JP5050587B2 - Rolling bearing device for wheel support - Google Patents
Rolling bearing device for wheel support Download PDFInfo
- Publication number
- JP5050587B2 JP5050587B2 JP2007066867A JP2007066867A JP5050587B2 JP 5050587 B2 JP5050587 B2 JP 5050587B2 JP 2007066867 A JP2007066867 A JP 2007066867A JP 2007066867 A JP2007066867 A JP 2007066867A JP 5050587 B2 JP5050587 B2 JP 5050587B2
- Authority
- JP
- Japan
- Prior art keywords
- wheel
- bearing device
- hub
- rolling bearing
- hub wheel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Heat Treatment Of Articles (AREA)
- Rolling Contact Bearings (AREA)
Description
本発明は、自動車等の車輪を懸架装置に対して回転自在に支持する車輪支持用転がり軸受装置に関する。 The present invention relates to a wheel bearing rolling bearing device that rotatably supports a wheel of an automobile or the like with respect to a suspension device.
自動車等の車輪を懸架装置に対して回転自在に支持する車輪支持用転がり軸受装置は、一般には以下のような構成である。すなわち、車輪が取り付けられ一体に回転するハブホイールと、このハブホイールの外方に配されハブホイールの外周面に形成された軌道面に対向する軌道面を内周面に有する外輪と、両軌道面間に転動自在に配された複数の転動体と、を備え、ハブホイールが転動体の転動を介して外輪に回転自在に支持された構成である。そして、ハブホイールの外周面には、車輪を取り付けるためのフランジが設けられ、外輪の外周面には、懸架装置を取り付けるためのフランジが設けられている。 A wheel-supporting rolling bearing device that rotatably supports a wheel of an automobile or the like with respect to a suspension device generally has the following configuration. That is, a hub wheel to which the wheel is attached and rotates integrally, an outer ring having a raceway surface on the inner circumferential surface facing the raceway surface formed on the outer circumferential surface of the hub wheel, and both raceways. And a plurality of rolling elements that are rotatably arranged between the surfaces, and the hub wheel is rotatably supported on the outer ring through the rolling of the rolling elements. And the flange for attaching a wheel is provided in the outer peripheral surface of a hub wheel, and the flange for attaching a suspension apparatus is provided in the outer peripheral surface of an outer ring | wheel.
このような従来の車輪支持用転がり軸受装置においては、ハブホイールや外輪が、高炭素鋼材(例えばS50〜S55Cに相当する鋼材やSAE1070)を熱間鍛造した後に所定の形状に切削加工することにより形成されているため、ハブホイールや外輪の製造に多くの手間と時間を要するという難点があった。そこで、炭素鋼板を所定の形状にプレス成形することによってハブホイールや外輪を製造した車輪支持用転がり軸受装置が提案されている(特許文献1〜5を参照)。
しかしながら、炭素鋼板をプレス成形することによってハブホイールや外輪を製造する場合には、鋼板に絞り加工を施すことによりシャフト(軸)を形成する必要があるため、小径のシャフトを製造する場合には強い絞り加工が必要であった。よって、ハブホイールや外輪を製造する方法としてより良好な方法が望まれていた。
また、プレス成形のような塑性加工においては、焼鈍しの後の硬さが低いほど加工性が良好になるが、ハブホイールのような複雑な形状を有する部材を塑性加工により製造する場合には、素材の硬さだけでなく炭化物組織の状態,大きさ,分布が関係するため、炭化物組織を制御した素材を用いる必要がある。
However, when manufacturing a hub wheel or outer ring by press forming a carbon steel plate, it is necessary to form a shaft (shaft) by drawing the steel plate. A strong drawing process was required. Therefore, a better method has been desired as a method for manufacturing a hub wheel and an outer ring.
Also, in plastic working such as press forming, the lower the hardness after annealing, the better the workability, but when manufacturing a member having a complicated shape such as a hub wheel by plastic working Since not only the hardness of the material but also the state, size, and distribution of the carbide structure are involved, it is necessary to use a material that controls the carbide structure.
一方、近年における自動車の燃費向上及び走行性能向上の要求に伴って、車輪支持用転がり軸受装置のフランジの薄肉化が検討されている。しかしながら、フランジを薄肉化するということはフランジに加わる応力が大きくなるということを意味するので、フランジの強度が不十分となって不具合が生じやすくなることが懸念される。
例えば、ハブホイールの外周面に設けられたフランジには、車軸と車輪との間に加わるラジアル荷重が伝わるため、フランジの強度が不十分である場合には、長期間にわたる使用に伴って、フランジの根元部に亀裂等の損傷が発生するおそれがある。
On the other hand, with recent demands for improving the fuel efficiency and running performance of automobiles, it has been considered to reduce the thickness of the flange of the wheel bearing rolling bearing device. However, reducing the thickness of the flange means that the stress applied to the flange is increased, and there is a concern that the strength of the flange becomes insufficient and problems are likely to occur.
For example, since the radial load applied between the axle and the wheel is transmitted to the flange provided on the outer peripheral surface of the hub wheel, if the strength of the flange is insufficient, There is a risk that damage such as cracks may occur at the root of the slag.
そこで、本発明は上記のような従来技術が有する問題点を解決するものであり、優れた疲労強度を有していて大きな荷重が負荷されても変形や損傷が生じにくく、且つ、加工性に優れるため製造時に損傷が生じにくい車輪支持用転がり軸受装置を提供することを課題とする。 Therefore, the present invention solves the problems of the prior art as described above, has excellent fatigue strength, hardly deforms or damages even when a large load is applied, and improves workability. It is an object of the present invention to provide a wheel bearing rolling bearing device that is excellent in that it is less likely to be damaged during manufacture.
