JP2000009597A - Method of evaluating cleanness of bearing steel - Google Patents

Method of evaluating cleanness of bearing steel

Info

Publication number
JP2000009597A
JP2000009597A JP10173286A JP17328698A JP2000009597A JP 2000009597 A JP2000009597 A JP 2000009597A JP 10173286 A JP10173286 A JP 10173286A JP 17328698 A JP17328698 A JP 17328698A JP 2000009597 A JP2000009597 A JP 2000009597A
Authority
JP
Japan
Prior art keywords
bearing
test
steel
life
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10173286A
Other languages
Japanese (ja)
Inventor
Yoichi Matsumoto
洋一 松本
Takashi Nagato
孝 永戸
Makoto Goino
良 五位野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP10173286A priority Critical patent/JP2000009597A/en
Publication of JP2000009597A publication Critical patent/JP2000009597A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To accurately measure the cleanness of a bearing steel, the factor of determining the bearing life, for a short time by the lift test of the rolling fatigue in a lubricant having a water content concn. in a specified range. SOLUTION: As a test piece the inner or outer lace of a flange-less type roll bearing or roll is made from a steel under test, the lift test of the rolling fatigue in a lubricant having a water concn. in a range of 1% to 80% is conducted to obtain a life value to be a cleanness index of the steel under test. About e.g. a life tester for thrust bearings, to avoid reducing the water content concn., a rubber seal 4 is used between a test bearing holder 2 supporting a test bearing 1 and inner race main shaft 3. In the lift test using a lubricant 5 immersing the test bearing 1, (steel) balls 11, outer race 12 and inner race 13, the test time is greatly reduced, compared with in the prior art, and a high correlation with the actual bearing rolling fatigue strength can be ensured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、転がり軸受の寿命
評価のために行われる軸受用鋼の清浄度測定法に係り、
特に、潤滑剤中での転動疲労試験の条件を規制し、もっ
て軸受の転がり疲れ強さとの高い相関性を確保し得る軸
受用鋼の清浄度評価方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the cleanliness of bearing steel, which is performed for evaluating the life of rolling bearings.
In particular, the present invention relates to a method for evaluating the cleanliness of bearing steel, which regulates the conditions of a rolling fatigue test in a lubricant and can thereby ensure a high correlation with the rolling fatigue strength of the bearing.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】軸受の転
がり寿命を決定するものは、軸受の寸法諸元や負荷され
る荷重や潤滑条件が同じであれば、軸受を構成する鋼の
「転がり疲れ強さ」である。転がり疲れの破損形態は
「剥離」であり、転がり軸受は正常に使用されてもやが
ては「剥離」を生じて軸受寿命に達する。その剥離の起
点となるのは、鋼の中に一般に不純物として介在する非
金属介在物である。従って、当該非金属介在物の大きさ
や量、換言すれば鋼の清浄度が、転がり疲れ強さを決定
する重要な因子となる。こうした見地から、従来より種
々の鋼清浄度測定法が提案され、実施されている。
2. Description of the Related Art The rolling life of a bearing is determined by the "rolling" of steel constituting the bearing if the dimensions of the bearing, the applied load and the lubrication conditions are the same. Fatigue strength. " The failure form of rolling fatigue is "peeling", and even if the rolling bearing is used normally, it eventually "peels" and reaches the life of the bearing. The starting point of the delamination is non-metallic inclusions generally present as impurities in the steel. Therefore, the size and amount of the nonmetallic inclusions, in other words, the cleanliness of the steel, are important factors for determining the rolling fatigue strength. From such a viewpoint, various steel cleanliness measuring methods have been conventionally proposed and implemented.

【0003】以下に、それら従来の鋼清浄度測定法の概
要を説明すると共に、その問題点を述べる。 1)光学顕微鏡法的測定方法 被検査鋼材の切断面を鏡面研磨してその面を金属顕微鏡
で観察し、非金属介在物の大きさや個数を定量すること
により、被検査鋼材の清浄度を測定する方法である。し
かしながら、3次元空間の中に散在する非金属介在物の
大きさや個数を、狭い2次元の検査面積から評価するの
で、得られた結果の精度あるいは代表性が極めて低いと
いう問題点がある。 2)化学成分分析法 酸化物系介在物の構成元素である酸素や、硫化物系介在
物の構成元素である硫黄や、チタン系介在物の構成元素
であるチタンの濃度を化学分析により測定し、それらの
濃度値を被検査鋼材の清浄度とする方法である。しか
し、それらの濃度値は非金属介在物の大きさに関する情
報を含まないので、転がり疲れ強さとの相関が弱いとい
う問題点がある。 3)酸溶解法 被検査鋼材を酸で溶解し、残渣として残った非金属介在
物の粒子径や粒子の個数を測定する方法である。しか
し、残渣として残った非金属介在物は、鋼中にあったも
のが酸溶解中に破砕されてできたものであるから、当該
残渣の非金属介在物の大きさや個数を調査しても、被測
定鋼材の清浄度を得ることができないという問題点があ
る。 4)エレクトロン・ビーム溶解法 被検査鋼材より作製した試料を、真空中でエレクトロン
・ビーム溶解し、浮上した非金属介在物の大きさや個数
を測定する方法である。しかしながら、エレクトロン・
ビーム溶解中に非金属介在物が融合してしまうために、
浮上した非金属介在物の大きさや個数が被検査鋼材の清
浄度にならないという問題点がある。 5)転動疲労試験法 被検査鋼材を用いて転がり軸受あるいは転がり軸受の機
能を有する試験片を作製し、その試験片に対して潤滑剤
中で転動疲労試験を行って得られた寿命値を、清浄度指
数とする方法である。しかしながら、この場合は長時間
に及ぶ疲労試験を行なわねばならないので、評価に多大
の時間が必要になるという問題点がある。そこで、試験
時間を短縮するために試験荷重をより増大させる方法が
あるが、その場合に得られる寿命値は、軌道輪と転動体
の最大接触面圧が4000MPaを越えると接触部に塑
性変形が生じてしまうことから、接触部に塑性変形を起
こさない実際の転がり軸受における寿命値を反映しなく
なるという限界がある。また、試験時間を短縮するため
の別法として、潤滑剤中に水を混入させる方法がある
が、その場合には軌道輪の転がり面に摩耗や腐食ピット
が発生するため、得られる寿命値が鋼の清浄度だけでは
決まらないという問題点がある。
[0003] In the following, the outline of these conventional steel cleanliness measurement methods will be described, and their problems will be described. 1) Optical microscopic measurement method The cut surface of the steel to be inspected is mirror-polished, the surface is observed with a metallographic microscope, and the cleanliness of the steel to be inspected is measured by quantifying the size and number of nonmetallic inclusions. How to However, since the size and number of nonmetallic inclusions scattered in the three-dimensional space are evaluated from a narrow two-dimensional inspection area, there is a problem that the accuracy or representativeness of the obtained result is extremely low. 2) Chemical component analysis method The concentrations of oxygen, a constituent element of oxide-based inclusions, sulfur, a constituent element of sulfide-based inclusions, and titanium, a constituent element of titanium-based inclusions, are measured by chemical analysis. , And their concentration values are used as the cleanliness of the steel to be inspected. However, since those concentration values do not include information on the size of the nonmetallic inclusions, there is a problem that the correlation with the rolling fatigue strength is weak. 3) Acid dissolving method This is a method of dissolving a steel to be inspected with an acid and measuring the particle diameter and the number of particles of nonmetallic inclusions remaining as residues. However, the non-metallic inclusions remaining as the residue were formed by crushing during the dissolution of the acid in the steel, so even if the size and number of the non-metallic inclusions in the residue were investigated, There is a problem that the cleanliness of the steel to be measured cannot be obtained. 4) Electron Beam Melting Method This is a method of electron beam melting a sample prepared from a steel material to be inspected in a vacuum and measuring the size and number of floating nonmetallic inclusions. However, Electron
Because non-metallic inclusions fuse during beam melting,
There is a problem that the size and the number of the raised nonmetallic inclusions do not become the cleanliness of the steel to be inspected. 5) Rolling fatigue test method A rolling bearing or a test piece having the function of a rolling bearing is manufactured from a steel material to be inspected, and a life value obtained by performing a rolling fatigue test on the test piece in a lubricant. Is a cleanliness index. However, in this case, since a long-time fatigue test must be performed, there is a problem that a large amount of time is required for evaluation. Therefore, there is a method of further increasing the test load in order to shorten the test time, but the life value obtained in this case is such that when the maximum contact surface pressure between the bearing ring and the rolling element exceeds 4000 MPa, plastic deformation occurs in the contact portion. Therefore, there is a limit that the life value of an actual rolling bearing that does not cause plastic deformation in the contact portion is not reflected. Another method to shorten the test time is to mix water in the lubricant.In this case, wear and corrosion pits occur on the rolling surface of the bearing ring, so the resulting life value is low. There is a problem that it cannot be determined only by the cleanliness of steel.

