defects and Inclusions" (Yokodo 1993).
Issued on March 8, 1st edition), especially pages 88-99, 112-
P. 125, pp. 233-258. Also, this time, the 100 mm 2 5 places a viewing area S 0, a total of 500 mm 2, the estimation area S by Polar statistical method was 30,000 mm 2, the body and 6 of JP-A-11-193855 and JP-7 This is because, as disclosed, the variation in the estimated value of the maximum inclusion is reduced to differentiate the materials and obtain a more reliable value.

【0018】即ち、視野面積S0 を検査対象面内の30
0mm2 以上の広さを有する面積とし、光学顕微鏡など
でこの300mm2 以上の広さを有する視野面積内の最
大介在物の大きさとしての面積の平方根√Amax の測定
を、検査部分が重ならない様に5回以上繰返し行う。視
野面積を300mm2 以上とするのは、以下に示す理由
によるものである。
That is, the visual field area S 0 is set to 30 in the plane to be inspected.
And an area having a 0 mm 2 or more size, the measurement of the square root √Amax area as the size of the largest inclusion in the field area having the 300 mm 2 or more size, etc. optical microscope, does not overlap the inspection portion Repeat 5 times or more. The reason why the visual field area is set to 300 mm 2 or more is as follows.

【0019】図5(特開平11−193855号公報の
図6相当)に示すように、同一材料で前記面積S0 を変
化させて最大介在物の面積の平方根√Amax を一つの面
積S 0 において数回ずつ推定した結果によれば、前記面
積S0 が300mm2 未満の場合には、極値統計法によ
って得られる前記√Amax の値のばらつきが大きく、前
記面積S0 が300mm2 以上の場合には、前記√Ama
x の値のばらつきが小さくなっているのが明らかになっ
た。
FIG. 5 (Japanese Patent Laid-Open No. 11-193855)
As shown in FIG. 6), the same material has the area S0Strange
The square root of the area of the largest inclusion √Amax
Product S 0According to the results of several estimations in
Product S0Is 300 mm2If less than,
There is a large variation in the value of √Amax obtained by
Area S0Is 300 mm2In the case above, √Ama
It is clear that the variation in the value of x is small.
It was

【0020】このため、前記面積S0 は、300mm2
以上とするのが望ましい。なお、図5においては、2種
類の互いに溶解時の条件や工程などが異なる試験片を用
いて、前記√Amax の推定を3回行っており、図示中試
験片B,GともSCr420鋼である。また、測定回数
を5回以上とするには、以下に示す理由によるものであ
る。
Therefore, the area S 0 is 300 mm 2
It is desirable to set it as above. In FIG. 5, the above-mentioned √Amax is estimated three times using two kinds of test pieces having different melting conditions and processes, and both test pieces B and G in the figure are SCr420 steels. . The reason why the number of times of measurement is 5 or more is as follows.

【0021】図6(特開平11−193855号公報の
図7相当)に示すように、測定回数を変化させ、同一材
料で一つの測定回数において数回ずつ最大介在物の面積
の平方根√Amax を推定した結果によれば、測定回数が
5回未満の場合には、極値統計法によって得られる前記
√Amax の値のばらつきが大きく、測定回数が5回以上
の場合には、前記√Amax の値のばらつきが小さくなっ
ているのが明らかになった。このため、前記測定回数
は、5回以上とするのが望ましい。なお、図6において
は、図5と同じ試験片B,Gを用いて、前記√Amax の
推定を3回行っている。
As shown in FIG. 6 (corresponding to FIG. 7 of Japanese Patent Application Laid-Open No. 11-193855), the number of times of measurement is changed, and the square root √Amax of the area of the maximum inclusion is calculated several times in one measurement of the same material. According to the estimated results, when the number of measurements is less than 5, there is a large variation in the value of √Amax obtained by the extreme value statistical method, and when the number of measurements is 5 or more, the value of √Amax is It became clear that the dispersion of the values was small. For this reason, it is desirable that the number of measurements be 5 or more. In FIG. 6, using the same test pieces B and G as in FIG. 5, the estimation of √Amax is performed three times.