本発明者らは、車輪支持用転がり軸受装置のハブホイール及び外輪の少なくとも一方を塑性加工で製造する場合において、素材の硬さと成形性との関係だけでなく前組織と成形性との関係について鋭意研究を行い、良好な成形性が得られる素材の組織状態に関する知見を得て、本発明を完成するに至った。
すなわち、前記課題を解決するため、本発明は次のような構成からなる。本発明に係る請求項1の車輪支持用転がり軸受装置は、車輪が取り付けられ一体に回転するハブホイールと、前記ハブホイールの外方に配され前記ハブホイールの外周面に形成された軌道面に対向する軌道面を内周面に有する外輪と、前記両軌道面間に転動自在に配された複数の転動体と、を備え、前記ハブホイールが前記転動体の転動を介して前記外輪に回転自在に支持された車輪支持用転がり軸受装置において、前記ハブホイール及び前記外輪の少なくとも一方は、0.45質量%以上0.75質量%以下の炭素を含有する鋼からなり且つ軟化焼鈍しが施されてフェライト,球状化セメンタイト,及び針状セメンタイトを含有する円柱状素材を、冷間鍛造で成形して得られたものであるとともに、前記ハブホイールは、軌道面に高周波焼入れが施されており且つ側方押出しにより形成されたフランジを有することを特徴とする。
In the case where at least one of the hub wheel and the outer ring of the rolling bearing device for supporting a wheel is manufactured by plastic working, the inventors have not only the relationship between the hardness of the material and the formability but also the relationship between the front structure and the formability. As a result of earnest research, the present inventors have completed the present invention by obtaining knowledge about the structure state of a material from which good moldability can be obtained.
That is, in order to solve the problem, the present invention has the following configuration. A rolling bearing device for supporting a wheel according to claim 1 of the present invention includes a hub wheel to which a wheel is attached and rotating integrally, and a raceway surface that is disposed outside the hub wheel and is formed on an outer peripheral surface of the hub wheel. An outer ring having an opposing raceway surface on the inner peripheral surface, and a plurality of rolling elements that are arranged so as to be able to roll between the both raceway surfaces. In the wheel support rolling bearing device that is rotatably supported by the wheel, at least one of the hub wheel and the outer ring is made of steel containing carbon of 0.45% by mass or more and 0.75% by mass or less and is softened and annealed. it is subjected ferrite, spheroidal cementite, and a cylindrical material containing acicular cementite, together with those obtained by molding by cold forging, the hub wheel, induction hardening the raceway surface Les and having a flange formed by and laterally extruded and is subjected.
このような円柱状素材は、フェライト,球状化セメンタイト,及び針状セメンタイトを含有していて塑性加工性に優れているため、冷間鍛造で成形してハブホイールや外輪とする際に割れ等の損傷が生じにくい。また、ハブホイールや外輪が優れた疲労強度を有しているため、大きな荷重が負荷されても変形や損傷が生じにくい。
炭素は鋼に強度及び焼入れ性を付与するために必要な元素であり、車輪支持用転がり軸受装置に必要な性能を付与するためには、鋼中の含有量を0.45質量%以上とする必要がある。ただし、含有量が0.75質量%を超えると、鋼の加工性が低下して生産性が悪化するおそれがある。
Such a cylindrical material contains ferrite, spheroidized cementite, and acicular cementite, and is excellent in plastic workability. Therefore, when forming into a hub wheel or an outer ring by cold forging, cracks, etc. Damage is unlikely to occur. In addition, since the hub wheel and the outer ring have excellent fatigue strength, deformation and damage are unlikely to occur even when a large load is applied.
Carbon is an element necessary for imparting strength and hardenability to steel, and in order to impart performance required for a wheel bearing rolling bearing device, the content in steel is 0.45 mass% or more. There is a need. However, if the content exceeds 0.75% by mass, the workability of the steel is lowered and the productivity may be deteriorated.
また、本発明に係る請求項2の車輪支持用転がり軸受装置は、請求項1に記載の車輪支持用転がり軸受装置において、前記円柱状素材は、前記軟化焼鈍しによって、球状化セメンタイトの最大粒径が1μm以上7μm以下とされているとともに、硬さがHv180以下とされていることを特徴とする。
このような円柱状素材は塑性加工性がより優れているため、冷間鍛造で成形してハブホイールや外輪とする際に割れ等の損傷がより生じにくく、ハブホイールや外輪の製造が容易である。
According to a second aspect of the present invention, there is provided the wheel support rolling bearing device according to the first aspect, wherein the columnar material is a maximum grain size of spheroidized cementite by the softening annealing. The diameter is 1 μm or more and 7 μm or less, and the hardness is Hv180 or less.
Since such cylindrical materials have better plastic workability, damage such as cracking is less likely to occur when forming by cold forging into hub wheels and outer rings, making it easier to manufacture hub wheels and outer rings. is there.