【0004】以上説明したように、従来の鋼清浄度測定
法は、いずれも種々の因子が介入して、軸受寿命と清浄
度との関係を純粋に求めることが難しく、適切な清浄度
評価を行なうことができない。本発明は、そのような従
来の鋼清浄度測定方法の問題点に鑑みてなされたもので
あり、軸受寿命の決定因子である軸受用鋼の清浄度の測
定を短時間で精度良く行なうことが可能な清浄度評価方
法を提供することを目的とする。
As described above, in the conventional steel cleanliness measuring methods, it is difficult to purely determine the relationship between the bearing life and cleanliness due to various factors intervening. Cannot do it. The present invention has been made in view of such a problem of the conventional steel cleanliness measuring method, and it is possible to accurately measure the cleanliness of the bearing steel, which is a determinant of the bearing life, in a short time. It is an object to provide a possible cleanliness evaluation method.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1に係る本発明の軸受用鋼の清浄度測定方
法は、被測定鋼材より鍔の無い形式の転がり軸受の外輪
または内輪または転動体を試験片として作成し、水分濃
度を1%以上80%以下にした潤滑油中で転がり疲れの
寿命試験を行ない、得られた寿命値をもって被測定鋼材
の清浄度指数とする。
In order to achieve the above object, a method for measuring the cleanliness of a bearing steel according to the present invention according to the first aspect of the present invention provides a method of measuring the cleanliness of a rolling bearing having a flange less than the steel to be measured. An inner ring or a rolling element is prepared as a test piece, a rolling fatigue life test is performed in a lubricating oil having a water concentration of 1% or more and 80% or less, and the obtained life value is used as a cleanliness index of the steel material to be measured.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。潤滑剤の中に水分が混入すると、
転がり軸受の寿命は大きく低下する。破損形態は、潤滑
条件により「摩耗」または「剥離」のいずれかとなる。
鋼の耐摩耗性は鋼の清浄度に依存しないので、「摩耗」
による寿命は鋼の清浄度と無関係である。これに対し、
「剥離」の場合は破損起点が腐食ピットまたは非金属介
在物であり、鋼の清浄度と密接に関係する。従って軸受
寿命と鋼清浄度との関係を純粋に求めて適切な清浄度評
価を行なうためには、破損形態を剥離にし、さらにその
起点を非金属介在物とするような試験条件とすることが
必要である。
Embodiments of the present invention will be described below with reference to the drawings. If moisture is mixed into the lubricant,
The life of the rolling bearing is greatly reduced. The failure mode is either "wear" or "peeling" depending on lubrication conditions.
Since the wear resistance of steel does not depend on the cleanliness of the steel, "wear"
Is independent of the cleanliness of the steel. In contrast,
In the case of "peeling", the origin of the damage is a corrosion pit or a non-metallic inclusion, which is closely related to the cleanliness of the steel. Therefore, in order to determine the relationship between bearing life and steel cleanliness purely and perform appropriate cleanliness evaluation, test conditions should be such that the form of breakage should be exfoliated and the starting point should be a nonmetallic inclusion. is necessary.

【0007】本願発明者らは、転がり軸受の剥離寿命に
直接関与する材料鋼の清浄度評価試験について研究を重
ねた結果、「摩耗」を排除し、試験に用いる潤滑剤
を規制して水混入試験とすることにより寿命との密接な
相関性が確実になることを見い出して本発明をなすに至
った。以下に、本発明の軸受用鋼の清浄度評価方法にお
ける試験条件の規制について述べる。
[0007] The inventors of the present application have conducted research on the cleanliness evaluation test of the material steel which is directly involved in the peeling life of the rolling bearing. As a result, "wear" was eliminated, the lubricant used in the test was regulated, and water was mixed. The present inventors have found that a close correlation with the service life can be ensured by conducting a test, and have accomplished the present invention. The regulation of the test conditions in the method for evaluating the cleanliness of bearing steel according to the present invention will be described below.

【0008】[潤滑剤及び水分]破損形態を摩耗ではな
く剥離とするためには、潤滑剤を油とすることが必要で
ある。なぜなら、油以外の潤滑剤では水との均一混合が
難しくて、転がり面に局部的な摩耗や腐食ピットを形成
するからである。すなわち、得られる寿命値が鋼の清浄
度だけでは決まらなくなるからである。転がり面の局部
的な摩耗や腐食を防止するべく、潤滑油と水の混合を均
一にするには、使用する潤滑油はVG100以下の低粘
度のものであることが望ましい。なお、VGはVisc
osityGradeをいい、数値番号は40℃での動
粘度(cSt)を表している。
[Lubricant and Moisture] In order to make the form of failure not peeling but abrasion, it is necessary to use oil as the lubricant. This is because it is difficult for a lubricant other than oil to uniformly mix with water, and local wear and corrosion pits are formed on the rolling surface. That is, the obtained life value cannot be determined only by the cleanliness of the steel. In order to uniformly mix the lubricating oil and water in order to prevent local abrasion and corrosion of the rolling surface, it is desirable that the lubricating oil used has a low viscosity of VG100 or less. VG is Visc
OsityGrade is referred to, and the numerical value represents the kinematic viscosity at 40 ° C. (cSt).