【0022】なお、前述した推定面積Sは、あまりに小
さい値に設定されると、材料間での最大介在物の大きさ
の差が小さくなって、材料間の差別化が難しくなり、一
方、あまりに大きな値に設定されると、最大介在物の大
きさが大きくなって現実とかけ離れてしまうため、S=
30000mm2 以上とするのが望ましい。次に、実施
例1〜10、比較例1〜6の各鋼材を用いて円板状の寿
命試験片(外径:60mm、厚さ:6mm、表面粗さ:
Ra0.008〜0.01μm)を各々10枚製作して
スラスト型耐久寿命試験機による寿命試験を行った。な
お、試験片の製作にあたっては、C(炭素)が0.8重
量%以下の鋼については、浸炭処理を施し表面C%が
1.0重量%程度とした。
If the above-mentioned estimated area S is set to a value that is too small, the difference in size of the maximum inclusions between the materials becomes small, making it difficult to differentiate between the materials. If the value is set to a large value, the size of the maximum inclusion becomes large, which is far from the reality, so S =
It is desirable to set it to 30,000 mm 2 or more. Next, a disk-shaped life test piece (outer diameter: 60 mm, thickness: 6 mm, surface roughness: using each of the steel materials of Examples 1 to 10 and Comparative Examples 1 to 6).
Ra of 0.008 to 0.01 μm) was manufactured for each of 10 sheets, and a life test was performed by a thrust type durability life tester. In the production of the test piece, steel having a C (carbon) content of 0.8% by weight or less was carburized to have a surface C% of about 1.0% by weight.

【0023】スラスト型耐久寿命試験機は、図2に示す
ように,板状の試験片に転動体としてのボール(鋼球:
SUJ2)を載せ、スラスト荷重を負荷した状態で、ボ
ールを回転させるものである。試験条件を下記に示す。 面圧:5500MPa 回転速度:1000min-1 潤滑油:タービン油♯68 試験温度:80°C 寿命試験は、実施例1〜10および比較例1〜6の各鋼
材についてそれぞれ10回試験を行い、ワイブル分布関
数により、短寿命側から10%の試験片に剥離が生じる
までの総回転時間を求め、これを寿命とした。そして、
比較例3のL10寿命を1とした場合のL10寿命比を求め
た。この結果も表2に示す。また、図3に各鋼材のAl
含有量とL10寿命比との関係を示す。
As shown in FIG. 2, the thrust type durability life tester uses a plate-shaped test piece with balls (steel balls: steel balls) as rolling elements.
SUJ2) is placed and the ball is rotated under the condition that the thrust load is applied. The test conditions are shown below. Surface pressure: 5500 MPa Rotational speed: 1000 min −1 Lubricating oil: Turbine oil # 68 Test temperature: 80 ° C. The life test was performed 10 times for each of the steel materials of Examples 1-10 and Comparative Examples 1-6, and the Weibull The total rotation time from the short life side to the peeling of 10% of the test pieces was obtained from the distribution function, and this was taken as the life. And
When the L 10 life of Comparative Example 3 was set to 1, the L 10 life ratio was obtained. The results are also shown in Table 2. In addition, the Al of each steel material is shown in FIG.
The relationship between the content and the L 10 life ratio is shown.