円柱状素材を冷間鍛造で成形する前に軟化焼鈍しを施すことにより、硬さが低下して塑性加工性の向上が図られるとともに、加工時の損傷が抑制される。十分な塑性加工性が得るためには、軟化焼鈍しが施された円柱状素材の硬さはHv180以下であることが好ましいが、硬さがより低い方が塑性加工性が高まるので、硬さはHv170以下であることがより好ましい。 By performing soft annealing before forming the columnar material by cold forging, the hardness is reduced and plastic workability is improved, and damage during processing is suppressed. In order to obtain sufficient plastic workability, the hardness of the columnar material subjected to soft annealing is preferably Hv180 or less, but the lower the hardness, the higher the plastic workability, so the hardness Is more preferably Hv 170 or less.
また、鋼中の炭化物の大きさによっても塑性加工性が変化する。すなわち、軟化焼鈍しを施した際に炭化物の粒径が大きくなるほど、基地組織であるフェライト中の炭素濃度が低下して、塑性加工性が向上する。したがって、球状化セメンタイトの粒径が大きいほど、塑性加工性が向上する。球状化セメンタイトの最大粒径が1μm未満であると、塑性加工性が不十分となり、円柱状素材を冷間鍛造で成形する際に割れ等の損傷が生じるおそれがある。 Moreover, plastic workability changes also with the magnitude | size of the carbide | carbonized_material in steel. That is, as the particle size of the carbide increases when soft annealing is performed, the carbon concentration in the ferrite, which is the base structure, decreases, and the plastic workability improves. Accordingly, the larger the particle size of the spheroidized cementite, the better the plastic workability. If the maximum particle size of the spheroidized cementite is less than 1 μm, the plastic workability becomes insufficient, and there is a possibility that damage such as cracking may occur when a cylindrical material is formed by cold forging.
ただし、球状化セメンタイトの粒径が大き過ぎると、冷間鍛造で成形する際に球状化セメンタイト自身において損傷が発生したり、粗大なセメンタイトとフェライトとの界面が歪みの集中源となってボイドが形成され破断が発生したりしやすくなる。さらに、成形後には、転動体が転動する軌道面に高周波焼入れが施されて硬化層が形成されるが、球状化セメンタイトの粒径が大き過ぎると、高周波焼入れのような短時間の加熱ではセメンタイトが基地組織に溶け込みにくくなり、十分な硬さが得られないおそれがある。このような理由から、球状化セメンタイトの最大粒径は7μm以下であることが好ましい。 However, if the particle size of the spheroidized cementite is too large, damage will occur in the spheroidized cementite itself when forming by cold forging, or the coarse cementite-ferrite interface will be the source of strain concentration and voids. It is easy to form and break. Furthermore, after molding, induction hardening is performed on the raceway surface on which the rolling elements roll, and a hardened layer is formed.If the particle size of the spheroidized cementite is too large, heating in a short time such as induction hardening is not possible. There is a possibility that cementite is difficult to dissolve into the matrix structure and sufficient hardness cannot be obtained. For these reasons, the maximum particle size of the spheroidized cementite is preferably 7 μm or less.
さらに、本発明に係る請求項3の車輪支持用転がり軸受装置は、請求項1又は請求項2に記載の車輪支持用転がり軸受装置において、前記ハブホイール及び前記外輪は焼入れが施されていない非焼入れ部を有しており、前記非焼入れ部の硬さは、前記冷間鍛造での加工硬化によりHv200以上350以下とされていることを特徴とする。
非焼入れ部の硬さがHv200未満であると、ハブホイールや外輪の疲労強度が不十分となるおそれがある。一方、Hv350超過であると、衝撃的な荷重が負荷された場合に破損するおそれがある。
Furthermore, the wheel support rolling bearing device according to claim 3 of the present invention is the wheel support rolling bearing device according to claim 1 or 2, wherein the hub wheel and the outer ring are not quenched. It has a quenched portion, and the hardness of the non-quenched portion is Hv 200 or more and 350 or less by work hardening in the cold forging.
If the hardness of the non-quenched portion is less than Hv200, the fatigue strength of the hub wheel or outer ring may be insufficient. On the other hand, if it exceeds Hv350, there is a risk of damage when an impact load is applied.
本発明の車輪支持用転がり軸受装置は、優れた疲労強度を有していて大きな荷重が負荷されても変形や損傷が生じにくい。また、加工性に優れるため、製造時に損傷が生じにくい。 The rolling bearing device for supporting a wheel of the present invention has excellent fatigue strength, and is not easily deformed or damaged even when a large load is applied. Moreover, since it is excellent in workability, it is hard to produce a damage at the time of manufacture.
本発明に係る車輪支持用転がり軸受装置の実施の形態を、図面を参照しながら詳細に説明する。図1は、本発明に係る車輪支持用転がり軸受装置の一実施形態の構造を示す断面図である。なお、本実施形態においては、車輪支持用転がり軸受装置を自動車等の車両に取り付けた状態において、車両の幅方向外側を向いた部分を外端側部分と称し、幅方向中央側を向いた部分を内端側部分と称する。すなわち、図1においては、左側が外端側となり、右側が内端側となる。 DESCRIPTION OF EMBODIMENTS Embodiments of a wheel bearing rolling bearing device according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing the structure of an embodiment of a wheel bearing rolling bearing device according to the present invention. In the present embodiment, in a state where the wheel bearing rolling bearing device is attached to a vehicle such as an automobile, the portion facing the width direction outer side of the vehicle is referred to as an outer end side portion, and the portion facing the width direction center side Is referred to as an inner end portion. That is, in FIG. 1, the left side is the outer end side, and the right side is the inner end side.