【0009】試験片の破損形態を、非金属介在物を起点
とした「剥離」とするためには、潤滑油中の水分濃度は
1%以上80%以下(体積%、以下同じ)とすることが
必要である。水分濃度が80%を越えると腐食ピットを
起点とする剥離を含むようになり、さらに90%を越え
ると転がり面の摩耗が著しくなり、腐食ピットも削り取
られて剥離しない場合がでてくるようになる。すなわ
ち、水分濃度が80%を越えると、試験片の寿命値が清
浄度のみの関数ではなくなるからである。水分濃度が1
%未満では、得られる寿命値が鋼の清浄度だけでなく水
分濃度の関数にもなるため、条件として不適当である。
水分濃度が1%以上となると、それ以上水分濃度が上昇
してももはや短寿命化はしないので、水分濃度を1%以
上80%以下にすることが必要である。
[0009] In order for the test piece to be "peeled" starting from non-metallic inclusions, the water concentration in the lubricating oil must be 1% or more and 80% or less (volume%, the same applies hereinafter). is necessary. If the water concentration exceeds 80%, peeling originating from the corrosion pits will be included, and if it exceeds 90%, the rolling surface will be significantly worn, and the corrosion pits will be scraped off and may not peel off. Become. That is, when the water concentration exceeds 80%, the life value of the test piece is not a function of only the cleanliness. Moisture concentration is 1
If it is less than%, the obtained life value is not only a function of the cleanliness of the steel but also a function of the moisture concentration, which is inappropriate as a condition.
When the water concentration is 1% or more, the service life is no longer shortened even if the water concentration further increases. Therefore, it is necessary to make the water concentration 1% or more and 80% or less.

【0010】[軸受の形態]円すいころ軸受や円筒ころ
軸受等の鍔のある転がり軸受では、軌道輪の鍔ところの
頭部との摺動部の摩擦力が、特に水混入潤滑下では大き
くなり、得られる寿命値が低下する。すなわち、鍔のあ
る転がり軸受の寿命値は、軸受を構成する鋼の清浄度だ
けでなく摺動部の摩擦力の関数にもなる。その摺動部の
摩擦力は、摺動面の鋼の炭化物量に比例し、また素地の
耐食性にも影響されるので、被検査鋼材の化学成分が異
なると、同じ清浄度でも得られる寿命値が異なる。従っ
て、得られる寿命値を鋼の清浄度だけの関数とするため
には、鍔のない形式の転がり軸受を使用することが必要
である。
[Form of bearing] In a rolling bearing having a flange such as a tapered roller bearing or a cylindrical roller bearing, the frictional force of a sliding portion of the raceway against the head at the flange is particularly large under lubrication mixed with water. , Resulting in a reduced life value. In other words, the life value of a flanged rolling bearing is a function of not only the cleanliness of the steel constituting the bearing but also the frictional force of the sliding portion. The frictional force of the sliding part is proportional to the amount of carbide in the steel on the sliding surface and is also affected by the corrosion resistance of the base material. Are different. Therefore, it is necessary to use a flangeless type rolling bearing in order to make the resulting life value a function only of the cleanliness of the steel.

【0011】[試験温度]試験温度は、0℃以上とする
ことが必要で、100℃以下とすることが望ましい。転
がり接触下での潤滑油中の水の役割は、転がり面に存在
する非金属介在物とその周りの素地との間の空隙に水が
入り込み、応力腐食割れを促進させることである。従っ
て、水は液体か蒸気であることが必要であり、固体とな
る0℃未満ではその役割を果たさなくなる。一方、試験
温度が100°Cを越えると水が気化して散逸し潤滑油
中の水分濃度の保持が難しくなるので、好ましい試験条
件とは言えない。
[Test Temperature] The test temperature must be 0 ° C. or higher, and preferably 100 ° C. or lower. The role of water in the lubricating oil under rolling contact is to allow water to enter gaps between the non-metallic inclusions present on the rolling surface and the surrounding matrix, thereby promoting stress corrosion cracking. Therefore, water must be liquid or vapor, and will not play its role below 0 ° C., where it becomes solid. On the other hand, if the test temperature exceeds 100 ° C., water evaporates and dissipates, making it difficult to maintain the water concentration in the lubricating oil.

【0012】[試験軸受構成部品の材料、特に炭化物の
影響]鋼は、水の存在下で高面圧で接触すると、接触腐
食が起こる。すなわち、鋼が水の存在下で高面圧で接触
すると、単体で存在するときよりも腐食速度が著しく増
大する。接触腐食の結果、転がり面の素地の部分が溶解
し、炭化物が転がり面の中で突起物として存在するよう
になる。そうなると転動体と軌道輪の真の接触面圧は腐
食前に比べて大きくなり、試験片の寿命は低下する。こ
の接触腐食現象は、試験時間が長時間になる高清浄度鋼
の評価の際に特に顕著となり、得られる寿命値は、試験
片の鋼の清浄度のみの関数ではなく、試験片や相手部材
の炭化物の大きさや量の関数にもなり、好ましくない。
この接触腐食を防止するには、鋼中の炭化物の影響を排
除する必要があり、外輪または内輪が試験片のときは、
転動体をセラミック材にすることが望ましい。また、転
動体が試験片のときには、外輪及び内輪をセラミック材
にすることが望ましい。 (実施例)以下、実施例により、本発明を更に具体的に
説明する。 (A)試料の作製 表1に示す鋼種,溶製法,清浄度,炭素濃度の鋼番号
1,2,3,4の鋼材で、スラスト玉軸受51305の
外内輪および円すいころ軸受HR32017XJの外内
輪を作製した。
[Effects of Materials of Test Bearing Components, Especially Carbides] When steel contacts at high surface pressure in the presence of water, contact corrosion occurs. That is, when steel comes into contact with water at a high surface pressure in the presence of water, the corrosion rate is significantly increased as compared with the case where the steel exists alone. As a result of the contact corrosion, the base portion of the rolling surface is melted, and carbides are present as protrusions in the rolling surface. In such a case, the true contact surface pressure between the rolling element and the bearing ring becomes larger than before the corrosion, and the life of the test piece is reduced. This contact corrosion phenomenon is particularly remarkable in the evaluation of high cleanliness steel in which the test time is long, and the obtained life value is not a function of only the cleanliness of the steel of the test piece, but the test piece and the mating member. Also becomes a function of the size and amount of the carbide, which is not preferable.
To prevent this contact corrosion, it is necessary to eliminate the effect of carbides in the steel, and when the outer or inner ring is a test piece,
It is desirable that the rolling elements be made of a ceramic material. When the rolling element is a test piece, it is desirable that the outer ring and the inner ring be made of a ceramic material. (Examples) Hereinafter, the present invention will be described more specifically with reference to examples. (A) Manufacture of Samples The steel types, smelting methods, cleanliness, and carbon concentrations shown in Table 1 were used for steel Nos. 1, 2, 3, and 4. Produced.