【0024】表2および図3から明らかなように、最大
介在物寸法が5μm以下でAl含有量が0.005重量
%以下の実施例1〜10は、基準の比較例3と比較して
約6倍以上の長寿命結果を示し、これに対し、最大介在
物寸法が5μmを超えた比較例1〜6はいずれも寿命延
長が望めない結果となった。比較例1は、C重量%が多
く鋼中炭化物が大きくなり、それが起点となって短寿命
の結果を示したものと考えられる。
As is clear from Table 2 and FIG. 3, Examples 1 to 10 in which the maximum inclusion size is 5 μm or less and the Al content is 0.005 wt% or less are about 10% less than the reference Comparative Example 3. 6 times or more of the long life result was shown, whereas in Comparative Examples 1 to 6 in which the maximum inclusion size exceeded 5 μm, the life extension could not be expected. It is considered that in Comparative Example 1, the carbon content in the steel was large and the carbides in the steel were large, which was the starting point and showed a short life.

【0025】比較例2は、C、Cr重量%が大きく、巨
大炭化物に加え、鋼中に存在する酸素量やAlが多いこ
とからAl2 3 が多く形成された結果、短寿命を示し
たものと推定される。比較例4も、鋼中に存在する酸素
量やAlが多いことからAl2 3 が多く形成された結
果、短寿命を示したものと推定される。
Comparative Example 2 showed a short life as a result of large amounts of C 2 and Cr, large amounts of Al 2 O 3 due to large amounts of oxygen and Al present in the steel in addition to large carbides. It is estimated that Comparative Example 4 is also presumed to have a short life as a result of the large amount of Al 2 O 3 formed due to the large amount of oxygen and Al existing in the steel.

【0026】比較例5は、C重量%が低く,浸炭処理の
時間がかかりコスト面で不適合であり、しかもその寿命
値は、実施例には届かなかった。なお、図4は表2の実
施例1〜10と比較例1〜6の最大介在物推定寸法とL
10寿命比との関係をプロットした図である。図から明ら
かなように、最大介在物寸法が5μm以下ではL10寿命
が向上しているのが判る。また、好ましくは、3μm以
下でL10寿命のばらつきが減少し、より信頼性が向上す
る。
Comparative Example 5 has a low C weight% and is not carburized.
Time consuming, costly and non-conforming, and its lifespan
The value did not reach the example. In addition, FIG.
Maximum estimated inclusion size and L of Examples 1 to 10 and Comparative Examples 1 to 6
TenIt is the figure which plotted the relationship with a life ratio. Clear from the figure
As you can see, when the maximum inclusion size is 5 μm or less, LTenlifespan
You can see that is improving. Also, preferably 3 μm or more
L belowTenLess variation in lifespan and more reliable
It

【0027】[0027]

【発明の効果】上記の説明から明らかなように、本発明
によれば、軸受寿命を大幅に延長することができるの
で、より一層の信頼性の向上を図ることができる転がり
軸受を提供することができる。
As is apparent from the above description, according to the present invention, since the bearing life can be greatly extended, it is possible to provide a rolling bearing which can further improve reliability. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】最大介在物の面積Aの平方根(最大介在物寸
法)と−log−log(T−1/T)との関係を示す
グラフ図である。
FIG. 1 is a graph showing a relationship between a square root of a maximum inclusion area A (maximum inclusion size) and −log−log (T−1 / T).

【図2】スラスト型寿命試験機の概略図である。FIG. 2 is a schematic view of a thrust type life tester.

【図3】鋼中Al含有量とL10寿命比との関係を示すグ
ラフ図である。
FIG. 3 is a graph showing the relationship between the Al content in steel and the L 10 life ratio.

【図4】最大介在物推定寸法とL10寿命比との関係を示
すグラフ図である。
FIG. 4 is a graph showing the relationship between the estimated maximum inclusion size and the L 10 life ratio.

【図5】最大介在物の面積Aの平方根(最大介在物寸
法)と視野面積との関係を示すグラフ図である。
FIG. 5 is a graph showing the relationship between the square root of the area A of the largest inclusion (the size of the largest inclusion) and the visual field area.