図1の車輪支持用転がり軸受装置1は、ハブ輪2と、ハブ輪2に一体的に固定された内輪3と、ハブ輪2の外方に同軸に配された略円筒状の外輪4と、二列の転動体5,5と、転動体5を保持する保持器6,6と、を備えている。また、外輪4の内端側部分の内周面と内輪3の内端側部分の外周面との間、並びに、外輪4の外端側部分の内周面とハブ輪2の中間部の外周面との間には、それぞれシール装置7a,7bが設けられている。 A wheel support rolling bearing device 1 shown in FIG. 1 includes a hub wheel 2, an inner ring 3 that is integrally fixed to the hub ring 2, and a substantially cylindrical outer ring 4 that is coaxially disposed outside the hub ring 2. , Two rows of rolling elements 5 and 5, and cages 6 and 6 that hold the rolling elements 5. Further, between the inner peripheral surface of the inner end side portion of the outer ring 4 and the outer peripheral surface of the inner end side portion of the inner ring 3, and the outer periphery of the inner peripheral surface of the outer end side portion of the outer ring 4 and the intermediate portion of the hub ring 2. Sealing devices 7a and 7b are provided between the surfaces.
さらに、外輪4の内方に配されたハブ輪2のうち外輪4から突出している外端側部分の外周面には、図示しない車輪を支持するための車輪取り付け用フランジ10が設けられている。そして、外輪4の外周面には、車輪取り付け用フランジ10から離間する側の端部に、懸架装置取り付け用フランジ13が設けられている。
ハブ輪2の内端側部分には外径の小さい円筒部11が形成されており、該円筒部11に内輪3が圧入され、内輪3とハブ輪2とが一体的に固定されている。なお、内輪3とハブ輪2とが一体的に固定されたものが、本発明の構成要件であるハブホイールに相当し、外輪4が本発明の構成要件である外輪に相当する。
Further, a wheel mounting flange 10 for supporting a wheel (not shown) is provided on the outer peripheral surface of the outer end side portion protruding from the outer ring 4 of the hub wheel 2 disposed inside the outer ring 4. . A suspension device mounting flange 13 is provided on the outer peripheral surface of the outer ring 4 at the end portion on the side away from the wheel mounting flange 10.
A cylindrical portion 11 having a small outer diameter is formed at the inner end side portion of the hub wheel 2. The inner ring 3 is press-fitted into the cylindrical portion 11, and the inner ring 3 and the hub wheel 2 are integrally fixed. In addition, what fixed the inner ring | wheel 3 and the hub ring | wheel 2 integrally is corresponded to the hub wheel which is the structural requirements of this invention, and the outer ring | wheel 4 is equivalent to the outer ring | wheel which is the structural requirements of this invention.
ハブ輪2の外周面の軸方向中間部及び内輪3の外周面には、それぞれ軌道面が形成されており、ハブ輪2の軌道面は第一内側軌道面20a、内輪3の軌道面は第二内側軌道面20bとされている。また、外輪4の内周面には、前記両内側軌道面20a,20bに対向する軌道面が形成されており、第一内側軌道面20aに対向する軌道面は第一外側軌道面21a、第二内側軌道面20bに対向する軌道面は第二外側軌道面21bとされている。さらに、第一内側軌道面20aと第一外側軌道面21aとの間、及び、第二内側軌道面20bと第二外側軌道面21bとの間には、それぞれ複数の転動体5が転動自在に配置されている。なお、図示の例では、転動体として玉を使用しているが、車輪支持用転がり軸受装置1の用途等に応じて、ころを使用してもよい。 A raceway surface is formed on each of the axially intermediate portion of the outer peripheral surface of the hub wheel 2 and the outer peripheral surface of the inner ring 3. The raceway surface of the hub wheel 2 is the first inner raceway surface 20a, and the raceway surface of the inner ring 3 is the first. Two inner raceway surfaces 20b are provided. Further, a raceway surface facing both the inner raceway surfaces 20a and 20b is formed on the inner peripheral surface of the outer ring 4, and the raceway surface facing the first inner raceway surface 20a is the first outer raceway surface 21a and the second raceway surface. The track surface facing the second inner track surface 20b is a second outer track surface 21b. Further, a plurality of rolling elements 5 are freely rollable between the first inner raceway surface 20a and the first outer raceway surface 21a and between the second inner raceway surface 20b and the second outer raceway surface 21b. Is arranged. In the illustrated example, balls are used as the rolling elements, but rollers may be used depending on the application of the wheel bearing rolling bearing device 1 or the like.
また、ハブ輪2の外周面と外輪4の内周面とには、高周波焼入れによる硬化層22が形成されている。これにより、第一内側軌道面20a,第一外側軌道面21a,及び第二外側軌道面21bには、高周波焼入れによる硬化層22が形成されている。ハブ輪2及び外輪4のうち硬化層22以外の部分には焼入れは施されていない(以降は、このような部分を非焼入れ部と記す)。そして、内輪3には、例えば浸炭処理又は浸炭窒化処理と焼入れと焼戻しとが施され、第二内側軌道面20bには浸炭処理又は浸炭窒化処理による硬化層(図示せず)が形成されている。 Further, a hardened layer 22 by induction hardening is formed on the outer peripheral surface of the hub wheel 2 and the inner peripheral surface of the outer ring 4. Thereby, the hardened layer 22 by induction hardening is formed in the 1st inner raceway surface 20a, the 1st outer raceway surface 21a, and the 2nd outer raceway surface 21b. Parts of the hub wheel 2 and the outer ring 4 other than the hardened layer 22 are not quenched (hereinafter, such parts are referred to as non-quenched parts). The inner ring 3 is subjected to, for example, carburizing or carbonitriding, quenching and tempering, and a hardened layer (not shown) is formed on the second inner raceway surface 20b by carburizing or carbonitriding. .