【0013】[0013]

【表1】 [Table 1]

【0014】酸素濃度,硫黄濃度およびチタン(Ti)
濃度から判断すると、鋼番号1,2,3の鋼の清浄度は
同じであり、硫黄濃度が5倍もある鋼番号4の鋼の清浄
度が最も悪い。寿命試験するスラスト玉軸受51305
の寸法は、内径25mm,外径52mm,幅20mmで
ある。保持器は、転動体との腐食摩耗を防止するため
に、66ナイロンで作製してある。転動体の直径は9.
525mmで、転動体数は4である。基本動定格荷重C
は18kNである。円すいころ軸受HR32017XJ
の寸法は、内径85mm,外径130mm,組立幅29
mmである。
Oxygen concentration, sulfur concentration and titanium (Ti)
Judging from the concentration, the cleanliness of the steels of steel Nos. 1, 2 and 3 are the same, and the cleanliness of the steel of steel No. 4 having the sulfur concentration five times as high is the worst. Thrust ball bearing for life test 51305
Are 25 mm in inner diameter, 52 mm in outer diameter, and 20 mm in width. The retainer is made of 66 nylon to prevent corrosion wear with the rolling elements. The diameter of the rolling element is 9.
At 525 mm, the number of rolling elements is 4. Basic dynamic load rating C
Is 18 kN. Tapered roller bearing HR32017XJ
Dimensions are 85mm inner diameter, 130mm outer diameter, 29 assembly width
mm.

【0015】基本動定格荷重Cは143kNである。転
動体は、特に断らない限り鋼番号3のSUJ2で作製し
た。鋼番号1,3,4のずぶ焼鋼SUJ2は、840℃
から油焼入れし、180℃で2時間焼戻し、硬さHRC
62を得た。鋼番号2の肌焼鋼は、930℃で6時間浸
炭後放冷し、820℃から油焼入れし、180℃で2時
間焼戻し、硬さHRC60を得た。軌道面の炭素濃度
は、0.8%である。 (B)水混合なしでの寿命試験 1)試験方法 スラスト玉軸受51305の寿命試験機の主要部の構造
を図1に示す。水分濃度の減少を防止するために、試験
軸受1を支持する試験軸受ホルダ2と内輪用主軸3の間
にはゴムシール4を使用した。5は試験軸受1を浸漬し
た潤滑油、11は玉(鋼球)、12は外輪、13は内輪
である。寿命試験においては、いずれかの軌道輪が剥離
するまでの時間を寿命値とした。転動体が剥離したとき
は、中断扱いとした。試験は剥離軌道輪数が10個とな
るまで行ない、10%破損寿命L 10(P)を求めた。ま
ず、軸受用鋼としての清浄度を評価するために、各鋼の
スラスト玉軸受を、水を注入しない純油中で寿命試験し
た。試験条件は荷重P=6.4kN,転動体と軌道輪の
最大接触面圧Pmax =2800Mpaで,内輪回転数=
1250rpm,潤滑油=VG10(日石スピノツクス
S10),潤滑油中水分濃度=0.01%である。試験
温度は約60℃である。定格疲れ寿命(10%破損寿命
の計算値)は297時間である。
The basic dynamic load rating C is 143 kN. Turn
The moving body is made of SUJ2 of steel number 3 unless otherwise specified.
Was. SUJ2, which is a steel with a steel number of 1,3,4, is 840 ° C
Quenched with oil, tempered at 180 ° C for 2 hours, hardness HRC
62 was obtained. Case No.2 case hardened steel was dipped at 930 ° C for 6 hours.
Allow to cool after charcoal, oil quenching from 820 ° C, 2 hours at 180 ° C
Tempering and hardness HRC60 were obtained. Orbital surface carbon concentration
Is 0.8%. (B) Life test without water mixing 1) Test method Structure of main part of life test machine of thrust ball bearing 51305
Is shown in FIG. Testing to prevent loss of moisture concentration
Between the test bearing holder 2 that supports the bearing 1 and the inner ring main shaft 3
Used a rubber seal 4. 5 dipped test bearing 1
Lubricating oil, 11 is a ball (steel ball), 12 is an outer ring, 13 is an inner ring
It is. In the life test, one of the bearing rings peeled off
The time required to complete was defined as the life value. When the rolling element comes off
Was suspended. In the test, the number of peeling race rings was 10
Until 10% damage life L Ten(P) was determined. Ma
In order to evaluate the cleanliness of bearing steel,
Thrust ball bearings are tested for life in pure oil without water injection.
Was. The test conditions were as follows: load P = 6.4 kN, rolling elements and races
Maximum contact surface pressure Pmax= 2800Mpa, inner ring rotation speed =
1250 rpm, lubricating oil = VG10 (Nisseki Spinotox
S10) The water concentration in the lubricating oil is 0.01%. test
The temperature is about 60 ° C. Rated fatigue life (10% damage life
Is 297 hours.

【0016】2)試験結果 鋼番号1,2,3,4の鋼で作製した軸受の10%破損
寿命L10(P)は、それぞれ870時間,2430時
間,8230時間,4820時間であった。従って、鋼
番号1,2,3,4の鋼の正しい清浄度指数は、それぞ
れ870時間,2430時間,8230時間,4820
時間という寿命値である。すなわち、清浄度の順番は良
い方から鋼番号3,4,2,1の順となる。この結果か
ら、前記の酸素濃度,硫黄濃度,チタン濃度から判定し
た清浄度がいかに不正確かが分かる。ただし、水混合な
しでの寿命試験でこれらの寿命値を得るには、あまりに
も膨大な時間が必要であった。 (C)水混合油中寿命試験 1)試験方法及び結果 次に、上記各鋼を素材としたスラスト玉軸受を用いて、
水を注入した油中で寿命試験した。油中の水分濃度は1
5%である。その他の試験条件は前記水混合なしでの寿
命試験と同じである。寿命試験の結果、鋼番号1,2,
3,4の鋼で作製した軸受の10%破損寿命L10(W)
は、それぞれ12時間,33時間,100時間,66時
間であった。
2) Test Results The 10% failure life L 10 (P) of the bearings made of steel Nos. 1, 2, 3 and 4 was 870 hours, 2430 hours, 8230 hours and 4820 hours, respectively. Therefore, the correct cleanliness indices of steel Nos. 1, 2, 3, and 4 are 870 hours, 2430 hours, 8230 hours, and 4820 hours, respectively.
It is a lifetime value of time. That is, the order of cleanliness is steel numbers 3, 4, 2, and 1 in descending order. From this result, it can be seen how inaccurate the cleanliness determined from the oxygen concentration, sulfur concentration and titanium concentration is. However, it took too much time to obtain these life values in a life test without water mixing. (C) Life test in water mixed oil 1) Test method and results Next, using a thrust ball bearing made of each of the above steels,
Life tests were performed in oil injected with water. The water concentration in the oil is 1
5%. Other test conditions are the same as the life test without the water mixing. As a result of the life test, steel numbers 1, 2,
10% failure life L 10 (W) of bearings made of 3, 4 steel
Was 12 hours, 33 hours, 100 hours, and 66 hours, respectively.