【図6】最大介在物の面積Aの平方根(最大介在物寸
法)と測定回数との関係を示すグラフ図である。
FIG. 6 is a graph showing the relationship between the square root of the area A of maximum inclusions (maximum inclusion size) and the number of measurements.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 外輪と内輪との間に複数の転動体が周方
向に転動可能に介装された転がり軸受において、前記外
輪、前記内輪および前記転動体の内の少なくとも1つ
が、極地統計法による推定面積30000mm2 におい
て最大酸化物系介在物の大きさの推定値が5μm以下で
ある軸受用鋼からなることを特徴とする転がり軸受。
1. In a rolling bearing in which a plurality of rolling elements are interposed between an outer ring and an inner ring so as to be able to roll in the circumferential direction, at least one of the outer ring, the inner ring and the rolling element is polar statistics. A rolling bearing comprising a bearing steel having an estimated size of maximum oxide inclusions of 5 μm or less in an area estimated by the method of 30000 mm 2 .
【請求項2】 Alが0.005重量%以下である軸受
用鋼を使用することを特徴とする請求項1記載の転がり
軸受。
2. The rolling bearing according to claim 1, wherein a bearing steel having an Al content of 0.005% by weight or less is used.
JP2002028603A 2002-02-05 2002-02-05 Roller bearing Pending JP2003232367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002028603A JP2003232367A (en) 2002-02-05 2002-02-05 Roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002028603A JP2003232367A (en) 2002-02-05 2002-02-05 Roller bearing

Publications (1)

Publication Number Publication Date
JP2003232367A true JP2003232367A (en) 2003-08-22

Family

ID=27773472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002028603A Pending JP2003232367A (en) 2002-02-05 2002-02-05 Roller bearing

Country Status (1)

Country Link
JP (1) JP2003232367A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317192A (en) * 2005-05-10 2006-11-24 Sanyo Special Steel Co Ltd Reliability evaluating method of steel
JP2007292116A (en) * 2006-04-21 2007-11-08 Nsk Ltd Rolling bearing and bearing unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317192A (en) * 2005-05-10 2006-11-24 Sanyo Special Steel Co Ltd Reliability evaluating method of steel
US7971484B2 (en) 2005-05-10 2011-07-05 Sanyo Special Steel Co., Ltd. Method for evaluating reliability of steel and high-reliability steel obtained by the same
JP2007292116A (en) * 2006-04-21 2007-11-08 Nsk Ltd Rolling bearing and bearing unit
JP4572864B2 (en) * 2006-04-21 2010-11-04 日本精工株式会社 Wheel support bearing unit outer member, wheel support bearing unit

Similar Documents

Publication Publication Date Title
US20060029318A1 (en) Rolling bearing of ceramic and steel engaging parts
US5333954A (en) Rolling/sliding part
JP2006346761A (en) Shot peening method and shot peening detecting method
JPH06307457A (en) Rolling bearing
JP2006308019A (en) Rolling bearing
EP3584459A1 (en) Tapered roller bearing
US6601993B2 (en) Rolling bearing device
JPH09257041A (en) Rolling bearing resistant for surface flaw
JP2003232367A (en) Roller bearing
JP4935401B2 (en) Rolling bearing
JP2000009597A (en) Method of evaluating cleanness of bearing steel
JP2007177897A (en) Roller bearing
Pearson et al. The role of carbides in performance of high-alloy bearing steels
JP2003314542A (en) Tapered roller bearing
JP2000161349A (en) Gear shaft support device for vehicle
JPH04266410A (en) Bearing of roll for rolling
JPH04321816A (en) Gear box bearing of helicopter
JP2008101684A (en) Rolling bearing
US6007251A (en) Bearing manufacturing method and bearing without oxide under lubricant
JPH1068419A (en) Rolling bearing
JP2003301850A (en) Roller bearing
JP2006112559A (en) Tapered roller bearing
CN117147607B (en) Bearing unbalanced load failure detection method
CN117147608B (en) Bearing surface peeling failure detection method
JP5061478B2 (en) Rolling support device