このような車輪支持用転がり軸受装置1を自動車に組み付けるには、懸架装置取り付け用フランジ13を懸架装置に固定し、車輪を車輪取り付け用フランジ10に固定する。その結果、車輪支持用転がり軸受装置1によって車輪が懸架装置に対し回転自在に支持される。すなわち、内輪3とハブ輪2とが一体的に固定されたハブホイールが、車輪と一体に回転する回転輪となり、外輪4が、転動体5の転動を介してハブホイールを回転自在に支持する固定輪(非回転輪)となる。 In order to assemble such a wheel support rolling bearing device 1 to an automobile, the suspension device mounting flange 13 is fixed to the suspension device, and the wheel is fixed to the wheel mounting flange 10. As a result, the wheel is supported rotatably by the wheel support rolling bearing device 1 with respect to the suspension device. That is, the hub wheel in which the inner ring 3 and the hub ring 2 are integrally fixed becomes a rotating wheel that rotates integrally with the wheel, and the outer ring 4 rotatably supports the hub wheel through the rolling of the rolling elements 5. It becomes a fixed wheel (non-rotating wheel).
この車輪支持用転がり軸受装置1においては、ハブ輪2,内輪3,及び外輪4は、炭素の含有量が0.45質量%以上0.75質量%以下である鋼で構成されている。そして、ハブ輪2,内輪3,及び外輪4は、上記のような鋼からなる円柱状素材(ビレット)に軟化焼鈍しを施した後に冷間鍛造を施すことにより成形されたものである。
この円柱状素材は、軟化焼鈍しによって硬さがHv180以下とされていることが好ましい。また、円柱状素材はフェライト,球状化セメンタイト,及び針状セメンタイトを含有しているが(図2の組織図を参照)、球状化セメンタイトの最大粒径は軟化焼鈍しによって1μm以上7μm以下とされていることが好ましい。
In the wheel support rolling bearing device 1, the hub wheel 2, the inner ring 3, and the outer ring 4 are made of steel having a carbon content of 0.45 mass% or more and 0.75 mass% or less. The hub wheel 2, the inner ring 3, and the outer ring 4 are formed by subjecting a cylindrical material (billet) made of steel as described above to soft annealing and then performing cold forging.
It is preferable that the columnar material has a hardness of Hv180 or less by softening annealing. The cylindrical material contains ferrite, spheroidized cementite, and acicular cementite (see the structure diagram in FIG. 2). The maximum particle size of spheroidized cementite is 1 μm or more and 7 μm or less by softening annealing. It is preferable.
さらに、この円柱状素材に冷間鍛造を施すことにより成形されたハブ輪2,内輪3,及び外輪4は、前述の非焼入れ部を有しているが、この非焼入れ部のビッカース硬さHvは、冷間鍛造での加工硬化により200以上350以下とされていることが好ましい。
このような車輪支持用転がり軸受装置1は、ハブ輪2,内輪3,及び外輪4が優れた疲労強度を有しているので、大きな荷重が負荷されても変形や損傷が生じにくい。また、円柱状素材がフェライト,球状化セメンタイト,及び針状セメンタイトを含有していて塑性加工性に優れているため、冷間鍛造で成形してハブ輪2,内輪3,及び外輪4とする際に割れ等の損傷が生じにくい。
Furthermore, the hub wheel 2, the inner ring 3, and the outer ring 4 formed by cold forging the cylindrical material have the above-mentioned non-quenched portion, but the Vickers hardness Hv of the non-quenched portion. Is preferably 200 to 350 by work hardening in cold forging.
In such a wheel-supporting rolling bearing device 1, the hub wheel 2, the inner ring 3, and the outer ring 4 have excellent fatigue strength, so that deformation and damage are hardly caused even when a large load is applied. In addition, since the cylindrical material contains ferrite, spheroidized cementite, and acicular cementite and is excellent in plastic workability, the hub ring 2, inner ring 3, and outer ring 4 are formed by cold forging. It is difficult to cause damage such as cracks.
以下に、ハブ輪2の製造方法の一例を説明する。まず、炭素の含有量が0.45質量%以上0.75質量%以下である鋼で構成された円柱状素材に、軟化焼鈍しを施す。焼鈍し条件の一例を示す。円柱状素材をA1変態点以上の740〜860℃で0.1h以上保持した後に、20〜70℃/hの冷却速度で680〜720℃へ冷却し、1〜5h保持する。続いて、10〜100℃/hの冷却速度で620〜680℃へ冷却し、さらに、10〜150℃/hの冷却速度で500〜560℃へ冷却する。このような軟化焼鈍しにより、鋼はフェライト,球状化セメンタイト,及び針状セメンタイトを含有する組織となる。 Below, an example of the manufacturing method of the hub wheel 2 is demonstrated. First, softening annealing is performed on a columnar material made of steel having a carbon content of 0.45 mass% or more and 0.75 mass% or less. An example of annealing conditions is shown. The cylindrical material is held at 740 to 860 ° C. above the A1 transformation point for 0.1 h or more, then cooled to 680 to 720 ° C. at a cooling rate of 20 to 70 ° C./h, and held for 1 to 5 hours. Then, it cools to 620-680 degreeC with the cooling rate of 10-100 degreeC / h, and also cools to 500-560 degreeC with the cooling rate of 10-150 degreeC / h. By such soft annealing, the steel becomes a structure containing ferrite, spheroidized cementite, and acicular cementite.