【0017】2)水混合なしと有りとの両試験結果の比
較 図2に、前述の水を注入しない場合の軸受10%破損寿
命L10(P)と、水を注入した場合の軸受寿命L
10(W)の関係を示す。L10(P)とL10(W)は正比
例関係を得ており、水混入潤滑油中で得られる寿命値は
鋼の清浄度を与える。しかも、水混入潤滑油中で得られ
る寿命値(時間)は、水を注入しない場合の寿命の約1
00分の1であり、短時間で鋼の清浄度評価が可能にな
るといえる。 (D)鋼中の炭化物と軸受寿命との関係 鋼番号2,3の鋼で作製した円すいころ軸受を、図3の
寿命試験機で寿命試験した。試験条件はラジアル荷重F
r=35.8kN,アキシャル荷重Fa=15.6k
N,内輪回転数2500rpm,潤滑油=VG10(日
石スピノックスS10)で15%の水分濃度に保持し
た。水分濃度の減少を防止するために、主軸3とハウジ
ングである試験軸受ホルダ2の間にはゴムシール4が装
着してある。試験温度は約60℃である。定格疲れ寿命
(10%破損寿命の計算値)は674時間である。
2) Comparison of test results with and without water mixing FIG. 2 shows the above-mentioned bearing 10% failure life L 10 (P) when water is not injected and the bearing life L when water is injected.
10 (W) is shown. L 10 (P) and L 10 (W) have a direct proportional relationship, and the life value obtained in the lubricating oil mixed with water gives the cleanliness of the steel. Moreover, the life value (hour) obtained in the lubricating oil mixed with water is about one-half of the life without water injection.
It is 1/1000, which means that it is possible to evaluate the cleanliness of steel in a short time. (D) Relationship between Carbides in Steel and Bearing Life A tapered roller bearing made of steel Nos. 2 and 3 was subjected to a life test using a life tester shown in FIG. The test condition is radial load F
r = 35.8 kN, axial load Fa = 15.6 k
N, the inner ring rotation speed was 2500 rpm, and the lubricating oil was maintained at a water concentration of 15% with VG10 (Nisseki Spinox S10). In order to prevent the water concentration from decreasing, a rubber seal 4 is mounted between the main shaft 3 and the test bearing holder 2 as a housing. The test temperature is about 60 ° C. The rated fatigue life (calculated value of 10% failure life) is 674 hours.

【0018】鋼番号2,3の鋼で作製した円すいころ軸
受の寿命値L10(WT)は1608時間,720時間
である。図4にL10(WT)とL10(W)の関係を示
す。L10(WT)の大小関係がL10(W)では逆転して
しまっている。これは、SAE4320鋼の表面炭素濃
度が0.8%とSUJ2鋼に比べて低いため摺軸面であ
る大鍔面上の炭化物が少ないこと、およびNiを1.7
%含んでいるので素地の耐食性が高く炭化物が突起にな
りずらいために、大鍔ところ頭部の摺動摩擦力が低いた
めである。このように、鍔を持つ軸受の寿命値は、鋼の
清浄度のみの関数にならず鋼の化学成分にも影響を受け
るので、鍔を持つ軸受は清浄度測定に使用できない。 (E)潤滑油中の水分濃度と軸受寿命との関係 次に,潤滑油中の水分濃度と軸受寿命との関係を、鋼番
号1の鋼で作製したスラスト玉軸受51305を使用し
て確認した。図5にその関係を示す。
The life values L10 (WT) of the tapered roller bearings made of steel Nos. 2 and 3 are 1608 hours and 720 hours. FIG. 4 shows the relationship between L 10 (WT) and L 10 (W). The magnitude relation of L 10 (WT) is reversed in L 10 (W). This is because the surface carbon concentration of SAE4320 steel is 0.8%, which is lower than that of SUJ2 steel, so that there is little carbide on the large flange surface which is the sliding shaft surface, and Ni is 1.7.
%, The corrosion resistance of the base material is high, and the carbides are unlikely to become projections, so that the sliding frictional force of the large flange and the head is low. As described above, the life value of the bearing having the flange is not only a function of the cleanliness of the steel but is also affected by the chemical composition of the steel. Therefore, the bearing having the flange cannot be used for the cleanliness measurement. (E) Relationship between Moisture Concentration in Lubricating Oil and Bearing Life Next, the relationship between the moisture concentration in lubricating oil and bearing life was confirmed using a thrust ball bearing 51305 made of steel No. 1. . FIG. 5 shows the relationship.

【0019】水分濃度が1%未満では寿命値が水分濃度
に大きく依存するが、1%以上で寿命値は安定する。た
だし、水分濃度が80%を越えると、鼻命はまた低下し
はじめて90%で最短寿命となる。このように水分濃度
が80%越え90%以下で寿命低下するのは、転がり面
に腐食ピットが形成され、それが剥離起点となるからで
ある。水分濃度が90%を越えると、転がり面全体が腐
食摩耗をするようになり、腐食ピット起点の剥離が減少
して摩耗のみが進行し、剥離しない場合が増えてくる。
この水分濃度範囲においては、鋼の清浄度は寿命に関係
しない。このように、潤滑油中の水分濃度は1%以上8
0%以下に保つことが必要であるが。その範囲内であれ
ば、どの水分濃度でも寿命値に影響しないことが特徴で
ある。
When the water concentration is less than 1%, the life value greatly depends on the water concentration, but when the water concentration is 1% or more, the life value becomes stable. However, when the water concentration exceeds 80%, the nasal life starts to decrease again, and the shortest life is reached at 90%. The reason why the life is shortened when the water concentration is more than 80% and 90% or less is that corrosion pits are formed on the rolling surface and serve as a starting point of peeling. When the water concentration exceeds 90%, the entire rolling surface is corroded and worn, and the peeling at the starting point of the corrosion pit is reduced, and only the abrasion proceeds, and the number of cases where the peeling is not performed increases.
In this moisture concentration range, the cleanliness of the steel is not related to the service life. As described above, the water concentration in the lubricating oil is 1% or more and 8% or more.
It is necessary to keep it below 0%. The characteristic is that any water concentration within the range does not affect the life value.

【0020】なお、図1,図3に示す寿命試験機による
上記実施例においては、潤滑油中の水分濃度を一定に保
つために、回転軸とハウジングあるいはホルダーとの間
にゴムシールを装着したが、水分濃度の許容範囲が広い
ので、水分の蒸発損失分を適宜注水して水分濃度を上記
濃度範囲内に入れる方法をとってもよい。例えば、図1
の試験機のゴムシールを外し、外部から水を供給するよ
うにした試験機を図6に示す。 (F)潤滑油の粘度と軸受寿命との関係 図6に示す試験機を用いて、種々の粘度の油中で前記鋼
番号4のスラスト玉軸受を寿命試験した。水分濃度は、
1%〜80%の間に制御した。この試験で得られた寿命
値L10(W)と潤滑油粘度との関係を図7に示す。
In the above-described embodiment using the life tester shown in FIGS. 1 and 3, a rubber seal is mounted between the rotating shaft and the housing or the holder in order to keep the water concentration in the lubricating oil constant. Since the allowable range of the water concentration is wide, a method may be adopted in which the amount of evaporation loss of the water is appropriately injected so that the water concentration falls within the above-mentioned concentration range. For example, FIG.
FIG. 6 shows a testing machine in which the rubber seal of the testing machine is removed and water is supplied from the outside. (F) Relationship between Viscosity of Lubricating Oil and Life of Bearing Using a tester shown in FIG. 6, a life test was performed on the thrust ball bearing of Steel No. 4 in oils of various viscosities. The water concentration is
Controlled between 1% and 80%. FIG. 7 shows the relationship between the life value L 10 (W) obtained in this test and the lubricating oil viscosity.

【0021】VG100以下の潤滑油においては同レベ
ルの寿命値を得ることができるが、VG100を越える
と寿命値が低下する。これは、油と水の混合が不十分に
なり、潤滑油の下限側の水分濃度が高くなり、下レース
(外輪)に腐食ピットを形成し、剥離を引き起こす場合
があるからである。このことから、VG100以下の粘
度グレードの油を用いることが望ましいといえる。 (G)潤滑剤にグリースを用いた場合の軸受寿命との関
係 図2の試験機を用い、潤滑剤にグリースを使用して、水
を注入したグリース中で各鋼のスラスト玉軸受を寿命試
験した。用いたグリースはリチウム(Li)石鹸を増ち
ょう剤とした粘度VG64の基油を使用するグリースで
ある。注入した水分濃度は15%である。その他の試験
条件は前記の試験と同じである。鋼番号1,2,3,4
の鋼で作製した軸受の10%破損寿命L10(WG)は、
それぞれ325時間,268時間,331時間,319
時間であった。破損形態は摩耗および腐食ピットを起点
とする剥離であった。図8にL10(WG)と前記L
10(P)との関係を示す。この結果から、L10(WG)
はL10(P)とは相関関係が無いことがわかる。すなわ
ち、水混入のグリース潤滑下で得られる寿命値は、試験
片の鋼の清浄度と関連性が無い。それゆえに、破損形態
を、摩耗あるいは腐食ピット起点の剥離ではなく非金属
介在物起点の剥離とするためには、潤滑剤を油とするこ
とが必要である。 (H)軸受構成部品の材料と軸受寿命との関係 図2の説明において、水混入無しの潤滑油中のスラスト
玉軸受の10%破損寿命L10(P)と水混入潤滑油中の
スラスト玉軸受の寿命L10(W)とは正比例関係にある
と述べたが、厳密にみると、最も長寿命な鋼番号3の軸
受の寿命比[L 10(W)/L10(P)]×100は、他
の軸受のそれより僅かに低い。これを、図9に図示す
る。この原因は、転動体(鋼)と軌道輪(鋼)とが接触
腐食を引き起こし、試験時間が長いと転がり面に炭化物
が突起状に飛びだすため、転動体と軌道輪の真の接触面
圧が腐食前に比べて大きくなり、軸受の寿命が低下する
ためである。
For lubricating oil of VG 100 or less, the same level
Lifetime value, but exceeds VG100
And the life value decreases. This is due to poor mixing of oil and water
The lower limit of the lubricating oil concentration increases,
When corrosion pits are formed on the (outer ring), causing peeling
Because there is. From this, the viscosity of VG100 or less
It may be desirable to use a grade grade oil. (G) Relationship between bearing life when grease is used as lubricant
In connection with the tester shown in FIG.
Life test of each steel thrust ball bearing in grease
Tested. Grease used increased lithium (Li) soap
A grease that uses a base oil of viscosity VG64
is there. The concentration of the injected water is 15%. Other tests
The conditions are the same as in the previous test. Steel numbers 1, 2, 3, 4
10% failure life L of bearing made of steelTen(WG)
325 hours, 268 hours, 331 hours, 319 respectively
It was time. Failure modes originate from wear and corrosion pits
It was peeling. FIG.Ten(WG) and the L
Ten(P). From this result, LTen(WG)
Is LTenIt can be seen that there is no correlation with (P). Sand
The life value obtained under water-containing grease lubrication is
Not relevant to the cleanliness of the piece steel. Therefore, the form of damage
Non-metallic, not wear or corrosion pit origin delamination
In order to remove the inclusion starting point, use lubricant as oil.
Is necessary. (H) Relationship between bearing component materials and bearing life In the description of FIG. 2, thrust in lubricating oil without water contamination
10% failure life L of ball bearingTen(P) and in water-mixed lubricating oil
Thrust ball bearing life LTen(W) is in direct proportion
Strictly speaking, the longest life shaft of steel number 3
Life ratio [L Ten(W) / LTen(P)] x 100 is other
Slightly lower than that of bearings. This is illustrated in FIG.
You. This is due to the contact between the rolling element (steel) and the raceway (steel).
Causes corrosion and long test times cause carbides on the rolling surface
Is projected into a protruding shape, so that the true contact surface between the rolling element and raceway
Pressure increases compared to before corrosion, shortening bearing life
That's why.