次に、軟化焼鈍しを施した円柱状素材に冷間鍛造を施し、前方押出しを2段階行う。さらに、冷間鍛造を施して段付けを行った後に、側方押出しを行いフランジを形成する(図3を参照)。
得られたハブ輪2の軌道面を含む外周面に高周波焼入れ及び焼戻しを施して、硬化層22を形成した後、研削仕上げや超仕上げを施して、ハブ輪2を完成した。
内輪3及び外輪4もハブ輪2と同様に製造して、これらを組み立てれば、車輪支持用転がり軸受装置1が得られる。
Next, cold forging is performed on the columnar material subjected to soft annealing, and forward extrusion is performed in two stages. Furthermore, after performing cold forging and performing stepping, side extrusion is performed to form a flange (see FIG. 3).
The outer peripheral surface including the raceway surface of the obtained hub wheel 2 was subjected to induction hardening and tempering to form a hardened layer 22, and then subjected to grinding and superfinishing to complete the hub wheel 2.
When the inner ring 3 and the outer ring 4 are manufactured in the same manner as the hub ring 2 and are assembled, the wheel bearing rolling bearing device 1 can be obtained.
〔実施例〕
以下に、実施例を示して、本発明をさらに具体的に説明する。まず、円柱状素材に冷間鍛造を施した際の割れ発生率と、円柱状素材を構成する鋼が含有する球状化セメンタイトの最大粒径との関係を調査した。
JIS S55Cに相当する鋼(炭素の含有量は0.55質量%)で構成された直径60mmの円柱状素材に、軟化焼鈍しを施して、フェライト,球状化セメンタイト,及び針状セメンタイトを含有する組織とした。その際には、軟化焼鈍しの条件を後述のように種々変更することにより、球状化セメンタイトの最大粒径及び硬さが異なるものを製造した(表1を参照)。
〔Example〕
Hereinafter, the present invention will be described more specifically with reference to examples. First, the relationship between the crack generation rate when cold forging a columnar material and the maximum particle size of spheroidized cementite contained in the steel constituting the columnar material was investigated.
A columnar material having a diameter of 60 mm made of steel corresponding to JIS S55C (carbon content is 0.55 mass%) is softened and annealed to contain ferrite, spheroidized cementite, and acicular cementite. The organization. In that case, the softening annealing conditions were variously changed as described later to produce spheroidized cementite having different maximum particle diameters and hardnesses (see Table 1).
このような円柱状素材に図3に示したような冷間鍛造を施して、フランジを有するハブ輪を製造し、フランジの外周部にマイクロクラックが発生しているか否かを顕微鏡にて確認した。球状化セメンタイトの最大粒径が同一の円柱状素材をそれぞれ100個用意して冷間鍛造を施し、マイクロクラックの発生率(割れ発生率)を算出した。 Such a cylindrical material is subjected to cold forging as shown in FIG. 3 to produce a hub ring having a flange, and whether or not microcracks are generated in the outer peripheral portion of the flange is confirmed with a microscope. . 100 columnar materials each having the same maximum particle diameter of spheroidized cementite were prepared and subjected to cold forging, and the occurrence rate of microcracks (breakage rate) was calculated.
軟化焼鈍しの条件は、以下の通りである。
条件1:780℃で0.5h保持した後に、20℃/hの冷却速度で700℃まで冷却して1h保持した。続いて、50℃/hの冷却速度で650℃まで冷却し、さらに70℃/hの冷却速度で520℃まで冷却した。
条件2:780℃で0.5h保持した後に、20℃/hの冷却速度で700℃まで冷却して2h保持した。続いて、50℃/hの冷却速度で650℃まで冷却し、さらに70℃/hの冷却速度で520℃まで冷却した。
The conditions for softening annealing are as follows.
Condition 1: After holding at 780 ° C. for 0.5 h, it was cooled to 700 ° C. at a cooling rate of 20 ° C./h and held for 1 h. Then, it cooled to 650 degreeC with the cooling rate of 50 degreeC / h, and also cooled to 520 degreeC with the cooling rate of 70 degreeC / h.
Condition 2: After holding at 780 ° C. for 0.5 h, it was cooled to 700 ° C. at a cooling rate of 20 ° C./h and held for 2 h. Then, it cooled to 650 degreeC with the cooling rate of 50 degreeC / h, and also cooled to 520 degreeC with the cooling rate of 70 degreeC / h.
条件3:780℃で0.5h保持した後に、20℃/hの冷却速度で700℃まで冷却して3h保持した。続いて、50℃/hの冷却速度で650℃まで冷却し、さらに70℃/hの冷却速度で520℃まで冷却した。
条件4:780℃で0.5h保持した後に、20℃/hの冷却速度で700℃まで冷却して5h保持した。続いて、50℃/hの冷却速度で650℃まで冷却し、さらに70℃/hの冷却速度で520℃まで冷却した。
Condition 3: After holding at 780 ° C. for 0.5 h, it was cooled to 700 ° C. at a cooling rate of 20 ° C./h and held for 3 h. Then, it cooled to 650 degreeC with the cooling rate of 50 degreeC / h, and also cooled to 520 degreeC with the cooling rate of 70 degreeC / h.