【0022】そこで、外輪と内輪を鋼番号1,2,3,
4の各鋼で作製し、転動体をセラミック材(Si
3 4 )製にしたスラスト玉軸受について、図1の試験
機を用い、水混合潤滑油中で寿命試験した。油中の水分
濃度は15%である。その他の試験条件は前記の鋼球を
用いたときと同じである。ただし、窒化珪素のヤング率
は鋼よりも高いので、転動体と軌道輪との最大接触面圧
max は3100MPaである。鋼番号1,2,3,4
の鋼で作製した軸受の10%破損寿命L10(WC)は、
それぞれ4.3時間,12.2時間,41.2時間,2
4.1時間であった。
Therefore, the outer ring and the inner ring are made of steel numbers 1, 2, 3,
4 made of steel and the rolling element is made of ceramic material (Si
The life test was performed on the thrust ball bearing made of 3N 4 ) in a water-mixed lubricating oil using the tester shown in FIG. The water concentration in the oil is 15%. Other test conditions are the same as when the above-mentioned steel balls were used. However, since the Young's modulus of silicon nitride is higher than that of steel, the maximum contact surface pressure Pmax between the rolling element and the bearing ring is 3100 MPa. Steel numbers 1, 2, 3, 4
The 10% failure life L 10 (WC) of a bearing made of
4.3 hours, 12.2 hours, 41.2 hours, 2 respectively
It was 4.1 hours.

【0023】各軸受の寿命比[L10(WC)/L
10(P)]×100を図10に比較する。各軸受の寿命
比[L10(WC)/L10(P)]×100は一定値にな
っており、軌道面には炭化物の突起は見られなかった。
このように軌道輪と転動体との間の接触腐食を無くす
と、極めて精度良く、しかも短時間で、鋼の清浄度を測
定することができる。
The life ratio of each bearing [L 10 (WC) / L
10 (P)] × 100 is compared with FIG. The life ratio [L 10 (WC) / L 10 (P)] × 100 of each bearing was a constant value, and no carbide protrusion was found on the raceway surface.
By eliminating the contact corrosion between the bearing ring and the rolling element in this way, it is possible to measure the cleanliness of the steel extremely accurately and in a short time.

【0024】[0024]

【発明の効果】以上、説明したように、請求項1に係る
本発明によれば、転がり軸受の軌道輪または転動体を試
験片として軸受用鋼の清浄度評価を行うにあたり、軌道
輪は転動体との接触腐食を無くすべく鍔なしとし、かつ
水分濃度を規制し均一に分散させた潤滑油中で転がり疲
れの寿命試験を行なうものとしたため、試験時間が従来
より大幅に短縮されるとともに、実際の軸受の転がり疲
れ強さとの高い相関性を確保することができて、優れた
効率及び精度が得られるという効果を奏する。
As described above, according to the first aspect of the present invention, when the cleanliness of the bearing steel is evaluated by using the raceway of the rolling bearing or the rolling element as a test piece, the raceway is rolled. To eliminate the contact corrosion with the moving body, and to perform the life test of rolling fatigue in lubricating oil in which the water concentration is regulated and the water concentration is regulated and evenly dispersed, the test time is greatly shortened compared to before, It is possible to secure a high correlation with the actual rolling fatigue strength of the bearing, and to obtain an effect that excellent efficiency and accuracy can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】スラスト玉軸受51305の寿命試験機の主要
部の構造を示す断面図。
FIG. 1 is a sectional view showing a structure of a main part of a life tester of a thrust ball bearing 51305.

【図2】水混入無しの潤滑油中のスラスト玉軸受の10
%破損寿命L10(P)と水混入潤滑油中のスラスト玉軸
受の10%破損寿命L10(W)との関係を示すグラフ。
FIG. 2 shows thrust ball bearings in lubricating oil without water contamination.
5 is a graph showing the relationship between% failure life L 10 (P) and 10% failure life L 10 (W) of thrust ball bearings in lubricating oil mixed with water.

【図3】水混入潤滑油を用いる円すいころ軸受の寿命試
験機の主要部の構造を示す断面図。
FIG. 3 is a cross-sectional view showing the structure of a main part of a life tester for a tapered roller bearing using water-mixed lubricating oil.

【図4】鋼番号2および3で作製したスラスト玉軸受の
水混入潤滑油中の10%破損寿命L10(W)と円錐ころ
軸受の10%破損寿命L10(WT)との関係を示すグラ
フ。
4 shows a relationship between steel Nos. 2 and 3 10% damage life in water contaminated lubricating oil of the thrust ball bearings produced in L 10 (W) 10% of the tapered roller bearing damage life L 10 (WT) Graph.

【図5】油中の水分濃度とスラスト玉軸受の10%破損
寿命L10(W)との関係を示すグラフ。
FIG. 5 is a graph showing a relationship between a water concentration in oil and a 10% failure life L 10 (W) of a thrust ball bearing.

【図6】図1のゴムシールを外し、水の供給装置をつけ
た寿命試験機の主要部の構造を示す断面図。
FIG. 6 is a cross-sectional view showing a structure of a main part of a life tester provided with a water supply device with a rubber seal of FIG. 1 removed.

【図7】水混入潤滑油中のスラスト玉軸受の10%破損
寿命L10(W)と潤滑油の40℃における粘度との関係
を示すグラフ。
FIG. 7 is a graph showing a relationship between a 10% failure life L 10 (W) of a thrust ball bearing in lubricating oil mixed with water and a viscosity of the lubricating oil at 40 ° C.

【図8】水混入グリース中のスラスト玉軸受の10%破
損寿命L10(WG)と、水混入の無い潤滑油中のスラス
ト玉軸受の10%破損寿命10%L10(P)との関係を
示すグラフ。
[8] and 10% of the thrust ball bearing of water mixed in the grease damaged life L 10 (WG), the relationship between the 10% 10% breakage life of the thrust ball bearing in the free lubricant of water contaminated L 10 (P) A graph showing.

【図9】鋼球を使用した各スラスト玉軸受間における水
混入潤滑油中の10%破損寿命L10(W)と水混入の無
い潤滑油中のスラスト玉軸受の10%破損寿命10%L
10(P)との関係を示すグラフ。
FIG. 9: Water between each thrust ball bearing using steel balls
10% failure life L in mixed lubricating oilTen(W) and no water contamination
10% failure life of thrust ball bearings in lubricating oil 10% L
TenThe graph which shows the relationship with (P).