Condition 4: After holding at 780 ° C. for 0.5 h, it was cooled to 700 ° C. at a cooling rate of 20 ° C./h and held for 5 h. Then, it cooled to 650 degreeC with the cooling rate of 50 degreeC / h, and also cooled to 520 degreeC with the cooling rate of 70 degreeC / h.
条件5:780℃で0.5h保持した後に、20℃/hの冷却速度で700℃まで冷却して0.5h保持した。続いて、50℃/hの冷却速度で650℃まで冷却し、さらに70℃/hの冷却速度で520℃まで冷却した。
条件6:780℃で0.5h保持した後に、20℃/hの冷却速度で700℃まで冷却して0.25h保持した。続いて、50℃/hの冷却速度で650℃まで冷却し、さらに70℃/hの冷却速度で520℃まで冷却した。
Condition 5: After holding at 780 ° C. for 0.5 h, it was cooled to 700 ° C. at a cooling rate of 20 ° C./h and held for 0.5 h. Then, it cooled to 650 degreeC with the cooling rate of 50 degreeC / h, and also cooled to 520 degreeC with the cooling rate of 70 degreeC / h.
Condition 6: After holding at 780 ° C. for 0.5 h, it was cooled to 700 ° C. at a cooling rate of 20 ° C./h and held for 0.25 h. Then, it cooled to 650 degreeC with the cooling rate of 50 degreeC / h, and also cooled to 520 degreeC with the cooling rate of 70 degreeC / h.
また、球状化セメンタイトの最大粒径の測定方法は、以下の通りである。軟化焼鈍しを施した円柱状素材を破断し、その断面を研磨した後にナイタール腐食液でエッチングした。エッチングした断面を光学顕微鏡で倍率1000倍に拡大し、5箇所について写真を撮り、球状化セメンタイトの粒径を測定した。なお、様々な形状のセメンタイトのうち、アスペクト比(長径/短径)が2.0以下のものを球状化セメンタイトと定義した。
試験結果を表1及び図4のグラフに示す。この結果から分かるように、球状化セメンタイトの最大粒径が1μm以上であると、冷間鍛造によるマイクロクラックの発生はなかった。
Moreover, the measuring method of the maximum particle diameter of spheroidized cementite is as follows. The columnar material subjected to soft annealing was broken, and the cross section was polished, and then etched with a nital corrosive solution. The etched cross section was magnified 1000 times with an optical microscope, photographs were taken at five locations, and the particle size of the spheroidized cementite was measured. Of the various shapes of cementite, those having an aspect ratio (major axis / minor axis) of 2.0 or less were defined as spheroidized cementite.
The test results are shown in Table 1 and the graph of FIG. As can be seen from this result, when the maximum particle size of the spheroidized cementite was 1 μm or more, no microcracks were generated by cold forging.
次に、下記のようにしてハブ輪の非焼入れ部の硬さと疲労寿命との関係を調査した。上記の実施例3のハブ輪を用いて、前述の車輪支持用転がり軸受装置1とほぼ同様の構成の車輪支持用転がり軸受装置を製造した。このとき、ハブ輪のフランジに種々の強さのしごきを加えることにより加工度を変え、非焼入れ部の硬さが種々異なるハブ輪を備えた車輪支持用転がり軸受装置を用意した。 Next, the relationship between the hardness of the non-quenched portion of the hub wheel and the fatigue life was investigated as follows. A wheel support rolling bearing device having substantially the same configuration as that of the wheel support rolling bearing device 1 described above was manufactured using the hub wheel of Example 3 described above. At this time, a rolling bearing device for supporting a wheel provided with a hub ring having various degrees of hardness by adding various strength irons to the flange of the hub ring and having different hardness of the non-quenched portion was prepared.
車輪支持用転がり軸受装置の外輪を治具で固定し、ラジアル荷重4000N及びアキシアル荷重3500Nを負荷した状態で、ハブ輪を回転速度300min-1で回転させた。そして、ハブ輪の外周面に形成されたフランジの根元部の外端側に、破損が発生したら回転を終了し、破損が発生するまでの回転数を疲労寿命とした。
結果を図5のグラフに示す。非焼入れ部の硬さがHv200以上であると、疲労寿命が合格ラインである1.0×107 回に達していることが分かる。
The outer ring of the wheel bearing rolling bearing device was fixed with a jig, and the hub ring was rotated at a rotational speed of 300 min −1 with a radial load of 4000 N and an axial load of 3500 N. Then, when damage occurred on the outer end side of the flange base formed on the outer peripheral surface of the hub wheel, the rotation was terminated, and the number of revolutions until the damage occurred was defined as the fatigue life.
The results are shown in the graph of FIG. It can be seen that if the hardness of the non-quenched part is Hv200 or more, the fatigue life has reached 1.0 × 10 7 times which is a pass line.