【図10】セラミック球を使用した各スラスト玉軸受間
における水混入潤滑油中の10%破損寿命L10(WC)
と、水混入無しの潤滑油中の10%破損寿命10%L10
(P)との比[L10(WC)/L10(P)]を比較した
グラフ。
FIG. 10: 10% failure life L 10 (WC) in lubricating oil mixed with water between thrust ball bearings using ceramic balls
And 10% failure life in lubricating oil without water contamination 10% L 10
Graph comparing the ratio [L 10 (WC) / L 10 (P)] of the (P).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 五位野 良 神奈川県藤沢市桐原町12番地 日本精工株 式会社内 Fターム(参考) 2G024 AC01 AC06 BA12 BA19 DA09 DA26 FA03 3J101 AA01 AA32 EA03 EA41 EA52 FA31 FA60  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Ryo Gono No. 12, Kirihara-cho, Fujisawa-shi, Kanagawa F-term in NSK Ltd. (reference) 2G024 AC01 AC06 BA12 BA19 DA09 DA26 FA03 3J101 AA01 AA32 EA03 EA41 EA52 FA31 FA60

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被測定鋼材より鍔の無い形式の転がり軸
受の外輪または内輪または転動体を試験片として作成
し、水分濃度を1%以上80%以下にした潤滑油中で転
がり疲れの寿命試験を行ない、得られた寿命値を被測定
鋼材の清浄度指数とする軸受用鋼の清浄度測定方法。
1. A life test of rolling fatigue in a lubricating oil having a water concentration of 1% or more and 80% or less, wherein an outer ring or an inner ring or a rolling element of a rolling bearing having a flange less than a steel material to be measured is prepared as a test piece. And the obtained life value is used as the cleanliness index of the steel to be measured.
JP10173286A 1998-06-19 1998-06-19 Method of evaluating cleanness of bearing steel Pending JP2000009597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10173286A JP2000009597A (en) 1998-06-19 1998-06-19 Method of evaluating cleanness of bearing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10173286A JP2000009597A (en) 1998-06-19 1998-06-19 Method of evaluating cleanness of bearing steel

Publications (1)

Publication Number Publication Date
JP2000009597A true JP2000009597A (en) 2000-01-14

Family

ID=15957642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10173286A Pending JP2000009597A (en) 1998-06-19 1998-06-19 Method of evaluating cleanness of bearing steel

Country Status (1)

Country Link
JP (1) JP2000009597A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229288A (en) * 2008-03-24 2009-10-08 Ntn Corp Testing method of rolling-contact fatigue life
WO2012117970A1 (en) * 2011-03-03 2012-09-07 Ntn株式会社 Status monitoring system for rolling device and status monitoring method
JP2012181167A (en) * 2011-03-03 2012-09-20 Ntn Corp Rolling/sliding fatigue life testing method and testing device for steel materials
JP2012180921A (en) * 2011-03-03 2012-09-20 Ntn Corp Oil lubrication type rolling device and method of setting threshold for monitoring abnormal concentration of water mixed into lubrication oil
JP2012181168A (en) * 2011-03-03 2012-09-20 Ntn Corp Apparatus and method for monitoring condition of rolling device
JP2012181169A (en) * 2011-03-03 2012-09-20 Ntn Corp Apparatus and method for monitoring state of rolling component
CN102749195A (en) * 2012-07-06 2012-10-24 东南大学 High-speed water bearing performance test device with air seal
CN103994890A (en) * 2014-06-06 2014-08-20 中国航空综合技术研究所 Swing wear life test clamp of joint bearing
CN104062122A (en) * 2014-06-18 2014-09-24 西安航空制动科技有限公司 Loading device for bearing tester
JP2019002797A (en) * 2017-06-15 2019-01-10 株式会社ジェイテクト Life test equipment for rolling bearing bearings

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229288A (en) * 2008-03-24 2009-10-08 Ntn Corp Testing method of rolling-contact fatigue life
US9335317B2 (en) 2011-03-03 2016-05-10 Ntn Corporation Status monitoring system and status monitoring method for rolling device
WO2012117970A1 (en) * 2011-03-03 2012-09-07 Ntn株式会社 Status monitoring system for rolling device and status monitoring method
JP2012181167A (en) * 2011-03-03 2012-09-20 Ntn Corp Rolling/sliding fatigue life testing method and testing device for steel materials
JP2012180921A (en) * 2011-03-03 2012-09-20 Ntn Corp Oil lubrication type rolling device and method of setting threshold for monitoring abnormal concentration of water mixed into lubrication oil
JP2012181168A (en) * 2011-03-03 2012-09-20 Ntn Corp Apparatus and method for monitoring condition of rolling device
JP2012181169A (en) * 2011-03-03 2012-09-20 Ntn Corp Apparatus and method for monitoring state of rolling component
CN103460009A (en) * 2011-03-03 2013-12-18 Ntn株式会社 Status monitoring system for rolling device and status monitoring method
CN103460009B (en) * 2011-03-03 2016-07-06 Ntn株式会社 The condition monitoring system of tourelle and state monitoring method
CN102749195A (en) * 2012-07-06 2012-10-24 东南大学 High-speed water bearing performance test device with air seal
CN103994890A (en) * 2014-06-06 2014-08-20 中国航空综合技术研究所 Swing wear life test clamp of joint bearing
CN104062122A (en) * 2014-06-18 2014-09-24 西安航空制动科技有限公司 Loading device for bearing tester
JP2019002797A (en) * 2017-06-15 2019-01-10 株式会社ジェイテクト Life test equipment for rolling bearing bearings

Similar Documents

Publication Publication Date Title
Evans et al. Serial sectioning investigation of butterfly and white etching crack (WEC) formation in wind turbine gearbox bearings
Gould et al. The effect of lubricant composition on white etching crack failures
Gabelli et al. A model for hybrid bearing life with surface and subsurface survival
JP2000009597A (en) Method of evaluating cleanness of bearing steel
Tarelnyk et al. New method of friction assemblies reliability and endurance improvement
Gould et al. Figure the impact of steel microstructure and heat treatment on the formation of white etching cracks
Zhang et al. Characteristics and mechanism of surface damage of hybrid ceramic ball bearings for high-precision machine tool
JPH0650344A (en) Rolling bearing
JPH03126839A (en) Steel for bearing and rolling bearing
Pearson et al. The role of carbides in performance of high-alloy bearing steels
JPH07118683A (en) Lubricant for ball and roller bearing
Matsumoto et al. Rolling contact fatigue under water-infiltrated lubrication
Kang et al. The effects of material combination and surface roughness in lubricated silicon nitride/steel rolling contact fatigue
JP2005140648A (en) Life testing method for ball bearing
JP2005344852A (en) Rolling bearing
JP3911616B2 (en) Rolling bearing for compressor
JP2007056940A (en) Thrust needle roller bearing
Shcherbakova et al. SEM and SPM investigations of the surface of antifriction aluminium alloys of the system Al-5% Si-4% Cu-6% Sn
Stadler et al. Different performance aspects of black oxide coating for bearing applications
JP2003035656A (en) Method for estimating lifetime of bearing steel
Buttery Spiral orbit tribometer assessment of space lubricants
Beerbower et al. Fighting debris: Increasing life with HTF bearings for transmissions
Scott et al. Paper 17: study of sintered carbides and surface-Treated materials for unlubricated and elevated temperature rolling elements
Wan et al. Effect of extreme-pressure additives on rolling bearing fatigue life
Somasundar et al. Surface durability of tufftrided rolling elements