1 車輪支持用転がり軸受装置
2 ハブ輪
3 内輪
4 外輪
5 転動体
10 車輪取り付け用フランジ
13 懸架装置取り付け用フランジ
20a 第一内側軌道面
20b 第二内側軌道面
21a 第一外側軌道面
21b 第二外側軌道面
22 硬化層
DESCRIPTION OF SYMBOLS 1 Rolling bearing apparatus for wheel support 2 Hub wheel 3 Inner ring 4 Outer ring 5 Rolling element 10 Wheel mounting flange 13 Suspension apparatus mounting flange 20a First inner raceway surface 20b Second inner raceway surface 21a First outer raceway surface 21b Second outer race Raceway 22 Hardened layer
Claims (3)
前記ハブホイール及び前記外輪の少なくとも一方は、0.45質量%以上0.75質量%以下の炭素を含有する鋼からなり且つ軟化焼鈍しが施されてフェライト,球状化セメンタイト,及び針状セメンタイトを含有する円柱状素材を、冷間鍛造で成形して得られたものであるとともに、前記ハブホイールは、軌道面に高周波焼入れが施されており且つ側方押出しにより形成されたフランジを有することを特徴とする車輪支持用転がり軸受装置。 A hub wheel to which a wheel is attached and rotates integrally; an outer ring having a raceway surface disposed on an outer peripheral surface of the hub wheel and facing a raceway surface formed on an outer peripheral surface of the hub wheel; A rolling bearing device for supporting a wheel, comprising: a plurality of rolling elements arranged in a freely rolling manner between the surfaces, wherein the hub wheel is rotatably supported by the outer ring through the rolling of the rolling elements;
At least one of the hub wheel and the outer ring is made of steel containing carbon of 0.45% by mass or more and 0.75% by mass or less and subjected to soft annealing to obtain ferrite, spheroidized cementite, and acicular cementite. The hub material is obtained by cold forging, and the hub wheel is induction-hardened on the raceway surface and has a flange formed by side extrusion. A rolling bearing device for supporting a wheel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007066867A JP5050587B2 (en) | 2007-03-15 | 2007-03-15 | Rolling bearing device for wheel support |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007066867A JP5050587B2 (en) | 2007-03-15 | 2007-03-15 | Rolling bearing device for wheel support |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008223990A JP2008223990A (en) | 2008-09-25 |
JP5050587B2 true JP5050587B2 (en) | 2012-10-17 |
Family
ID=39842845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007066867A Active JP5050587B2 (en) | 2007-03-15 | 2007-03-15 | Rolling bearing device for wheel support |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5050587B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5509966B2 (en) * | 2010-03-23 | 2014-06-04 | 日本精工株式会社 | Bearing unit |
JP5552884B2 (en) * | 2010-04-27 | 2014-07-16 | 日本精工株式会社 | Manufacturing method of wheel bearing rolling bearing unit |
JP2013215774A (en) * | 2012-04-09 | 2013-10-24 | Ntn Corp | Flange structure and manufacturing method for the same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001163003A (en) * | 1999-12-08 | 2001-06-19 | Nsk Ltd | Bearing unit for driving wheel and method for manufacturing connecting member therefor |
JP2001329333A (en) * | 2000-05-17 | 2001-11-27 | Sanyo Special Steel Co Ltd | Steel for cold forging and induction hardening |
JP2006064036A (en) * | 2004-08-25 | 2006-03-09 | Nsk Ltd | Bearing device for supporting axle |
JP2006200700A (en) * | 2005-01-24 | 2006-08-03 | Nsk Ltd | Rolling bearing device for supporting wheel |
JP2006241559A (en) * | 2005-03-04 | 2006-09-14 | Nsk Ltd | Rolling bearing unit for supporting wheel |
-
2007
- 2007-03-15 JP JP2007066867A patent/JP5050587B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008223990A (en) | 2008-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5121168B2 (en) | Rolling member manufacturing method and rolling bearing manufacturing method | |
JP2006200700A (en) | Rolling bearing device for supporting wheel | |
JP5045491B2 (en) | Large rolling bearing | |
JP2006291250A (en) | Rolling bearing unit for wheel supporting | |
JP5050587B2 (en) | Rolling bearing device for wheel support | |
JP4893585B2 (en) | Manufacturing method of wheel bearing rolling bearing unit | |
JP2006064036A (en) | Bearing device for supporting axle | |
JP2009203526A (en) | Rolling bearing | |
JP5136146B2 (en) | Manufacturing method of wheel bearing rolling bearing unit | |
JP5644881B2 (en) | Manufacturing method of wheel bearing rolling bearing device | |
JP6023493B2 (en) | Method of manufacturing bearing ring, bearing ring and rolling bearing | |
JP4561389B2 (en) | Outside member of bearing unit | |
JP2005145313A (en) | Rolling bearing unit for supporting vehicle wheel | |
JP2006329287A (en) | Wheel supporting rolling bearing unit and its inner ring manufacturing method | |
JP5195081B2 (en) | Rolling bearing unit for wheel support and manufacturing method thereof | |
JP2008266667A (en) | Rolling bearing device for supporting wheel | |
JP2010013039A (en) | Rolling bearing unit for wheel support and method of manufacturing the same | |
JP4225061B2 (en) | Rolling bearing unit for wheel support | |
JP2007107647A (en) | Rolling bearing device for supporting wheel | |
JP2006226373A (en) | Rolling bearing unit for supporting wheel | |
JP2006153188A (en) | Roller bearing system for supporting wheel | |
JP5195089B2 (en) | Hub unit bearing and manufacturing method thereof | |
JP2012192818A (en) | Bearing device for wheel | |
JP2005282691A (en) | Rolling bearing and wheel supporting bearing device | |
JP5070907B2 (en) | Rolling bearing device for supporting wheel and method for manufacturing raceway ring thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100305 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110912 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110920 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111116 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120626 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120709 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5050587 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150803 Year of fee payment: 3 |
|
R157 | Certificate of patent or utility model (correction) |
Free format text: JAPANESE INTERMEDIATE CODE: R157 |